
 
 

 

  

Abstract—The Virtual Generalizing Random Access Memory 
Weightless Neural Network (VG-RAM WNN) is an effective 
machine learning technique that offers simple implementation 
and fast training. One disadvantage of VG-RAM WNN, 
however, is the test time for applications with many training 
samples, i.e. large multi-class classification applications. In such 
cases, the test time tends to be high, since it increases with the 
size of the memory of each neuron. In this paper, we present a 
new methodology for handling such applications using 
VG-RAM WNN. By employing data clustering techniques to 
reduce the overall size of the neurons’ memory, we were able to 
reduce the network’s memory footprint and the system’s 
runtime, while maintaining a high and acceptable classification 
performance. We evaluated the performance of our VG-RAM 
WNN system with compressed memory on the problem of traffic 
sign recognition. Our experimental results showed that, after 
compression, the system was able to run at very fast response 
times in standard computers. Also, we were able to load and run 
the system at interactive rates in small low-power systems, 
experiencing only a small reduction in classification 
performance. 
 
Keywords—Virtual Generalizing Random Access Memory 
Weightless Neural Networks, Clustering Techniques, Traffic 
Sign Recognition.  

I. INTRODUCTION 
EIGHTLESS Neural Networks (WNN) do not store 
knowledge in their connections, but in Random Access 
Memories (RAM) inside the network’s neurons. The 

synapses of each neuron collect a vector of bits from the 
network’s input (neuron’s input vector) and use it as a RAM 
address to access the respective associated label value 
(neuron’s output value) stored at this RAM address. Training 
can be made in one shot and basically consists of storing the 
desired neuron’s output value in the address associated with 
the neuron’s input vector [1]. In spite of their remarkable 
simplicity, WNN are very effective as pattern recognition 
tools, offering easy implementation in addition to fast training 
[2]. However, neuron memory size becomes prohibitive if the 
neuron’s input vector is too large, since it is dictated by this 
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vector size (neuron memory size is equal to 2p, where p is the 
neuron’s input vector size). 

The proponents of Wilkes, Stonham and Aleksander 
Recognition Device (WiSARD) tackled this problem by 
splitting the p-sized neuron’s input vector in q segments, each 
one used as address of a specific RAM memory module of 
size 2p/q [3]. During training, a p-sized training input pattern is 
split in q parts and each p/q-sized input sub-pattern is used as 
address of the corresponding RAM module; the addressed 
position in each RAM module receives (stores) the label 
value (RAM module’s output value) associated with the input 
pattern. During test, the p-sized test input pattern is also split 
in q parts and each p/q-sized input sub-pattern is used as 
address of the corresponding RAM module; the neuron’s 
output value is the most frequent label value observed among 
the outputs of the q RAM modules. Thanks to this 
organization, the total amount of memory required per neuron 
is reduced from 2p to q × 2p/q.  

The proponents of the Virtual Generalizing Random 
Access Memory (VG-RAM) Weightless Neural Networks 
(WNN) took a step further by only requiring memory 
capacity to store the data related to the training set [4]. Instead 
of storing an output label value that can be referenced by a 
binary input pattern, this type of WNN neuron stores pairs of 
corresponding input-output patterns, i.e. vector of bits as 
input and label value as output. The memory footprint is 
optimized with such an approach whereas the performance of 
training is maintained, facilitating the prototyping of 
applications for classification. One disadvantage introduced 
by this method is the test speed of unknown samples, which 
depends on the size of the neurons’ memory (that is equal to 
the number of trained input-output pairs) – during test, the 
search for the closest pattern is performed sequentially and 
requires scanning the whole memory of each neuron.  

