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Abstract—In classification problems with hierarchical struc-
tures of labels, the target function must assign several labels
that are hierarchically organized. The hierarchical structures of
labels can be used either for single-label (one label per instance)
or multi-label classification problems (more than one label per
instance). In general, classification tasks are usually trained
using a standard supervised learning procedure. However, the
majority of classification methods require a large number of
training instances to be able to generalize the mapping function,
making predictions with high accuracy. In order to smooth out
this problem, the idea of semi-supervised learning has emerged.
It combines labelled and unlabelled data during the training
phase. Some semi-supervised methods have been proposed for
single-label classification methods. However, very little effort has
been done in the context of multi-label hierarchical classification.
This paper proposes the use of a semi-supervised learning
method for the multi-label hierarchical problems. In order to
validate the feasibility of these methods, an empirical analysis
will be conducted, comparing the proposed methods with their
corresponding supervised versions. The main aim of this analysis
is to observe whether the semi-supervised methods proposed
in this paper have similar performance to the corresponding
supervised versions.

I. INTRODUCTION

In Machine Learning, there are problems in which instances
are assigned to a single label l from a previously known
finite set of disjoint labels L and these problems are known
as single-label classification problems. In this context, the
training instances are assumed to be drawn from some un-
known distribution over tuples of the form (xi,yi), where xi
is an m-dimensional vector that represents a data point in the
m-dimensional space and yi represents one label to which
xi belongs. Nevertheless, there are some real classification
problems in which an instance can belong to more than one
class simultaneously and they are known as multi-label (ML)
classification problems [1]. In this case, instances can be
associated with a set of labels Y , where Y ⊆ L.

Independently of the number of assigned labels, the vast ma-
jority of classification methods are related to flat classification,
where an algorithm generates a function that maps instances to
one (or more) label of the available set without any hierarchical
structure. In other words, the labels are arranged on one level.
However, in several tasks the target function must assign not
only a single label, but a series of hierarchically organized

labels [2]. This hierarchical structure can be used in single-
label (HSC) and multi-label (HML) classification problems. In
the second case, we call it multi-label hierarchical problems.

One drawback of the classification algorithms is that they
need to have a set of labelled instances with a reasonable size
in order to work in an efficient way. However the labelling
process is often hard, expensive, and slow to obtain, because
it may require human expertise. For instance, in speech
recognition, the accurate transcription of speech utterance
at phonetic level is extremely time consuming and requires
linguistic expertise. In text categorization, we need to take
expensive actions to label the instances, such as: filtering
out spam emails, categorizing user messages, recommending
Internet articles, among others. In protein structure prediction,
it may take several months of expensive lab work by expert to
identify the 3D structure of a single protein. On the other hand,
unlabelled instances are usually available in large quantity and
costs little to collect. Utterances can be recorded from radio
broadcast; Text documents can be crawled from the Internet
and DNA sequences of proteins are readily available from gene
databases. The problem with traditional classification methods
is that they can not use unlabelled data to train classifiers.

The problem cited above is particularly important when
the class labels follow a hierarchical structure, since it must
have a good number of instances for all possible classes.
Additionally, this problem becomes even more critical in the
multi-label context, since the number of possible combinations
in the label attributes increases considerably. Given that the
cost of manually labelling instances is a very high and time-
consuming process, researchers have been trying to smooth
out this problem by using the information carried by the
unlabelled instances in order to increase the performance of the
classification models. This is called semi-supervised learning
[3].

There is a wide range of studies on the use of semi-
supervised learning in classification problems. However, in
general, it involves either hierarchical single-label problems
or flat multi-label problems. Thus, in this paper, we propose
the use of semi-supervised learning in the context of the
hierarchical multi-label classification tasks. In this case, a class
of methods, known as semi-supervised multi-label hierarchical
algorithms, is proposed. We propose the use of a specific
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semi-supervised approach, called self-training, to increase the
number of labelled training set using unlabelled instances, and
then we build a final model using the new increased set of
instances. Self-training is the most popular semi-supervised
method because of its conceptual and algorithmic simplic-
ity and these are the main reasons we selected this semi-
supervised method in our work here. In addition, although
it may be straightforward to incorporate the self-training
idea into the existing HML algorithms, to the best of our
knowledge, there is no study involving these three important
subjects.

In order to analyse the performance of the proposed meth-
ods, an empirical analysis will be conducted. In this analysis,
the proposed methods will be compared with the original hier-
archical multi-label methods. These methods will be evaluated
using different evaluation metrics. As a result of this analysis,
we aim to investigate the effect of the use of semi-supervised
learning in the hierarchical multi-label classification context,
under different circumstances.

This paper is divided into seven sections and structured
as follows. Classification approaches are described in Sec-
tion 2, focusing on multi-label and hierarchical classification,
while Section 3 presents a detailed explanation about semi-
supervised learning. In Section 4, we describe the proposed
methods of this paper. The experimental work is presented in
Section 5, while Section 6 presents and discusses the experi-
mental results. Finally, in Section 7, some final observations
about this work are presented.

II. CLASSIFICATION APPROACHES

There are several approaches for classification methods,
that can be categorized by the number of assigned label
and/or structure of these labels. In this paper, as we work
with multi-label and hierarchical classifications, in the next
two subsection, we will describe these two approaches for
classification methods.

