

Abstract—The Virtual Generalizing Random Access Memory
Weightless Neural Network (VG-RAM WNN) is an effective
machine learning technique that offers simple implementation
and fast training. One disadvantage of VG-RAM WNN,
however, is the test time for applications with many training
samples, i.e. large multi-class classification applications. In such
cases, the test time tends to be high, since it increases with the
size of the memory of each neuron. In this paper, we present a
new methodology for handling such applications using
VG-RAM WNN. By employing data clustering techniques to
reduce the overall size of the neurons’ memory, we were able to
reduce the network’s memory footprint and the system’s
runtime, while maintaining a high and acceptable classification
performance. We evaluated the performance of our VG-RAM
WNN system with compressed memory on the problem of traffic
sign recognition. Our experimental results showed that, after
compression, the system was able to run at very fast response
times in standard computers. Also, we were able to load and run
the system at interactive rates in small low-power systems,
experiencing only a small reduction in classification
performance.

Keywords—Virtual Generalizing Random Access Memory
Weightless Neural Networks, Clustering Techniques, Traffic
Sign Recognition.

I. INTRODUCTION
EIGHTLESS Neural Networks (WNN) do not store
knowledge in their connections, but in Random Access
Memories (RAM) inside the network’s neurons. The

synapses of each neuron collect a vector of bits from the
network’s input (neuron’s input vector) and use it as a RAM
address to access the respective associated label value
(neuron’s output value) stored at this RAM address. Training
can be made in one shot and basically consists of storing the
desired neuron’s output value in the address associated with
the neuron’s input vector [1]. In spite of their remarkable
simplicity, WNN are very effective as pattern recognition
tools, offering easy implementation in addition to fast training
[2]. However, neuron memory size becomes prohibitive if the
neuron’s input vector is too large, since it is dictated by this

Edilson de Aguiar is with the Department of Computer Science and

Electronics, UFES, São Mateus, ES, Brazil.
Avelino Forechi, Lucas Veronese, Mariella Berger, Alberto Ferreira De

Souza (e-mail: alberto@lcad.inf.ufes.br), Claudine Badue, and Thiago
Oliveira-Santos are with the Department of Informatics, UFES, Vitoria, ES,
Brazil.

This work was supported in part by Conselho Nacional de
Desenvolvimento Científico e Tecnológico-CNPq-Brasil (grants
552630/2011-0, 308096/2010-0, and 314485/2009-0) and Fundação de
Amparo à Pesquisa do Espírito Santo-FAPES-Brasil (grant 48511579/2009).

vector size (neuron memory size is equal to 2p, where p is the
neuron’s input vector size).

The proponents of Wilkes, Stonham and Aleksander
Recognition Device (WiSARD) tackled this problem by
splitting the p-sized neuron’s input vector in q segments, each
one used as address of a specific RAM memory module of
size 2p/q [3]. During training, a p-sized training input pattern is
split in q parts and each p/q-sized input sub-pattern is used as
address of the corresponding RAM module; the addressed
position in each RAM module receives (stores) the label
value (RAM module’s output value) associated with the input
pattern. During test, the p-sized test input pattern is also split
in q parts and each p/q-sized input sub-pattern is used as
address of the corresponding RAM module; the neuron’s
output value is the most frequent label value observed among
the outputs of the q RAM modules. Thanks to this
organization, the total amount of memory required per neuron
is reduced from 2p to q × 2p/q.

The proponents of the Virtual Generalizing Random
Access Memory (VG-RAM) Weightless Neural Networks
(WNN) took a step further by only requiring memory
capacity to store the data related to the training set [4]. Instead
of storing an output label value that can be referenced by a
binary input pattern, this type of WNN neuron stores pairs of
corresponding input-output patterns, i.e. vector of bits as
input and label value as output. The memory footprint is
optimized with such an approach whereas the performance of
training is maintained, facilitating the prototyping of
applications for classification. One disadvantage introduced
by this method is the test speed of unknown samples, which
depends on the size of the neurons’ memory (that is equal to
the number of trained input-output pairs) – during test, the
search for the closest pattern is performed sequentially and
requires scanning the whole memory of each neuron.