It has been shown that this type of network has high 
classification performance for a variety of multi-class 
classification applications, such as text categorization [5, 6], 
face recognition [7, 8, 9], and traffic sign detection and 
recognition [10, 11]. However, although classification speed 
might be ignored in applications with small training datasets, 
it becomes a problem in applications with large training 
datasets. Therefore, the use of this network in systems that 
demand fast response, or in small low-power systems, is 
restricted by the number of training samples. Since this 
number can be quite large for some of the mentioned 
applications, the sequential search for the closest pattern in 
the memory of each neuron hinders performance during test 
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of new samples. Moreover, small low-power systems have 
further restrictions on available memory, which makes it 
difficult or even impossible to load networks trained with 
large training datasets on such devices.  

To address these problems and propose a solution for 
applications based on VG-RAM WNN (VG-RAM for short) 
with large training datasets, this work investigates the use of 
data compression techniques to reduce the overall size of the 
neurons’ memory, while keeping a high and acceptable 
classification performance. Under the hypothesis that not all 
data stored in the memory of a neuron are relevant for good 
classification performance of the network, we apply data 
clustering techniques to eliminate redundant or irrelevant 
examples from the memory (i.e. to eliminate lines of the 
look-up table illustrated in Fig. 1). Using a complex 
multi-class classification application, i.e. traffic sign 
recognition, we compare the classification performance of 
VG-RAM with full memory with that of VG-RAM with the 
memory compressed at different levels.  Additionally, as 
baseline, we compare the classification performance of 
standard VG-RAM against that of VG-RAM with random 
deletion of neuron memory samples. Our results show that it 
is possible to run such heavy multi-class classification 
applications implemented with VG-RAM at very fast 
response times on standard computers, or at good interactive 
levels on small low-power systems. 

This paper is organized as follows. After this introduction, 
in Section II, we briefly present our VG-RAM architecture 
for multi-class classification, i.e. traffic sign recognition. 
Subsequently, in Section III, we describe the technique used 
to reduce the overall size of the neurons’ memory, while 
keeping a good classification performance. In Section IV, we 
present our experimental methodology and analyze our 
experimental results. Finally, our conclusions and directions 
for future work follow in Section V. 

II. VG-RAM WNN 
The architecture of VG-RAM WNNs comprises neural 

layers with many neurons connected to input layers (e.g. 
images or other neural layers) through a set S = {s1, …, sp} of 
synapses. Since VG-RAM neurons generate outputs in the 
form of label values, t, the output of a neural layer can also 
function as an image, where each pixel is the output of a 
neuron.  

The synapses of a VG-RAM neuron are responsible for 
sampling a binary vector I = {i1, …, ip} (one bit per synapse) 
from the input layer according to the neuron’s receptive field. 
Each bit of this vector is computed using a synapse mapping 
function that transforms non-binary values in binary values. 
Individual neurons have private memories, i.e. look-up tables, 
that store sets L = {L1, …, Lj, …, Lm} of learned binary input 
vectors I and corresponding output labels t, i.e. Lj = (Ij, tj) 
(input-output pairs). An illustration of a single layer of such a 
network is presented in Fig. 1. 

 
VG-RAMs operate in two phases: a training phase, in 

which neurons learn new pairs of binary input vectors and 
corresponding output labels (input-output pairs); and a test 
phase, in which neurons receive binary input vectors and 
respond with the label values associated with the closest 
binary input vectors in the input-output pairs previously 
learned.  

More specifically, in the training phase, each neuron 
includes a new input-output pair, or line L, in its local 
memory as follows. Firstly, an input image is set in the Input 
Layer of the VG-RAM (Fig. 1). Secondly, the corresponding 
Neuron Outputs are set in the Neural Layer of the VG-RAM 
(expected output value t of each neuron for the input image 
set). Finally, one input-output pair (binary input vector I and 
corresponding output label t) is extracted for each neuron and 
added into its memory as a new line L = (I, t). In the test 
phase, each neuron computes an output label t as follows. 
Firstly, an input image is set in the Input Layer of the 
VG-RAM. Secondly, a binary input vector I is extracted for 
each neuron. Finally, each neuron searches its memory to find 
the input-output pair Lj = (Ij, tj) whose input Ij is the closest to 
the extracted input I, and sets the corresponding Neuron 
Output of the Neural Layer with the output value tj of this 
pair. In case of more than one pair with an input at the same 
minimum distance of the extracted input, the output value is 
randomly chosen among them. The memory search is 
sequential and the distance function is the Hamming distance. 