A. Multi-label Classification

As mentioned previously, in a multi-label classification
problem, an instance can be assigned to more than one
label from the set of possible labels. This approach has
attracted significant attention from a lot of researchers in
several applications such as semantic annotation of images
[4], [5] and video [6], [7], functional genomics [1], [8], [9],
[10], music categorization into emotions [11], [12], directed
marketing [13], among others. In the literature, different
methods have been proposed to be applied to multi-label
classification problems, as in [14], [15], which can be broadly
classified as problem transformation and algorithm adaptation
methods. The majority of the methods is based on problem
transformation approach. In this approach, the main idea is to
transform the original multi-label problem into a set of single-
label classification problems. It is an algorithm independent
approach, since its functioning does not depend directly on
the classification method used. In this paper, we have chosen

to use the two most widely applied methods in the literature,
which are:

• Label Powerset (LP): This method considers each unique
set of labels that exists in a multi-label training set as
one of the labels of a new single-label classification task
[14].

• Random k-labelsets (RAkEL): This method an ensemble
of LP classifiers. Each LP classifier is trained using a
different small random subset of the set of labels [14].

B. Hierarchical Classification

The vast majority of classification tasks addressed in the
literature involve flat classification, where each example is
assigned to a class out of a finite (and usually small) set
of classes. On the other hand, in hierarchical classification
problems, the classes are disposed in a hierarchical structure.
In these classification problems, one or more classes can be
divided into sub-classes or grouped into super-classes. In these
structures, the nodes represent classes [16].

There are two main types of hierarchical structures: a tree
or a Directed Acyclic Graph (DAG). The main difference
between them is that, in the tree structure, each node has
just one parent node, while, in the DAG structure, each node
may have more than one parent. For both structures, the root
node corresponds to any class, denoting a total absence of
knowledge about the class of an object [17].

Most of the solutions proposed to hierarchical problems are
based on top-down approach [16]. The top-down approach
consists of constructing a tree classifier by training one or
more classifiers at each level of hierarchy. In this approach, a
classifier is trained with all training instances at the root node
of the hierarchy. At the next level, for each class, a classifier is
trained using only a subset of instances of the classes predicted
by the classifier. The training process of classifiers proceeds
in a top-down scheme until the classes belonging to the leaf
nodes are predicted by a classifier. After the training phase,
a set of hierarchically organized classifiers is obtained. Thus,
the examples belonging to the test set are classified iteratively
in a top-down approach throughout the hierarchy, starting at
the root node. When an instance is associated with a class,
the instance is then passed to a classifier to predict which
subclasses it belongs to. In the literature, there are some works
that use the top-down approach, such as in [16], [18].

C. Hierarchical Multi-Label Classification

The hierarchical multi-label classification (HMC) has
emerged as a new category of classification problems, using
features of both hierarchical and multi-label classification
problems. In HMC problems, an instance may belong to
several labels simultaneously and, in addition, the labels are
organized in a hierarchical structure. Thus, an instance belong-
ing to a label belongs automatically to all of its predecessor
labels in the hierarchical structure. Problems of this type are
reasonably common, especially in text categorization and pre-
diction of protein functions problems. Moreover, hierarchical
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multi-label classification problems are more complex than the
other classification problems.

Several methods can be used for hierarchical multi-label
tasks in different domains, such as text classification [19],
functional prediction of proteins [20] and object recognition
[21]. In [22], two methods based on local and global ap-
proaches are described and evaluated: the first method is called
HMC-LP (Hierarchical Multi-label Classification with Label
Powerset) and is based on the local approach, however, it
uses LP classifiers. Therefore, HMC-LP is an hierarchical
adaptation of LP (Label Powerset). For each example, the
method combines all the classes marked as an example, at a
specific level of the hierarchical structure, in a single new class
(meta-class). After the combination of classes, the original
HMC problem is transformed into a hierarchical single-label
problem and the top-down approach is used in training and
testing phases of the method. The second method, called
HMC4.5 was proposed by [22], based on the overall approach
in the algorithm C4.5.

III. SEMI-SUPERVISED LEARNING

The main aim to combine semi-supervised learning with
multi-label classification is the definition of efficient tech-
niques to deal with problems where previously-classified data
is very scarce. It is well known that the labeling process in
some classification problems is expensive and a time consum-
ing task. In this case, it is hard to build a good classification
model since the available information representing efficiently
the data space is not representative enough. In order to cope
with this problem, we use the semi-supervised learning [2]. In
this case, it is possible to use partially-supervised information
to guide to the learning process and increase the amount
of evidence regarding the target problem. In general, semi-
supervised learning uses both types of data, but mainly in
situations where the number of labeled instances is small and
the number of unlabeled instances is large [23], [24].

Early studies in semi-supervised learning used methods with
conceptual and algorithmic simplicity, such as expectation-
maximization (EM)-based algorithms and self-training. As a
consequence of self-training, the Co-training semi-supervised
learning was proposed. Recently, graph-based semi-supervised
learning methods have attracted great attention. Graph-based
methods start with a graph where the nodes are the labeled
and unlabeled data points, and (weighted) edges reflect the
similarity of nodes. As mentioned previously, as our work
is the first attempt to incorporate semi-supervised learning in
HMC problems, we chose the self-training method as the semi-
supervised method in our work.