It has been shown that this type of network has high
classification performance for a variety of multi-class
classification applications, such as text categorization [5, 6],
face recognition [7, 8, 9], and traffic sign detection and
recognition [10, 11]. However, although classification speed
might be ignored in applications with small training datasets,
it becomes a problem in applications with large training
datasets. Therefore, the use of this network in systems that
demand fast response, or in small low-power systems, is
restricted by the number of training samples. Since this
number can be quite large for some of the mentioned
applications, the sequential search for the closest pattern in
the memory of each neuron hinders performance during test

Compressing VG-RAM WNN Memory for
Lightweight Applications

Edilson de Aguiar, Avelino Forechi, Lucas Veronese, Mariella Berger,
Alberto F. De Souza, Claudine Badue, and Thiago Oliveira-Santos

W

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1063

of new samples. Moreover, small low-power systems have
further restrictions on available memory, which makes it
difficult or even impossible to load networks trained with
large training datasets on such devices.

To address these problems and propose a solution for
applications based on VG-RAM WNN (VG-RAM for short)
with large training datasets, this work investigates the use of
data compression techniques to reduce the overall size of the
neurons’ memory, while keeping a high and acceptable
classification performance. Under the hypothesis that not all
data stored in the memory of a neuron are relevant for good
classification performance of the network, we apply data
clustering techniques to eliminate redundant or irrelevant
examples from the memory (i.e. to eliminate lines of the
look-up table illustrated in Fig. 1). Using a complex
multi-class classification application, i.e. traffic sign
recognition, we compare the classification performance of
VG-RAM with full memory with that of VG-RAM with the
memory compressed at different levels. Additionally, as
baseline, we compare the classification performance of
standard VG-RAM against that of VG-RAM with random
deletion of neuron memory samples. Our results show that it
is possible to run such heavy multi-class classification
applications implemented with VG-RAM at very fast
response times on standard computers, or at good interactive
levels on small low-power systems.

This paper is organized as follows. After this introduction,
in Section II, we briefly present our VG-RAM architecture
for multi-class classification, i.e. traffic sign recognition.
Subsequently, in Section III, we describe the technique used
to reduce the overall size of the neurons’ memory, while
keeping a good classification performance. In Section IV, we
present our experimental methodology and analyze our
experimental results. Finally, our conclusions and directions
for future work follow in Section V.

II. VG-RAM WNN
The architecture of VG-RAM WNNs comprises neural

layers with many neurons connected to input layers (e.g.
images or other neural layers) through a set S = {s1, …, sp} of
synapses. Since VG-RAM neurons generate outputs in the
form of label values, t, the output of a neural layer can also
function as an image, where each pixel is the output of a
neuron.

The synapses of a VG-RAM neuron are responsible for
sampling a binary vector I = {i1, …, ip} (one bit per synapse)
from the input layer according to the neuron’s receptive field.
Each bit of this vector is computed using a synapse mapping
function that transforms non-binary values in binary values.
Individual neurons have private memories, i.e. look-up tables,
that store sets L = {L1, …, Lj, …, Lm} of learned binary input
vectors I and corresponding output labels t, i.e. Lj = (Ij, tj)
(input-output pairs). An illustration of a single layer of such a
network is presented in Fig. 1.

VG-RAMs operate in two phases: a training phase, in

which neurons learn new pairs of binary input vectors and
corresponding output labels (input-output pairs); and a test
phase, in which neurons receive binary input vectors and
respond with the label values associated with the closest
binary input vectors in the input-output pairs previously
learned.

More specifically, in the training phase, each neuron
includes a new input-output pair, or line L, in its local
memory as follows. Firstly, an input image is set in the Input
Layer of the VG-RAM (Fig. 1). Secondly, the corresponding
Neuron Outputs are set in the Neural Layer of the VG-RAM
(expected output value t of each neuron for the input image
set). Finally, one input-output pair (binary input vector I and
corresponding output label t) is extracted for each neuron and
added into its memory as a new line L = (I, t). In the test
phase, each neuron computes an output label t as follows.
Firstly, an input image is set in the Input Layer of the
VG-RAM. Secondly, a binary input vector I is extracted for
each neuron. Finally, each neuron searches its memory to find
the input-output pair Lj = (Ij, tj) whose input Ij is the closest to
the extracted input I, and sets the corresponding Neuron
Output of the Neural Layer with the output value tj of this
pair. In case of more than one pair with an input at the same
minimum distance of the extracted input, the output value is
randomly chosen among them. The memory search is
sequential and the distance function is the Hamming distance.