  

 
Fig. 1.  Illustration of a single layer VG-RAM WNN. The VG-RAM 
Neural Layer comprises many neurons that are connected to the Input 
Layer (e.g. an image) by a set of Synapses S = {s1, …, sp}. The 
synapses of a VG-RAM neuron sample a binary vector I = {i1, …, ip} 
from the Input Layer according to the neuron’s Receptive Field. The 
bits of this vector are computed using a synapse mapping function that 
transforms non-binary values into binary values. Each neuron of the 
Neural Layer has a private memory (Look-up Table) of size m that 
stores a set L = {L1, …, Lj, …, Lm} of Lj = (Ij, tj) input-output pairs 
learned during training. Each neuron shows an output activation value t 
(Neural Layer colored circles) read from its memory (Look-up Table 
column t). This value corresponds to the output of the input-output pair 
Lj, whose input Ij is the closest to the current binary input vector I 
extracted by the neuron synapses. 
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The Hamming distance between two binary patterns can be 

efficiently computed at machine code level in current 
machines using two instructions: one instruction to identify 
the bits that differ in the two binary patterns, i.e. bit-wise 
exclusive-or; and another instruction to count these bits, i.e. 
population count instruction.  

III. VG-RAM WNN MEMORY COMPRESSION 
Despite the high classification performance of VG-RAM 

WNN for a variety of multi-class classification applications, 
the test performance depends on the size of the memory of 
each neuron. Considering an application requiring a 
VG-RAM with n neurons, each containing a memory with m 
input-output pairs, its runtime performance will be 
proportional to n × m (O(nm)).  Unfortunately, many 
problems require a large training dataset to be solved 
satisfactorily (e.g. traffic sign recognition [10]). For 
applications with a large training set, the value of m is large 
and may limit the use of VG-RAM, since testing a new input 
sample requires a sequential search for the closest pattern in 
the m-sized memory of the n neurons. 

We aim at reducing the overall size m of the Look-up 
Tables, thus improving runtime performance and reducing 
memory footprint, while keeping an acceptable classification 
accuracy. Assuming that the memory of each neuron will 
have a large amount of redundant or irrelevant information, 
we should be able to accomplish relevant compression by 
carefully eliminating input-output pairs of the neurons’ 
Look-up Tables. This can be achieved by using a clustering 
algorithm to find the most relevant input-output pairs in the 
memory of each neuron as described next. 

Considering the large number of relevant clustering 
techniques ([12, 13, 14]) and the fact that the clustering 
procedure needs to be done many times for each neuron (see 
below), we decided to use k-Means [15] due to its simplicity 
and efficiency. The k-Means algorithm partitions a set I of |I| 
vectors into k clusters, k < |I|, where the parameter k is set a 
priori. This iterative partitioning minimizes the sum, over all 
clusters, of the within-cluster sums of point-to-cluster- 
centroid distances. For our experiments, we used the 
Hamming distance to define the centroids of each cluster.   