The Self-Training is one the most commonly used technique
for semi-supervised learning [24]. In this technique, the clas-
sifier uses its own predictions to teach itself. In this approach,
an underlying classifier is first trained with a small number of
labelled instances which is called the initial training set. Next,
the underlying classifier is used to classify the unlabelled data
and label a proportion of the unlabelled instances (the most
confident ones). The underlying classifier is then retrained and

this procedure is repeated until all the unlabelled instances
have been moved to the labelled training set. For more details
about this method, see [24].

IV. THE PROPOSED METHODS

In this paper, as mentioned previously, we propose the use
of semi-supervised learning in hierarchical multi-label classi-
fication problems. Figure 1 presents the general methodology
of the proposed methods. The functioning of the proposed
framework can be describe as follows: a dataset containing
labelled and unlabelled instances are presented to the semi-
supervised learning module. It is important to emphasize
that this module is adapted to label hierarchical multi-label
instances. This module labels all unlabelled instance and
passes the complete labelled dataset to the hierarchical multi-
label module, which is responsible for training and classifying
the instances in the dataset.

Fig. 1. The general structure of the proposed methodology
Still in Figure 1, during the labelling process (semi-

supervised module) the choice of the instances to be labelled is
made at random. It is important to emphasize that the proposed
methods use a top-down approach as a strategy for hierarchical
classification in conjunction with the semi-supervised multi-
label classification methods proposed in [25].

Now, in order to better understand the proposed methods,
consider a scenario in which the training set is D = {Dl∪Du},
where Dl = {El1, ..., ElN} is the set of labelled instances,
Du = {Eu1, ..., EuK} is the set of unlabelled instances, L =
{λ1, ..., λM} is the set of labels, N is the number of labelled
instances, K is the number of unlabelled examples and M is
the number of possible labels. Furthermore,

∨
Eli ∈ Dl, Eli

receives r labels, with 1 ≤ r ≤M .

A. Semi-Supervised Multi-Label Methods

In a previous work of the authors, [25], two methods that
apply the semi-supervised technique self-training in multi-
label classification were proposed, which are: SSLP (Semi-
Supervised Label Powerset) and SSRAkEL (Semi-Supervised
Random k-labelsets). These methods are based on their cor-
responding supervised methods LP and RAkEL. The original
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and proposed methods differ only in the approach used dur-
ing training, supervised or semi-supervised training. A brief
description of these methods is shown below :

• SSLP: Like the original LP, the first step of SSLP is the
transformation of the set of training data, considering the
combinations of labels, in order to create a meta-label t
for each combination, such that 1 ≤ t ≤ |L|. After the
transformation of the data, the semi-supervised process
is similar to the one used in SSBR;

In this paper, we would like to extend the work done in [25],
incorporating semi-supervised learning in HMC problems. In
order to do this, we will use the multi-label methods used in
[25], SSLP and SSRAkEL, in the hierarchical context.

B. Semi-Supervised Hierarchical Multi-Label Methods

As mentioned previously, the top-down approach is widely
used for treating of HMC problems. In this approach a tree
of classifiers is built, through the training of one or more
classifiers at each hierarchy level. Thus, at the root node of
the hierarchy, a classifier is trained with all training instances.
In the following levels, for each class, a classifier is trained
using only the subset of instances belonging to classes of the
corresponding sub-tree.

The adaptation of the self-training method for multi-label
problems is straightforward, allowing more than one label
to be set to 1. In this case, a threshold is defined (usually
0.5) and label values higher than this threshold is set to 1
and values lower than this threshold is set to 0. In addition,
its adaptation to hierarchical problems with the top-down
approach is also straightforward, using in each node of the
tree the semi-supervised approach to label the instances of the
corresponding classes. Therefore, the adaptation of the self-
training method for hierarchical multi-label problems uses the
multi-label adaptation in each node of the tree used in the
top-down approach of the hierarchical methods.

In [22], it is described and evaluated one hierarchical
method based on the aforementioned top-down approach,
called HMC-LP (Hierarchical Multi-label Classification with
Label Powerset). The HMC-LP is an hierarchical adaptation of
LP (Label Powerset). For each example, this method combines
all the classes marked as an example, at a specific level of
the hierarchical structure, in a single new class (meta-class).
After the combination of classes, the original HMC problem
is transformed into a hierarchical single-label problem, and
top-down approach is used in training and testing phases of
the method. In this paper, we will use an adaptation of this
method, using the semi-supervised learning as a pre-processing
phase.

In this work, we also propose and evaluate one adaptation
of HMC-LP, called HMC-RAkEL (Hierarchical Multi-label
Classification with Random k-Labelsets). The only difference
between the original HMC-LP and HMC-RAkEL is that
instead of using the original LP classifiers, as in HMC-LP,
the HMC-RAkEL uses the multi-label classification method
called RAkEL .