Fig. 1. Illustration of a single layer VG-RAM WNN. The VG-RAM
Neural Layer comprises many neurons that are connected to the Input
Layer (e.g. an image) by a set of Synapses S = {s1, …, sp}. The
synapses of a VG-RAM neuron sample a binary vector I = {i1, …, ip}
from the Input Layer according to the neuron’s Receptive Field. The
bits of this vector are computed using a synapse mapping function that
transforms non-binary values into binary values. Each neuron of the
Neural Layer has a private memory (Look-up Table) of size m that
stores a set L = {L1, …, Lj, …, Lm} of Lj = (Ij, tj) input-output pairs
learned during training. Each neuron shows an output activation value t
(Neural Layer colored circles) read from its memory (Look-up Table
column t). This value corresponds to the output of the input-output pair
Lj, whose input Ij is the closest to the current binary input vector I
extracted by the neuron synapses.

Neural Layer

Synapses S

Input Layer

i1 i2 i3 i4 i5 ... ip t
1 0 1 1 0 ... 1

1 0 1 0 1 ... 1

...

1 1 0 0 1 ... 1

Neuron
Memory

Neurons

Look-up Table

Neuron Outputs
or Pixels

1L

2L

mL

Receptive Field

1064

The Hamming distance between two binary patterns can be

efficiently computed at machine code level in current
machines using two instructions: one instruction to identify
the bits that differ in the two binary patterns, i.e. bit-wise
exclusive-or; and another instruction to count these bits, i.e.
population count instruction.

III. VG-RAM WNN MEMORY COMPRESSION
Despite the high classification performance of VG-RAM

WNN for a variety of multi-class classification applications,
the test performance depends on the size of the memory of
each neuron. Considering an application requiring a
VG-RAM with n neurons, each containing a memory with m
input-output pairs, its runtime performance will be
proportional to n × m (O(nm)). Unfortunately, many
problems require a large training dataset to be solved
satisfactorily (e.g. traffic sign recognition [10]). For
applications with a large training set, the value of m is large
and may limit the use of VG-RAM, since testing a new input
sample requires a sequential search for the closest pattern in
the m-sized memory of the n neurons.

We aim at reducing the overall size m of the Look-up
Tables, thus improving runtime performance and reducing
memory footprint, while keeping an acceptable classification
accuracy. Assuming that the memory of each neuron will
have a large amount of redundant or irrelevant information,
we should be able to accomplish relevant compression by
carefully eliminating input-output pairs of the neurons’
Look-up Tables. This can be achieved by using a clustering
algorithm to find the most relevant input-output pairs in the
memory of each neuron as described next.

Considering the large number of relevant clustering
techniques ([12, 13, 14]) and the fact that the clustering
procedure needs to be done many times for each neuron (see
below), we decided to use k-Means [15] due to its simplicity
and efficiency. The k-Means algorithm partitions a set I of |I|
vectors into k clusters, k < |I|, where the parameter k is set a
priori. This iterative partitioning minimizes the sum, over all
clusters, of the within-cluster sums of point-to-cluster-
centroid distances. For our experiments, we used the
Hamming distance to define the centroids of each cluster.

Fig. 2 illustrates our VG-RAM memory compression
framework that works as follows. Initially, the original
memory of each neuron, containing m lines, is sorted
according to its output label t (i.e. traffic sign of same type).
The result is a set of lines ordered according to each output
type, e.g. the set of lines L1 = { 1

1L , …, 1
1mL } for outputs of type

equal to label 1, L2 = { 2
1L , …, 2

2mL } for outputs of type equal

to label 2, until Ll = { lL1 , …, l
ml

L } for outputs of type equal to

label l. Subsequently, we apply k-Means separately to each
set of lines L1, L2, …, Ll, partitioning each one of them into k
clusters. Each cluster has a centroid C that is equivalent to a
memory line L. k-Means computes the set C1 = { 1