Fig. 2 illustrates our VG-RAM memory compression 
framework that works as follows. Initially, the original 
memory of each neuron, containing m lines, is sorted 
according to its output label t (i.e. traffic sign of same type).  
The result is a set of lines ordered according to each output 
type, e.g. the set of lines L1 = { 1

1L , …, 1
1mL } for outputs of type 

equal to label 1, L2 = { 2
1L , …, 2

2mL } for outputs of type equal 

to label 2, until  Ll = { lL1 , …, l
ml

L } for outputs of type equal to 

label l.  Subsequently, we apply k-Means separately to each 
set of lines L1, L2, …, Ll, partitioning each one of them into k 
clusters. Each cluster has a centroid C that is equivalent to a 
memory line L. k-Means computes the set C1 = { 1

1C , …, 1
1kC } 

of centroids from the lines of set L1, where k1 < m1 and 
m1 = |L1|; the set C2 = { 2

1C , …, 2
2kC } of centroids from the 

lines of set L2, where k2 < m2; and so on until the set  
Cl = { lC1 , …, l

kl
C }, where kl < ml. The centroid sets C1, C2, …, 

Cl become the new memory entries for the respective neuron 
(see Fig. 2). This process is repeated for all neurons, i.e. the 
clustering process is performed n × l times. As a result, the 

  

 
Fig. 2.  VG-RAM WNN memory compression framework. The 
original memory of each neuron, containing m lines, is grouped 
according to its output type, t. Each group is clustered separately using 
k-Means and the resulting centroids become the new entries for the 
compressed memory. 
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number of entries in the VG-RAM memory is reduced 
according to the specified number of clusters kj of each label 
type j. To maintain the original memory balance between 
entries for the different output types, we used different values 
of k for each label type, i.e. kj = mj × cl, where 0 < cl < 1 is the 
VG-RAM memory compression level. 

 Our approach modifies the contents of the neurons’ 
memory. It can even create a new entry that was not part of 
the learning process. We see this property as an advantage of 
our framework since it is able to summarize the memory 
information according to the data.  Please note that the input 
patterns Ij = {i1, …, ip} of all centroids Cj = (Ij, tj) must be 
binary, therefore, the centroids’ elements need to be rounded 
to values 0 or 1. 

IV. EXPERIMENT AND RESULTS 
In order to validate our work, we used our framework to 

compress the memory of a VG-RAM WNN system designed 
for traffic sign recognition [10].  In the next subsections, we 
briefly present the traffic sign recognition system (Section 
IV-A). Then, we describe the dataset used for our 
experiments (Section IV-B).  Thereafter, we detail the 
experiments and the results obtained with our compression 
framework to enable fast response time applications on 
standard computers (Section IV-C) and acceptable interactive 
times on small low-power systems (Section IV-D).   

A. Traffic Sign Recognition Application 
The traffic sign application used in this paper employs a 

VG-RAM architecture with one neural layer connected to a 
(50 × 50)-sized input grayscale image (please see Fig. 3 for an 
overview of the system, and refer to [10] for details). The 
synaptic mapping function that maps non-binary image pixels 
to binary values is a minchinton cell [16] that works as 
follows. The non-binary value read by each synapse 
connected to the grayscale image is subtracted from the value 
read by the subsequent synapse in the set of synapses of each 
neuron, S, where |S| = p = 64 (the last synapse, sp, is 
subtracted from the first, s1). If a negative value is obtained, 
the bit corresponding to that synapse is set to one. Otherwise, 
it is set to zero. The receptive field of each neuron is randomly 
defined during the network creation and follows a Normal 
distribution centered in the position of the neuron mapped to 
the input layer (see [10]). The centers of the receptive fields 
are mapped to the input according to a log-polar transform 
that mimics interconnection patterns observed in the 
biological vision system [10]. Subsequent use of the synapses 
assumes the same receptive field.  

In contrast to the system proposed in [10], where one 
grayscale image was generated for each color channel for 
improving recognition performance, in this paper only the 
channel with the highest accuracy was chosen to run our 
experiments, i.e. the green channel. Additional experiments 
have shown that the compression method used here is not 
channel dependent (Section IV-C).  

 
B. Dataset 
The experiments in this work follow the same setup 

described in [10] and, therefore, use the German Traffic Sign 
Recognition Benchmark (GTRSB) dataset 
(http://benchmark.ini.rub.de/) [17, 18]. The GTRSB 
comprises 39,209 training images and 12,630 test images for l 
= 43 different classes of traffic signs. Each image is cropped 
on a specific traffic sign and has a size between 15 × 15 and 
250 × 250 pixels. Examples of traffic sign images from the 
GTRSB database can be seen in Fig. 4. 