Additionally, this paper proposes two algorithms which
combine the top-down approach with the semi-supervised
learning strategy, which are:
• HMC-SSLP (Hierarchical Multi-label Classification us-

ing Semi-Supervised Label Powerset): it is a semi-
supervised version of HMC-LP [22], in which the original
LP is replaced by SSLP [25]. In this case, a semi-
supervised learning is perform to label all unlabelled
instances and, after that, the HMC procedure (HMC-LP)
is performed;

• HMC-SSRAkEL (Hierarchical Multi-label Classification
using Semi-Supervised Random k-Labelsets): It is a vari-
ation of HMC-RAkEL. The only difference between the
original HMC-RAkEL and this proposed extension is that
instead of using the original RAkEL, as in HMC-RAkEL,
it is used in the semi-supervised hierarchical multi-label
classification SSRAkEL in this proposed method. As the
preivous item, in the proposed method, a semi-supervised
learning is perform to label all unlabelled instances
and, after that, the HMC procedure (HMC-RAkEL) is
performed;

In all algorithms proposed in this paper, the classifiers are
trained according to the hierarchical structure of the problem.
In this case, each level of hierarchy is treated as a multi-label
problem, which is similar to the idea described in [22].

V. EXPERIMENTAL METHODOLOGY

In order to investigate the feasibility of the proposed meth-
ods, an empirical analysis is performed, comparing the pro-
posed methods with their corresponding supervised versions.
For the supervised versions, the whole labelled datasets are
considered, while the datasets are divided into labelled and
unlabelled instances in the semi-supervised methods, always
maintaining the class distribution of the original datasets. The
main aim of this analysis is to observe whether the semi-
supervised methods proposed in this paper have similar perfor-
mance of the corresponding supervised versions. In this case,
we could use the semi-supervised learning methods without
deteriorating the performance of the hierarchical multi-label
methods.

For the use of semi-supervised classification methods, we
need to define two additional parameters, which are: the
initial percentage of labelled instances and the percentage of
instances to be labelled in each iteration. We performed an
initial empirical analysis and we used a percentage value of
the initial labelled instances of 50%. At each iteration, the
percentage of the unlabelled instances to be labelled is 17%. In
this case, we will have six iterations to label all the unlabelled
data. An initial analysis has shown that this is an interesting
value of instances to be labelled at each step. Finally, the
choice of the instances to be labelled is made at random.

All hierarchical multi-label classification methods and su-
pervised learning algorithms used in this work are implemen-
tations of the Weka-based package of Java classes for multi-
label classification, called Mulan [26]. This package includes
implementations of multi-label classification methods such
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as LP and RAKEL and hierarchical multi-label classification
method HMC. The implementations of semi-supervised meth-
ods (SSLP and SSRAkEL) were obtained from adjustments
made in Mulan, changing the training phase to be used in a
semi-supervised strategy.

The empirical analysis was conducted using the 10-fold
cross-validation methodology. Thus, all results presented in
this paper refer to the mean over 10 different test sets. An
initial investigation was conducted in order to define the
parameter values used in supervised learning algorithms.

In order to compare the obtained results of the different
learning methods, a statistical test is applied. The t-test was
used for pairwise comparisons. In other words, it compares
two samples (set of results). In this paper, we will compare
the proposed methods with their corresponding supervised
versions. For this test, the confidence level is 95% (α = 0.05).

A. Evaluation Measures

Unlike the single-label problems, which the classification of
an instance is correct or incorrect, in a multi-label problem,
a classification of an instance may be partially correct and
partially incorrect. This can happen when a classifier correctly
assigns an instance to one of the labels it belongs to, but it
does not assign it to all labels it belongs to. In addition, a
classifier could assign an instance to one or more labels it
does not belong [1]. In this sense, the evaluation of multi-label
classifiers requires the use of different evaluation measures
from those used in single-label problems.

Several measures have been proposed in the literature for
the evaluation of multi-label classifiers. According to [14],
these measures can be broadly categorized in two groups:
bipartition-based and ranking-based. Some of the bipartition-
based measures, called example-based-measures, evaluate bi-
partition over all examples of the evaluation dataset. Fur-
thermore, the ranking-based measures evaluate rankings with
respect to the ground truth of multi-label dataset. In this
paper six multi-label measures are used: three bipartition-
based (Hamming Loss (HL), F-Measure (FM) and Accuracy
(Acc)) and three ranking-based (One-Error (1-Err), Average
Precision (AvPre) and Ranking Loss (RL)).

The evaluation of hierarchical multi-label classifiers is still
a widely debated issue. Although some works assesses the
performance of hierarchical multi-label classification, we are
still missing the proposal of well defined measures. In this
paper, one of the most widely used measures is applied,
called hierarchical Loss [27]. The hierarchical loss function is
used to measure the discrepancy between the set of predicted
labels and the set true label. The leading idea underlying
our hierarchical loss function is: if a parent class has been
predicted wrongly, then errors in the children should not
be taken into account [27]. Regarding that, this measure is
calculated only from the second hierarchical level on.

B. Datasets

The datasets used in this paper are related to gene functions
of the Saccharomyces cerevisiae fungus, often used in the

fermentation of sugar for the production of ethanol, and also
in the fermentation of wheat and barley for the production
of alcoholic beverages. It is one of Biology′s classic model
organisms, and it has been subject of intensive study for
years [20]. We selected these datasets, that are from the same
domain, because they are, to the best of our knowledge,
the only public datasets available for hierarchical multi-label
classification. In addition, these datasets have been widely used
in several studies involving HMC methods.

The datasets are structured as a tree, similar to the scheme
proposed in FunCat, that was developed by MIPS [28]. They
are public datasets 1. The Funcat annotation scheme consists
of 28 main categories that cover fields such as cellular trans-
port, metabolism and cellular communication. Its hierarchy is
structured as a tree, with up to six levels deep and a total of
1362 functional classes.