1C , …, 1
1kC }

of centroids from the lines of set L1, where k1 < m1 and
m1 = |L1|; the set C2 = { 2

1C , …, 2
2kC } of centroids from the

lines of set L2, where k2 < m2; and so on until the set
Cl = { lC1 , …, l

kl
C }, where kl < ml. The centroid sets C1, C2, …,

Cl become the new memory entries for the respective neuron
(see Fig. 2). This process is repeated for all neurons, i.e. the
clustering process is performed n × l times. As a result, the

Fig. 2. VG-RAM WNN memory compression framework. The
original memory of each neuron, containing m lines, is grouped
according to its output type, t. Each group is clustered separately using
k-Means and the resulting centroids become the new entries for the
compressed memory.

i1 i2 i3 i4 i5 ... ip t

1 0 1 1 0 ... 1

...

...

1 1 0 1 0 ... 0

0 0 1 1 0 ... 1

...

...

1 0 1 1 1 ... 0

...

1 0 1 1 1 ... 0

...

...

1 1 0 0 1 ... 1

Neuron Memory (Look-up Table)

L2 (e.g. m2 = 40)

i1

i2

i3

ip

C2 (e.g. k2 = 4)

i1

i2

i3

ip

i1 i2 i3 i4 i5 ... ip t

1 0 1 1 0 ... 1

...

1 1 0 1 0 ... 0

0 0 1 1 0 ... 1

...

1 0 1 1 1 ... 0

...

1 0 1 1 1 ... 0

...

1 1 0 0 1 ... 1

Compressed Neuron Memory (Look-up Table)

k-Means
(e.g. 10%)

1
1L

lL1

1
1mL

2
2mL

2
1L

l
ml

L

1
1C

1
1kC

2
1C

2
2kC

lC1

l
kl

C

1065

number of entries in the VG-RAM memory is reduced
according to the specified number of clusters kj of each label
type j. To maintain the original memory balance between
entries for the different output types, we used different values
of k for each label type, i.e. kj = mj × cl, where 0 < cl < 1 is the
VG-RAM memory compression level.

 Our approach modifies the contents of the neurons’
memory. It can even create a new entry that was not part of
the learning process. We see this property as an advantage of
our framework since it is able to summarize the memory
information according to the data. Please note that the input
patterns Ij = {i1, …, ip} of all centroids Cj = (Ij, tj) must be
binary, therefore, the centroids’ elements need to be rounded
to values 0 or 1.

IV. EXPERIMENT AND RESULTS
In order to validate our work, we used our framework to

compress the memory of a VG-RAM WNN system designed
for traffic sign recognition [10]. In the next subsections, we
briefly present the traffic sign recognition system (Section
IV-A). Then, we describe the dataset used for our
experiments (Section IV-B). Thereafter, we detail the
experiments and the results obtained with our compression
framework to enable fast response time applications on
standard computers (Section IV-C) and acceptable interactive
times on small low-power systems (Section IV-D).

A. Traffic Sign Recognition Application
The traffic sign application used in this paper employs a

VG-RAM architecture with one neural layer connected to a
(50 × 50)-sized input grayscale image (please see Fig. 3 for an
overview of the system, and refer to [10] for details). The
synaptic mapping function that maps non-binary image pixels
to binary values is a minchinton cell [16] that works as
follows. The non-binary value read by each synapse
connected to the grayscale image is subtracted from the value
read by the subsequent synapse in the set of synapses of each
neuron, S, where |S| = p = 64 (the last synapse, sp, is
subtracted from the first, s1). If a negative value is obtained,
the bit corresponding to that synapse is set to one. Otherwise,
it is set to zero. The receptive field of each neuron is randomly
defined during the network creation and follows a Normal
distribution centered in the position of the neuron mapped to
the input layer (see [10]). The centers of the receptive fields
are mapped to the input according to a log-polar transform
that mimics interconnection patterns observed in the
biological vision system [10]. Subsequent use of the synapses
assumes the same receptive field.

In contrast to the system proposed in [10], where one
grayscale image was generated for each color channel for
improving recognition performance, in this paper only the
channel with the highest accuracy was chosen to run our
experiments, i.e. the green channel. Additional experiments
have shown that the compression method used here is not
channel dependent (Section IV-C).