All traffic sign images of the dataset were rescaled to 
50 × 50 pixels in order to fit the VG-RAM input size. 

 
Fig. 3. Illustration of the architecture of the traffic sign application. It 
receives a colored input image that is pre-processed (cropped, scaled, 
filtered, etc.). The resulting grey scale image is set as the Input Layer of 
a single layer VG-RAM. The Neural Layer, comprising 51 × 27 
neurons, samples the Input Layer according to a log-polar mapping, i.e. 
the center of the Receptive Field of each neuron maps to the Input 
Layer in a log-polar fashion (green dots). Each neuron samples the 
input layer with 64 Synapses that are randomly distributed within its 
Receptive Field (red traced circle) according to a Normal distribution. 
This figure illustrates a macro view of the neurons (front) in addition to 
an example of the real outputs of the neurons (back). 
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C. Desktop Experiments 
Using the training and test framework proposed in [17], we 

first trained a VG-RAM WNN with 39,209 images. To 
compensate for small annotation errors in the dataset, each 
image was trained three times: one with the original image, 
and two with small random variations in scale, orientation 
and translation. The resulting memory (input-output memory 
lines) of each neuron, considering a neural layer with 
n = 1,377 neurons [10], was compressed according to the 
framework described in Section III. With the resulting 
compressed memory, we performed a variety of experiments 
to examine the performance of our framework, i.e. the 
tradeoff between reducing network’s memory footprint and 
system runtime, while maintaining high and acceptable 
classification accuracy.  

Our first experiment analyses the behavior of the 
compressed memory of each neuron using our proposed 
framework. Initially, each neuron memory contained 
m = 3 × 39,209 = 117,627 lines, equivalent to 
(p / 8 + sizeof(t)) × m × n = 1,854MB of binary data, where 
the function sizeof(j) returns the number of bytes of the scalar 
j.  These data were reduced with 4 compression levels: 
cl = 10% of the original data (m = 11,762 lines – around 
185MB), cl = 1% of the original data (m = 1,160 lines – 
around 18MB), cl = 0.5% (m = 570 lines – around 9MB) and 
cl = 0.25% (m = 272 lines – around 4MB). Please note that 
0.25% is the lowest possible level in order to maintain the 
memory balance and avoid erasing a traffic sign type from the 
dataset. The relation between compression level and memory 
footprint is illustrated in Fig. 5.  

As Fig. 5 shows, the memory footprint (obviously) 
decreases linearly with the number of lines in the Look-up 
Table of each neuron. Therefore, by decreasing the number of 
lines, our framework is able to reduce the memory footprint 
of the application, which is particularly important for 
applications running on desktop computers with limited 
memory or on small low-power systems.  

Our second experiment analyses the effect of the memory 
compression in the runtime of the overall system. For this 
experiment, we ran our C/C++ OpenMP optimized code in a 
Dell Precision R5500 machine, with 2 Intel Xeon processors 
of 2.13 GHZ, and 24 GB of DDR3 RAM of 1.33 GHZ, 
running Ubuntu 12.4LTS. We ran the system with all five 
compression levels (original memory, and memory with 
compression levels 10%, 1%, 0.5% and 0.25%) for all 12,630 
test images in the dataset. The runtime per image was 
calculated as an average over all images in the test dataset. 

The relation between compression level and system’s runtime 
is shown in Fig. 6.  

 
As Fig. 6 shows, there is an almost linear relationship 

between compression level and system’s runtime. For 
example, running the system with the original memory takes 
in average around 470ms to process each image. This value is 
reduced to around 50ms for the first level of compression 
(10% of the original memory). Other levels of compression 
allow processing each input image even faster (for example, 
8ms per image with 1% of the original memory).  This result 
shows that our compression framework enables very fast 
implementations of our VG-RAM based system.  