In [25], we performed an extensive investigation with these
datasets, involving all six levels of hierarchy. However, we
noticed that the there is a high computation cost involved and
the pattern of behaviour of the second level of hierarchy is
very similar to the following ones. Therefore, for simplicity
reasons, the investigation performed in this work uses only the
first two levels of the hierarchy.

Table I shows the main characteristics of the used datasets.
This table describes the number of instance (NumIn) and
the amount of numeric attributes (NUM) and categorical one
(CAT) of the datasets. In addition, L1 represents the number of
labels in the first level of hierarchy and L2 presents the number
of labels in the second level of hierarchy. These datasets can be
considered as small, but we decided to use them because the
use of semi-supervised learning is more difficult when we have
a small number of instance to train and label the unlabelled
ones.

TABLE I
DESCRIPTION OF THE USED DATASETS

Dataset NumIn Attribute
NUM CAT

Labels
L1 L2

Cellcycle 848 77 0 18 80
Church 844 27 0 18 80
Derisi 842 63 0 18 80
Eisen 529 79 0 18 76
Pheno 353 69 0 18 74

In the empirical analysis, we divided the hierarchical multi-
label classification methods into two groups: supervised meth-
ods (HMC-LP and HMC-RAkEL) and semi-supervised meth-
ods (HMC-SSLP and HMC-SSRAkEL). For each method
of each group, we applied five base classifiers, which are:
k-Nearest Neighbour (k-NN), Decision Tree (DT), Support
Vector Machine (SVM), Nave Bayesian (NB) and Repeated
Incremental Pruning to Produce Error Reduction (RIPPER).
These specific classifiers were chosen for being very distinct
in their classification criteria, in this way, performing a broader
and wider search in the databases. In this paper, we represent
the average of all these five base classifiers.

1available at http://www.cs.kuleuven.be/dtai/clus/hmcdatasets.html
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VI. EXPERIMENTAL RESULTS

Tables II and III illustrate the results of HMC-LP-based
and HMC-RAkEL-based methods, respectively. Each table
presents the results obtained by hierarchical multi-label su-
pervised method and hierarchical multi-label semi-supervised
method in the first and second hierarchy levels. As already
mentioned, the results are presented using seven different
measures evaluation, where three are bipartition-based multi-
label measures, three are ranking-based multi-label measures
and the remaining one is a hierarchical measure. In these
tables, the symbols ↓ and ↑ define the expected behavior of
the evaluation metrics, with ↓ meaning that the lowest values
are the best ones and ↑ meaning that the highest values are the
best ones. The best value at each level is bold (the best of the
first and third columns and the better of the second and fourth
columns), for each measure. The statistical test compared
the results of the two hierarchical multi-label classification
methods, in a two-by-two basis. The results that showed no
statistical superiority of supervised approach have shaded cells
in these tables. In the following sections, the experimental
results obtained by each HMC method will be described in
more details.

A. HMC-LP-based Methods

Table II presents the experimental results obtained by the
HMC-LP-based methods using the supervised learning ap-
proach (HMC-LP) and the semi-supervised learning approach
(HMC-SSLP). In analysing Table II, on the first hierarchical
level (Level 1 columns), it is possible to observe that the
HMC-LP obtained superior results (bold numbers in Table II)
compared to HMC-SSLP in 80% (24 out of 30) of the cases,
while the HMC-SSLP obtained superior results compared to
HMC-LP in 13.33% (4 out of 30) of the cases. When applying
the t-test (shaded cells in Table II), it was verified that the
HMC-LP and HMC-SSLP have similar performance in almost
all cases (26 out of 30 cases), and these results are represented
by shades cells. Therefore, on the first hierarchical level, it is
possible to observe that the semi-supervised strategy presented
results similar to its corresponding supervised version, from
the statistical point of view, in almost 86.67% (26 out of 30)
of the cases.

On the second hierarchical level (Level 2 columns), it is
possible to observe that that the HMC-LP obtained superior
results compared to HMC-SSLP in 56.67% (17 out of 30)
of the cases, while the HMC-SSLP obtained superior results
compared to HMC-LP in 43.33% (13 out of 30) of the cases.
When applying the t-test (shaded cells in Table II), MC-LP and
HMC-SSLP have similar performance in most of cases (18 out
of 30 cases). On the other hand, it was verified that HMC-LP
showed itself statistically superior compared to HMC-SSLP in
30% (9 out of 30) of the cases, while the HMC-SSLP showed
itself statistically superior compared to HMC-LP in 10% (3
out of 30) of the cases.

In analysing the used hierarchical measure, the HMC-LP
presented superior results compared to HMC-SSLP in 100%
(5 out of 5) of the cases. However, in none of the cases it

TABLE II
RESULTS OF HMC-LP-BASED METHODS.