B. Dataset
The experiments in this work follow the same setup

described in [10] and, therefore, use the German Traffic Sign
Recognition Benchmark (GTRSB) dataset
(http://benchmark.ini.rub.de/) [17, 18]. The GTRSB
comprises 39,209 training images and 12,630 test images for l
= 43 different classes of traffic signs. Each image is cropped
on a specific traffic sign and has a size between 15 × 15 and
250 × 250 pixels. Examples of traffic sign images from the
GTRSB database can be seen in Fig. 4.

All traffic sign images of the dataset were rescaled to
50 × 50 pixels in order to fit the VG-RAM input size.

Fig. 3. Illustration of the architecture of the traffic sign application. It
receives a colored input image that is pre-processed (cropped, scaled,
filtered, etc.). The resulting grey scale image is set as the Input Layer of
a single layer VG-RAM. The Neural Layer, comprising 51 × 27
neurons, samples the Input Layer according to a log-polar mapping, i.e.
the center of the Receptive Field of each neuron maps to the Input
Layer in a log-polar fashion (green dots). Each neuron samples the
input layer with 64 Synapses that are randomly distributed within its
Receptive Field (red traced circle) according to a Normal distribution.
This figure illustrates a macro view of the neurons (front) in addition to
an example of the real outputs of the neurons (back).

Synapses
64

27

51

Input Layer

Macro View of
Neuron Outputs

(51 × 27)

Input Image

Pre-processing

50

50

Real View of
Neuron Outputs

(51 × 27)

1066

C. Desktop Experiments
Using the training and test framework proposed in [17], we

first trained a VG-RAM WNN with 39,209 images. To
compensate for small annotation errors in the dataset, each
image was trained three times: one with the original image,
and two with small random variations in scale, orientation
and translation. The resulting memory (input-output memory
lines) of each neuron, considering a neural layer with
n = 1,377 neurons [10], was compressed according to the
framework described in Section III. With the resulting
compressed memory, we performed a variety of experiments
to examine the performance of our framework, i.e. the
tradeoff between reducing network’s memory footprint and
system runtime, while maintaining high and acceptable
classification accuracy.

Our first experiment analyses the behavior of the
compressed memory of each neuron using our proposed
framework. Initially, each neuron memory contained
m = 3 × 39,209 = 117,627 lines, equivalent to
(p / 8 + sizeof(t)) × m × n = 1,854MB of binary data, where
the function sizeof(j) returns the number of bytes of the scalar
j. These data were reduced with 4 compression levels:
cl = 10% of the original data (m = 11,762 lines – around
185MB), cl = 1% of the original data (m = 1,160 lines –
around 18MB), cl = 0.5% (m = 570 lines – around 9MB) and
cl = 0.25% (m = 272 lines – around 4MB). Please note that
0.25% is the lowest possible level in order to maintain the
memory balance and avoid erasing a traffic sign type from the
dataset. The relation between compression level and memory
footprint is illustrated in Fig. 5.

As Fig. 5 shows, the memory footprint (obviously)
decreases linearly with the number of lines in the Look-up
Table of each neuron. Therefore, by decreasing the number of
lines, our framework is able to reduce the memory footprint
of the application, which is particularly important for
applications running on desktop computers with limited
memory or on small low-power systems.

Our second experiment analyses the effect of the memory
compression in the runtime of the overall system. For this
experiment, we ran our C/C++ OpenMP optimized code in a
Dell Precision R5500 machine, with 2 Intel Xeon processors
of 2.13 GHZ, and 24 GB of DDR3 RAM of 1.33 GHZ,
running Ubuntu 12.4LTS. We ran the system with all five
compression levels (original memory, and memory with
compression levels 10%, 1%, 0.5% and 0.25%) for all 12,630
test images in the dataset. The runtime per image was
calculated as an average over all images in the test dataset.

The relation between compression level and system’s runtime
is shown in Fig. 6.

As Fig. 6 shows, there is an almost linear relationship

between compression level and system’s runtime. For
example, running the system with the original memory takes
in average around 470ms to process each image. This value is
reduced to around 50ms for the first level of compression
(10% of the original memory). Other levels of compression
allow processing each input image even faster (for example,
8ms per image with 1% of the original memory). This result
shows that our compression framework enables very fast
implementations of our VG-RAM based system.