 
Our third experiment analyses the effect of the memory 

compression in the classification performance of the system. 
We ran the system with all five possibilities (original 
memory, and memory created with compression levels 10%, 
1%, 0.5% and 0.25%) for all 12,630 test images in the dataset. 
The relation between compression level and system’s 
classification performance is shown in Fig. 7.  

As shows in Fig. 7, we can see a small reduction in 
accuracy as the compression level increases. As an example, 
the classification accuracy of the system with the original 
memory is around 97.93%. This value is reduced to around 
97.42% for the first level of compression (10% of the original 
memory). Reducing the memory even further (1% of the 
original memory) decreases the precision to around 96.11%, 
which is still high and acceptable for such complex 

 

 
Fig. 6.  Runtime for our traffic sign recognition application using 
VG-RAM WNN. We compared the system’s runtime using the original 
memory and all four compression levels.  
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Fig. 5.  Memory footprint of our traffic sign recognition application for 
several memory compression levels, cl. 
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Fig. 4. Examples of traffic sign images of the GTRSB database.
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application. This result shows that our compression 
framework is able to create compressed memories that 
maintain a high and acceptable classification performance for 
our VG-RAM based system.  

 
We also performed one experiment to compare the 

classification performance of our framework against random 
deletion of neuron memory entries.  As shown in Fig. 8, for 
small memory compressions, the difference between our 
framework and random deletion is small. For example, the 
classification accuracy using the first level of compression 
(10% of the original memory) is around 97.42%, against 
96.98% for random deletion. This demonstrates that the 
VG-RAM architecture creates many redundant entries in the 
memory, and even randomly eliminating entries will not 
affect much the classification performance.  However, as the 
compression level increases, we can see a gap increasing 
between the performance of our framework and random 
deletion. For example, the classification accuracy of our 
framework using the last level of compression (0.25% of the 
original memory) is around 92.73%, against 89.8% for 
random deletion.  This demonstrates that a careful scheme of 
eliminating entries of the neurons’ memory is useful and 
improves the overall accuracy.  

Our next experiment verifies if our compression technique 
is color-channel dependent. The original system presented in 
[10] used a voting scheme with a combination of all three 
image color channels, red, green, and blue, to improve the 
overall classification performance. This comes with an 
increase in running time and memory footprint. As we would 
like to reduce these costs, we decided to run all experiments 
in this paper using the channel with the highest accuracy, i.e. 
the green channel. The behavior of the classification 
performance of our compression framework for all color 
channels is shown in Fig. 9. 

In Fig. 9, we can see similar performances using the 
original memory for all color channels, with the green 
channel performing slightly better than the others do. The 
system accuracy using the second level of compression (1% 
of the original memory) also shows similar small reductions 
in classification performance, demonstrating that our 

framework is not channel dependent and could potentially be 
applied to other applications.  

 

 
Fig. 9.  Classification performance for our traffic sign recognition application 
using VG-RAM for the different color channels, red, green, and blue. Our 
framework shows similar classification results for all three color-channels, 
with the green channel performing slightly better than the others using the 
original and the compress memory. 

D. Experiments with Small Low Power Systems  
Considering the advances in mobile processing, small low 

power, and embedded systems, we used the same C/C++ code 
(i.e. not optimized for special embedded environments) to 
verify the potential of our compression framework in two 
simple and cheap devices: RaspBerry Pi Model B revision 21 
and pcDuino V12. Our experiments show that it is possible to 
run a VG-RAM traffic sign recognition system on such 
devices using our memory-compressing framework.  