HMC-LP HMC-SSLP

Level 1 Level 2 Level 1 Level 2

Cellcycle

HL ↓ 0.15±0.01 0.06±0.00 0.15±0.01 0.07±0.01
FM ↑ 0.35±0.40 0.24±0.30 0.32±0.23 0.19±0.04
Acc ↑ 0.24±0.03 0.16±0.03 0.21±0.03 0.12±0.01

1-Err ↓ 0.61±0.03 0.75±0.05 0.62±0.03 0.82±0.04
AvPrec ↑ 0.38±0.03 0.19±0.03 0.35±0.02 0.16±0.01

RL ↓ 0.49±0.03 0.51±0.02 0.52±0.02 0.52±0.02
HiLoss ↓ - 3.29±0.24 - 3.31±0.21

Church

HL ↓ 0.15±0.01 0.06±0.00 0.15±0.01 0.06±0.00
FM ↑ 0.33±0.35 0.23±0.34 0.31±0.39 0.18±0.04
Acc ↑ 0.19±0.03 0.10±0.02 0.18±0.04 0.10±0.01

1-Err ↓ 0.65±0.05 0.91±0.02 0.66±0.05 0.87±0.01
AvPrec ↑ 0.33±0.03 0.12±0.02 0.33±0.03 0.13±0.02

RL ↓ 0.54±0.03 0.59±0.01 0.54±0.03 0.57±0.01
HiLoss ↓ - 3.28±0.13 - 3.32±0.15

Derisi

HL ↓ 0.15±0.01 0.06±0.00 0.15±0.01 0.06±0.01
FM ↑ 0.22±0.28 0.12±0.15 0.24±0.24 0.11±0.10
Acc ↑ 0.20±0.03 0.11±0.02 0.19±0.04 0.11±0.00

1-Err ↓ 0.63±0.06 0.85±0.04 0.64±0.07 0.85±0.02
AvPrec ↑ 0.34±0.03 0.15±0.03 0.34±0.04 0.15±0.01

RL ↓ 0.53±0.03 0.56±0.02 0.53±0.04 0.56±0.01
HiLoss ↓ - 3.25±0.12 - 3.30±0.12

Eisen

HL ↓ 0.15±0.01 0.07±0.01 0.16±0.02 0.07±0.00
FM ↑ 0.35±0.33 0.30±0.27 0.30±0.34 0.24±0.08
Acc ↑ 0.25±0.04 0.19±0.03 0.22±0.02 0.16±0.02

1-Err ↓ 0.60±0.05 0.69±0.05 0.64±0.06 0.74±0.03
AvPrec ↑ 0.38±0.03 0.23±0.02 0.35±0.03 0.20±0.02

RL ↓ 0.50±0.04 0.54±0.02 0.53±0.03 0.56±0.01
HiLoss ↓ - 3.25±0.20 - 3.34±0.28

Pheno

HL ↓ 0.15±0.01 0.07±0.00 0.16±0.02 0.07±0.00
FM ↑ 0.45±0.35 0.26±0.20 0.34±0.31 0.18±0.05
Acc ↑ 0.20±0.04 0.12±0.03 0.18±0.03 0.10±0.02

1-Err ↓ 0.63±0.06 0.70±0.06 0.68±0.11 0.85±0.04
AvPrec ↑ 0.34±0.05 0.14±0.02 0.32±0.03 0.15±0.01

RL ↓ 0.53±0.05 0.59±0.05 0.55±0.04 0.53±0.02
HiLoss ↓ - 3.25±0.20 - 3.44±0.21

was verified statistical relevance in the differences presented
between the HMC-LP and the HMC-SSLP.

Consequently, on the second hierarchical level, it is possible
to observe that the semi-supervised strategy presented results
similar to its corresponding supervised version, from the
statistical point of view, in almost 74.29% (26 out of 35) of
the cases.

From a more general perspective, we can observe from
Table II that the semi-supervised strategy presented results
similar to its corresponding supervised version, from the
statistical point of view, in almost 80% (52 out of 65) of
the cases. Based on these empirical results, we can state that
an automatic labelling process can be used in the HMC-
LP methods without deteriorating its performance, from a
statistical point of view. It is important to emphasize that
the LP method takes into consideration the correlation among
labels in a multi-label problem.
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B. HMC-RAkEL-based Methods

Table III illustrates the experimental results obtained by
the HMC-RAkEL-based methods using the supervised learn-
ing approach (HMC-RAkEL) and semi-supervised learning
approach (HMC-SSRAkEL). In analysing Table III, on the
first hierarchical level, it is possible to observe that the
HMC-RAkEL obtained superior results compared to HMC-
SSRAkEL in 53.33% (16 out of 30) of the cases, while the
HMC-SSRAkEL obtained superior results compared to HMC-
RAkEL in 46.67% (13 out of 30) of the cases. By applying
the t-test (shaded cells in Table III), it is possible to observe
that the semi-supervised strategy presented results similar to
its corresponding supervised version, from the statistical point
of view, in 90% (29 out of 30) of the cases. In contrast, it
was verified that the HMC-RAkEL showed itself statistically
superior in only 3.33% (1 out of 30) of the cases, while the
HMC-SSRAkEL showed statistically superior in 6.67% (2 out
of 30) of the cases.

On the second hierarchical level, it is possible to ob-
serve that HMC-RAkEL obtained superior results compared
to HMC-SSRAkEL in 43.33% (13 out of 30) of the cases,
while the HMC-SSRAkEL obtained superior results compared
to HMC-RAkEL in 56.67% (17 out of 30) of the cases. As
a result of the t-test (shaded cells), it was verified that both
methods (HMC-RAkEL and HMC-SSRAkEL) are similar in
56.67% (17 out of 30) of the cases. In contrast, the HMC-
RAkEL showed to be statistically superior in 30% (9 out of
30) of the cases, while the HMC-SSRAkEL showed itself
statistically superior in 13.33% (4 out of 30) of the cases.