Our third experiment analyses the effect of the memory

compression in the classification performance of the system.
We ran the system with all five possibilities (original
memory, and memory created with compression levels 10%,
1%, 0.5% and 0.25%) for all 12,630 test images in the dataset.
The relation between compression level and system’s
classification performance is shown in Fig. 7.

As shows in Fig. 7, we can see a small reduction in
accuracy as the compression level increases. As an example,
the classification accuracy of the system with the original
memory is around 97.93%. This value is reduced to around
97.42% for the first level of compression (10% of the original
memory). Reducing the memory even further (1% of the
original memory) decreases the precision to around 96.11%,
which is still high and acceptable for such complex

Fig. 6. Runtime for our traffic sign recognition application using
VG-RAM WNN. We compared the system’s runtime using the original
memory and all four compression levels.

0

50

100

150

200

250

300

350

400

450

Original 10% 1% 0.50% 0.25%

Ru
nt

im
e

[m
s]

Compression Level

Fig. 5. Memory footprint of our traffic sign recognition application for
several memory compression levels, cl.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Original 10% 1% 0,50% 0,25%

M
em

or
y

Fo
ot

pr
in

t
[M

B]

Compression Level

Fig. 4. Examples of traffic sign images of the GTRSB database.

1067

application. This result shows that our compression
framework is able to create compressed memories that
maintain a high and acceptable classification performance for
our VG-RAM based system.

We also performed one experiment to compare the

classification performance of our framework against random
deletion of neuron memory entries. As shown in Fig. 8, for
small memory compressions, the difference between our
framework and random deletion is small. For example, the
classification accuracy using the first level of compression
(10% of the original memory) is around 97.42%, against
96.98% for random deletion. This demonstrates that the
VG-RAM architecture creates many redundant entries in the
memory, and even randomly eliminating entries will not
affect much the classification performance. However, as the
compression level increases, we can see a gap increasing
between the performance of our framework and random
deletion. For example, the classification accuracy of our
framework using the last level of compression (0.25% of the
original memory) is around 92.73%, against 89.8% for
random deletion. This demonstrates that a careful scheme of
eliminating entries of the neurons’ memory is useful and
improves the overall accuracy.

Our next experiment verifies if our compression technique
is color-channel dependent. The original system presented in
[10] used a voting scheme with a combination of all three
image color channels, red, green, and blue, to improve the
overall classification performance. This comes with an
increase in running time and memory footprint. As we would
like to reduce these costs, we decided to run all experiments
in this paper using the channel with the highest accuracy, i.e.
the green channel. The behavior of the classification
performance of our compression framework for all color
channels is shown in Fig. 9.

In Fig. 9, we can see similar performances using the
original memory for all color channels, with the green
channel performing slightly better than the others do. The
system accuracy using the second level of compression (1%
of the original memory) also shows similar small reductions
in classification performance, demonstrating that our

framework is not channel dependent and could potentially be
applied to other applications.

Fig. 9. Classification performance for our traffic sign recognition application
using VG-RAM for the different color channels, red, green, and blue. Our
framework shows similar classification results for all three color-channels,
with the green channel performing slightly better than the others using the
original and the compress memory.

D. Experiments with Small Low Power Systems
Considering the advances in mobile processing, small low

power, and embedded systems, we used the same C/C++ code
(i.e. not optimized for special embedded environments) to
verify the potential of our compression framework in two
simple and cheap devices: RaspBerry Pi Model B revision 21
and pcDuino V12. Our experiments show that it is possible to
run a VG-RAM traffic sign recognition system on such
devices using our memory-compressing framework.

It is clear that such an application with full memory would
be impossible to be processed or even loaded on most
embedded systems because of their limited memory and
processing power. Therefore, we decided to test our system
on the two mentioned low power systems with four levels of
compression: cl = 5% of the original data (m = 5,881 lines –

1 http://www.raspberrypi.org
2 http://www.pcduino.com

90.00

92.00

94.00

96.00

98.00

100.00

Red Green Blue

Pr
ec

is
io

n
[%

]

Color Chanel

Original

1%

Fig. 8. Classification performance for our traffic sign recognition
application using VG-RAM WNN. As shown in the figure, carefully
compressing the memory using our framework slightly affects the
overall classification performance. In contrast, random deletion of
neuron memory entries creates a more significant decrease in
classification performance.