It is clear that such an application with full memory would 
be impossible to be processed or even loaded on most 
embedded systems because of their limited memory and 
processing power. Therefore, we decided to test our system 
on the two mentioned low power systems with four levels of 
compression: cl = 5% of the original data (m = 5,881 lines – 

 
1 http://www.raspberrypi.org 
2 http://www.pcduino.com 
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Fig. 8.  Classification performance for our traffic sign recognition 
application using VG-RAM WNN. As shown in the figure, carefully 
compressing the memory using our framework slightly affects the 
overall classification performance. In contrast, random deletion of 
neuron memory entries creates a more significant decrease in 
classification performance. 
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Fig. 7.  Classification performance for our traffic sign recognition 
application using VG-RAM WNN. We compared the system’s 
accuracy using the original memory and all four levels of compression. 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Original 10% 1% 0.50% 0.25%

Pr
ec

is
io

n 
[%

]

Compression Level

1068



 
 

 

around 92,7MB), cl = 1% of the original data (m = 1,176 
lines – around 19MB), cl = 0.5% (m = 588 lines – around 
9MB) and cl = 0.25% (m = 294 lines – around 5MB). Please 
note that we started with the compression level of 5% in order 
to compare the results of both devices, since the RaspBerry Pi 
cannot load our complete VG-RAM traffic sign architecture 
with compression level 10% on its memory.  

First, we used a pcDuino device, equipped with a 1 GHz 
ARM Cortex A8 processor and 2GB of RAM running Linux. 
We ran the system with all four possibilities (memory created 
with compression levels 5%, 1%, 0.5% and 0.25%) for a 
subset of the test images in the dataset. The runtime per image 
was calculated as an average over all tested images. The 
relation between compression level and system runtime is 
shown in Fig. 10. As shown in this figure, our pcDuino 
system is able to process the images at interactive rates (i.e. 
around 4-6 Hz) for different levels of memory compression.  

 
We also tested a RaspBerry Pi device, equipped with a 

700MHz processor and 512MB of RAM running Linux. As 
before, we ran the system with all four possibilities for a 
subset of the test images in the dataset. The relation between 
compression level and system runtime is shown in Fig. 11. As 
shown in this figure, our RaspBerry Pi system needs more 
time to process the images than the pcDuino. However, it can 
be seen that with the use of memory compression, the traffic 
sign recognition application running on a RaspBerry Pi 
achieves similar runtime to the same application without 
memory compression running on a standard PC (please 
compare the last two bars of the graph of Fig. 11 with the first 
of the graph of Fig. 6). This illustrates the advantage of our 
clustering scheme.  

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a new framework for applying 

VG-RAM WNN to complex multi-class classification 
problems. We have shown that by using clustering 
techniques, it is possible to eliminate irrelevant and redundant 
information from the input-output Look-up Table of each 
neuron with little compromise of the classification 
performance. As a result, our framework is able to reduce the 

network memory footprint and its runtime enabling its 
application in systems that require very fast response times in 
standard computers, and at interactive rates for small 
low-power systems. The classification performance is 
slightly reduced depending on the level of memory 
compression. However, this can be justified by a gain in 
speed and in memory usage.  

 

 
We evaluated the performance of our framework using the 

GTSRB dataset, creating a traffic sign recognition system 
based on VG-RAM WNN. Our experiments showed that our 
system can be employed for traffic sign recognition with good 
accuracy (recognition rates around 95%) at 121.3 
recognitions per second in standard computers with a 0.5% 
memory compression level. Using the same setup, our system 
could run on a PcDuino at 4.3 recognitions/s and on a 
RaspBerry Pi at 2.1 recognitions/s, requiring a memory 
footprint of only 9MB to store the neurons’ memory.  

One of the main advantages of VG-RAM over other neural 
network approaches is its simple implementation and fast 
training. We believe that the memory compression 
framework proposed in this paper can help improving the test 
performance of VG-RAM, especially for applications 
requiring large training datasets.  

For future work, we would like to evaluate the performance 
of other clustering techniques for memory compression and 
evaluate the overall system on different multi-class 
classification problems.  
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