Concerning the hierarchical measure, the HMC-RAkEL
presented superior results compared to HMC-SSRAkEL in
only 40% (2 out of 5) of the cases, while the HMC-SSRAkEL
obtained superior results compared to HMC-RAkEL in 60% (3
out of 5) of the cases. When applying the t-test, it was verified
that the HMC-RAkEL showed to be statistically superior in
20% (1 out of 5) of the cases, while the HMC-SSRAkEL did
not present statistical superiority in any of the cases. Thereby,
on the second hierarchical level, it is possible to observe that
the semi-supervised strategy presented results similar to its
corresponding supervised version, from the statistical point of
view, in almost 71.43% (25 out of 35) of the cases.

From a more general perspective, as in the previous section,
in the majority of cases, the performance of the supervised
and semi-supervised versions of HMC-SSRAkEL are similar,
from a statistical point of view. Once again, we can state that
the an automatic labelling process can be used in the HMC-
RAkEL methods without deteriorating its performance, from
a statistical point of view. It is important to emphasize that the
best results were obtained by RAkEL-based, when compared
with LP-based methods. As mentioned in Section II-A, RAkEL
is an extension of LP and the use of this more elaborated
method had a positive impact in the functioning of the semi-
supervised approach.

TABLE III
RESULTS OF HMC-RAkEL-BASED METHODS.

HMC-RAkEL HMC-SSRAkEL

Level 1 Level 2 Level 1 Level 2

Cellcycle

HL ↓ 0.13±0.01 0.05±0.00 0.13±0.01 0.05±0.00
FM ↑ 0.29±0.31 0.03±0.01 0.26±0.06 0.01±0.01
Acc ↑ 0.20±0.03 0.01±0.00 0.19±0.01 0.01±0.00

1-Err ↓ 0.73±0.05 0.94±0.03 0.74±0.02 0.95±0.01
AvPrec ↑ 0.33±0.03 0.08±0.02 0.33±0.01 0.08±0.00

RL ↓ 0.51±0.03 0.61±0.03 0.50±0.02 0.61±0.00
HiLoss ↓ - 2.39±0.18 - 2.39±0.00

Church

HL ↓ 0.13±0.01 0.05±0.00 0.13±0.00 0.05±0.00
FM ↑ 0.16±0.20 0.09±0.21 0.18±0.03 0.05±0.02
Acc ↑ 0.16±0.02 0.02±0.01 0.16±0.01 0.03±0.00

1-Err ↓ 0.85±0.02 0.95±0.02 0.83±0.01 0.91±0.01
AvPrec ↑ 0.26±0.01 0.08±0.01 0.27±0.00 0.09±0.00

RL ↓ 0.52±0.03 0.6±0.02 0.51±0.01 0.60±0.00
HiLoss ↓ - 2.39±0.12 - 2.39±0.00

Derisi

HL ↓ 0.13±0.01 0.05±0.00 0.13±0.01 0.05±0.00
FM ↑ 0.22±0.28 0.14±0.15 0.19±0.06 0.01±0.02
Acc ↑ 0.17±0.01 0.11±0.01 0.17±0.01 0.03±0.00

1-Err ↓ 0.78±0.06 0.81±0.03 0.77±0.03 0.90±0.01
AvPrec ↑ 0.30±0.04 0.16±0.02 0.31±0.01 0.09±0.00

RL ↓ 0.47±0.02 0.46±0.01 0.48±0.01 0.60±0.00
HiLoss ↓ - 2.39±0.12 - 2.40±0.00

Eisen

HL ↓ 0.13±0.01 0.06±0.00 0.13±0.01 0.06±0.00
FM ↑ 0.28±0.24 0.02±0.07 0.31±0.03 0.02±0.03
Acc ↑ 0.24±0.03 0.02±0.01 0.22±0.02 0.01±0.01

1-Err ↓ 0.66±0.09 0.94±0.03 0.69±0.03 0.93±0.01
AvPrec ↑ 0.39±0.04 0.09±0.01 0.36±0.01 0.08±0.00

RL ↓ 0.46±0.04 0.61±0.03 0.48±0.02 0.61±0.00
HiLoss ↓ - 2.48±0.19 - 2.48±0.00

Pheno

HL ↓ 0.14±0.01 0.06±0.01 0.14±0.00 0.07±0.01
FM ↑ 0.22±0.35 0.16±0.22 0.23±0.11 0.20±0.04
Acc ↑ 0.12±0.02 0.08±0.02 0.11±0.01 0.11±0.01

1-Err ↓ 0.78±0.04 0.84±0.05 0.79±0.01 0.79±0.07
AvPrec ↑ 0.28±0.03 0.13±0.02 0.27±0.00 0.13±0.01

RL ↓ 0.58±0.05 0.59±0.02 0.59±0.00 0.60±0.01
HiLoss ↓ - 2.53±0.20 - 3.45±0.05

VII. FINAL REMARKS

This paper proposed and evaluated the use of semi-
supervised learning in two hierarchical multi-label classifica-
tion methods. Once these methods are variations of existing
supervised methods, a comparative analysis was performed,
comparing both supervised and semi-supervised versions of
the hierarchical multi-label classification methods. Finally,
these methods were analysed using six different multi-label
evaluation metrics and one hierarchical evaluation metrics.