88.00

90.00

92.00

94.00

96.00

98.00

100.00

Original 10% 1% 0.50% 0.25%

Pr
ec

is
io

n
[%

]

Compression Level

k-Means
Random

Fig. 7. Classification performance for our traffic sign recognition
application using VG-RAM WNN. We compared the system’s
accuracy using the original memory and all four levels of compression.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Original 10% 1% 0.50% 0.25%

Pr
ec

is
io

n
[%

]

Compression Level

1068

around 92,7MB), cl = 1% of the original data (m = 1,176
lines – around 19MB), cl = 0.5% (m = 588 lines – around
9MB) and cl = 0.25% (m = 294 lines – around 5MB). Please
note that we started with the compression level of 5% in order
to compare the results of both devices, since the RaspBerry Pi
cannot load our complete VG-RAM traffic sign architecture
with compression level 10% on its memory.

First, we used a pcDuino device, equipped with a 1 GHz
ARM Cortex A8 processor and 2GB of RAM running Linux.
We ran the system with all four possibilities (memory created
with compression levels 5%, 1%, 0.5% and 0.25%) for a
subset of the test images in the dataset. The runtime per image
was calculated as an average over all tested images. The
relation between compression level and system runtime is
shown in Fig. 10. As shown in this figure, our pcDuino
system is able to process the images at interactive rates (i.e.
around 4-6 Hz) for different levels of memory compression.

We also tested a RaspBerry Pi device, equipped with a

700MHz processor and 512MB of RAM running Linux. As
before, we ran the system with all four possibilities for a
subset of the test images in the dataset. The relation between
compression level and system runtime is shown in Fig. 11. As
shown in this figure, our RaspBerry Pi system needs more
time to process the images than the pcDuino. However, it can
be seen that with the use of memory compression, the traffic
sign recognition application running on a RaspBerry Pi
achieves similar runtime to the same application without
memory compression running on a standard PC (please
compare the last two bars of the graph of Fig. 11 with the first
of the graph of Fig. 6). This illustrates the advantage of our
clustering scheme.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new framework for applying

VG-RAM WNN to complex multi-class classification
problems. We have shown that by using clustering
techniques, it is possible to eliminate irrelevant and redundant
information from the input-output Look-up Table of each
neuron with little compromise of the classification
performance. As a result, our framework is able to reduce the

network memory footprint and its runtime enabling its
application in systems that require very fast response times in
standard computers, and at interactive rates for small
low-power systems. The classification performance is
slightly reduced depending on the level of memory
compression. However, this can be justified by a gain in
speed and in memory usage.

We evaluated the performance of our framework using the

GTSRB dataset, creating a traffic sign recognition system
based on VG-RAM WNN. Our experiments showed that our
system can be employed for traffic sign recognition with good
accuracy (recognition rates around 95%) at 121.3
recognitions per second in standard computers with a 0.5%
memory compression level. Using the same setup, our system
could run on a PcDuino at 4.3 recognitions/s and on a
RaspBerry Pi at 2.1 recognitions/s, requiring a memory
footprint of only 9MB to store the neurons’ memory.

One of the main advantages of VG-RAM over other neural
network approaches is its simple implementation and fast
training. We believe that the memory compression
framework proposed in this paper can help improving the test
performance of VG-RAM, especially for applications
requiring large training datasets.

For future work, we would like to evaluate the performance
of other clustering techniques for memory compression and
evaluate the overall system on different multi-class
classification problems.

REFERENCES
[1] I. Aleksander, “Self-adaptive universal logic circuits,” Electronics

Letters, vol. 2, no. 8, pp. 321–322, Aug. 1966.
[2] I. Aleksander, “From WISARD to MAGNUS: A Family of

Weightless Virtual Neural Machines,” in RAM-Based Neural
Networks, Singapore: World Scientific Publishing Co Pte Ltd, 1998,
pp. 18–30.