We performed an exhaustive set of experiments, using
five datasets applied to two groups of methods (supervised
and semi-supervised) and each method used five existing
classification methods. For simplicity reasons, we presented
the results in the first and second level of hierarchy. As a result
of the empirical analysis, from a more general perspective,
it is possible to observe that the semi-supervised approach
presented results statistically equal or superior compared to the
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supervised approach in 81.54% (106 out of 130) of the cases.
In addition, the statistical test showed that the use of semi-
supervised learning had a positive effect in almost 91.67%
of the analysed cases (55 out of 60) in the first hierarchical
level and 78.46% of the analysed cases (51 out of 65) in
the second hierarchical level, either having better or similar
performance than the corresponding supervised versions. In
some cases they even have a superior performance, from a
statistical point of view. Moreover, when analysing separately
the hierarchical loss measure, it is possible to observe that the
semi-supervised approach presented results statistically equal
or superior compared to the supervised approach in 90% (9
out of 10) of the cases.

One interesting aspect of this analysis was that the semi-
supervised methods had their best results for HMC-SSRAkEL,
followed by HMC-SSLP. We believe that the use of an
ensemble, used in HMC-SSRAkEL, had a positive effect in
the labelling process.

In summarizing, it is possible to state that, in a general
way, the process of automatic attribution of labels, used on
the semi-supervised approach, did not deteriorate significantly
the performance of the classifiers, showing that its use is
favourable.
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emotions in music.” Berlin, Heidelberg: Springer Berlin / Heidelberg,
2006, pp. 307–315.

[12] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multilabel
classification of music into emotions,” in Proc. 9th International Con-
ference on Music Information Retrieval (ISMIR 2008), Philadelphia, PA,
USA, 2008. Germany: Springer, 2008.

[13] Y. Zhang, S. Burer, and W. N. Street, “Ensemble pruning via semi-
definite programming,” J. Mach. Learn. Res., vol. 7, pp. 1315–1338,
December 2006.

[14] G. Tsoumakas and I. Vlahavas, “Random k-labelsets: An ensemble
method for multilabel classification,” in Proceedings of the 18th Euro-
pean Conference on Machine Learning (ECML 2007). Warsaw, Poland:
Springer, September 2007, pp. 406–417.

[15] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” 2009, pp. 254–269.

[16] A. Freitas and A. C. de Carvalho, A Tutorial on Hierarchical Classifi-
cation with Applications in Bioinformatics. UK: Idea Group, 2007, ch.
VII.

[17] E. P. Costa, A. C. Lorena, Carvalho, and A. A. Freitas, “A review of
performance evaluation measures for hierarchical classifiers,” in 2007
AAAI Workshop, Vancouver. AAAI Press, 2007.

[18] A. Secker, M. N. Davies, A. A. Freitas, J. Timmis, M. Mendao, and
D. R. Flower, “An experimental comparison of classification algorithms
for the hierarchical prediction of protein function,” in 3rd UK Data
Mining and Knowledge Discovery Symposium (UKKDD 2007). UK:
UKKDD, 2007, pp. 13–18.

[19] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, “Kernel-based
learning of hierarchical multilabel classification models,” Journal of
Machine Learning Research, vol. 7, pp. 1601–1626, 2006.

[20] C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel, “Decision
trees for hierarchical multi-label classification,” Mach. Learn., vol. 73,
pp. 185–214, November 2008.

[21] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla, “Estimating
3d hand pose using hierarchical multi-label classification,” Image Vision
Comput., vol. 25, pp. 1885–1894, December 2007.

[22] R. Cerri and A. C. P. L. F. de Carvalho, “Comparing local and global
hierarchical multilabel classification methods using decision trees,” in
Proceedings of the Brazilian Symposium on Bioinformatics, Lecture
Notes on Bioinformatics. Porto Alegre, Brazil: Springer-Verlag, 2009,
pp. . 109–120.

[23] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with
co-training.” New York, NY, USA: Morgan Kaufmann Publishers, 1998,
pp. 92–100.

[24] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-
training of object detection models,” in Seventh IEEE Workshop on
Applications of Computer Vision. Breckenridge, CO, USA: IEEE, 2005,
pp. 29–36.

[25] A. M. Santos and A. M. P. Canuto, “Using semi-supervised learning in
multi-label classification problems,” in Neural Networks (IJCNN), The
2012 International Joint Conference on, june 2012, pp. 1 –8.

[26] E. S. G. Tsoumakas, J. Vilcek and I. Vlahavas, “Mulan: A java library
for multi-label learning,” Journal of Machine Learning Research, 2010.

[27] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Hierarchical clas-
sification: combining bayes with svm,” in Proceedings of the 23rd
international conference on Machine learning, ser. ICML 06. New
York, NY, USA: ACM, 2006, pp. 177–184.

[28] H. W. Mewes, D. Frishman, U. Gildener, G. Mannhaupt, K. Mayer,
M. Mokrejs, B. Morgenstern, M. Minsterktter, S. Rudd, and B. Weil,
“Mips: a database for genomes and protein sequences,” Nucleic Acids
Res, vol. 30, pp. 31–34, 2002.

879