[3] I. Aleksander, W. V. Thomas, and P. A. Bowden, “WISARD: a
radical step forward in image recognition,” Sensor Review, vol. 4, no.
3, pp. 120–124, Dec. 1984.

[4] T. Ludermir, A. Carvalho, A. Braga, and M. Souto, “Weightless
neural models: A review of current and past works,” Neural
Computing Surveys, vol. 2, pp. 41–61, 1999.

[5] A. F. De Souza, C. Badue, B. Z. Melotti, F. T. Pedroni, and F. L. L.
Almeida, “Improving VG-RAM WNN Multi-label Text
Categorization via Label Correlation,” in Eighth International

Fig. 10. Runtime for our traffic sign recognition application using
VG-RAM WNN running on the pcDuino device. Interactive rates can
be achieved with memory compression.

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

5% 1% 0,50% 0,25%

Ru
nt

im
e

[m
s]

Compression Level

Fig. 11. Runtime for our traffic sign recognition application using
VG-RAM WNN running on a RaspBerry Pi.

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

5% 1% 0,50% 0,25%

Ru
nt

im
e

[m
s]

Compression Level

1069

Conference on Intelligent Systems Design and Applications, 2008.
ISDA ’08, 2008, vol. 1, pp. 437–442.

[6] A. F. De Souza, F. Pedroni, E. Oliveira, P. M. Ciarelli, W. F.
Henrique, L. Veronese, and C. Badue, “Automated Multi-label Text
Categorization with VG-RAM Weightless Neural Networks,”
Neurocomput., vol. 72, no. 10–12, pp. 2209–2217, Jun. 2009.

[7] A. F. D. Souza, C. Badue, F. Pedroni, E. Oliveira, S. S. Dias, H.
Oliveira, and S. F. de Souza, “Face Recognition with VG-RAM
Weightless Neural Networks,” in Artificial Neural Networks -
ICANN 2008, V. Kůrková, R. Neruda, and J. Koutník, Eds. Springer
Berlin Heidelberg, 2008, pp. 951–960.

[8] A. F. De Souza, C. Badue, F. Pedroni, S. Schwanz, H. Oliveira, and
S. F. de Souz, “VG-RAM Weightless Neural Networks for Face
Recognition,” in Face Recognition, M. Oravec, Ed. InTech, 2010.

[9] J. L. Moraes, A. F. D. Souza, and C. Badue, “Facial access control
based on VG-RAM weightless neural networks,” in Proceedings of
the International Conference on Artificial Intelligence (ICAI’2011),
2011, pp. 444–450.

[10] M. Berger, A. Forechi, A. F. D. Souza, J. de Oliveira Neto, L.
Veronese, and C. Badue, “Traffic sign recognition with VG-RAM
Weightless Neural Networks,” in 2012 12th International
Conference on Intelligent Systems Design and Applications (ISDA),
2012, pp. 315–319.

[11] A. F. De Souza, C. Fontana, F. Mutz, T. Alves de Oliveira, M.
Berger, A. Forechi, J. de Oliveira Neto, E. de Aguiar, and C. Badue,
“Traffic sign detection with VG-RAM weightless neural networks,”
in The 2013 International Joint Conference on Neural Networks
(IJCNN), 2013, pp. 1–9.

[12] R. Xu and I. Wunsch, D., “Survey of clustering algorithms,” IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, Maio
2005.

[13] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A
Review,” ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Setembro
1999.

[14] L. Rokach, “A survey of Clustering Algorithms,” in Data Mining and
Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds.
Springer US, 2010, pp. 269–298.

[15] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” presented at the Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, 1967.

[16] R. J. Mitchell, J. M. Bishop, S. K. Box, and J. F. Hawker,
“Comparison of some methods for processing Grey Level data in
weightless networks,” in RAM-based neural networks, J. Austin, Ed.
Singapore: World Scientific Publishing Co Pte Ltd, 1998, pp. 66–71.

[17] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German
Traffic Sign Recognition Benchmark: A multi-class classification
competition,” in The 2011 International Joint Conference on Neural
Networks (IJCNN), 2011, pp. 1453–1460.

[18] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: benchmarking machine learning algorithms for traffic sign
recognition,” Neural Netw, vol. 32, pp. 323–332, Aug. 2012.

1070

