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Abstract— Person identification using electroencephalogram
(EEG) as biometric has been widely used since it is capable
of achieving high identification rate. Epilepsy is one of the
brain disorders that involves in the EEG signal and hence it
may have impact on EEG-based person identification systems.
However, this issue has not been investigated. In this paper,
we perform person identification on two groups of subjects,
normal and epileptic to investigate the impact of epilepsy on the
identification rate. Autoregressive model (AR) and Approximate
entropy (ApEn) are employed to extract features from these two
groups. Experimental results show that epilepsy actually have
impacts depending on feature extraction method used in the
system.

I. INTRODUCTION

P erson identification is the process of recognizing a
person from a group. It recognizes the identity of a given

person out of a closed pool of N [1]. The applications of
person identification are found in video surveillance (public
places, restricted areas) and information retrieval (police
databases) [1]. In general, people can be identified by their
biometrics such as voice, face, iris, retina, and fingerprint. It
has been shown that electroencephalogram (EEG) can also
be used as biometric for person identification.

A. Electroencephalogram

EEG is a measurement of the brain signals containing
information generated by brain activities [2]. EEG signal is
captured by using multiple electrodes either from inside the
brain (invasive methods), over the cortex under the skull, or
certain locations over the scalp (non-invasive methods) [2].

EEG signal carries genetic information; that is, there is
a connection between genetic information and EEG of an
individual [3]. Moreover, EEG features are universal as all
living and functional persons have recordable EEG signal
[4]. Therefore, EEG data can be suitably used for person
identification [1], [3], [5], [6]. The use of brain wave patterns
obtained from EEG data as a new modality for person
identification has several advantages: 1) It is unique as
individual’s brain wave patterns are unique [7], [1]; and
2) It is universal as all living and functional persons have
recordable EEG signals [4].

EEG signals are divided into five major bands, delta
(0.5 − 3 Hz), theta (4 − 7 Hz), alpha (8 − 13 Hz), beta
(14 − 30 Hz), and gamma (> 30 Hz) [2]. Delta waves are
mainly associated with deep sleep and may also be observed
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in a waking state while theta waves are associated with
creative inspiration and deep meditation. Alpha waves are
the most popular in the brain activities. They appear in both
relaxed awareness without attention and with concentration.
Beta waves are the usual waking rhythms in the brain
associated with active thinking, active attention, or solving
problems. Gamma waves usually have low amplitudes, rare
occurrence, and relate to left index finger, right toes, and
tongue movement [2].

Fig. 1. Wavebands example

It is unlikely that the entire EEG could be more repre-
sentative of brain dynamics than the individual frequency
subbands. In fact, the subbands may yield more accurate
information about constituent neuronal activities underlying
the EEG and consequently, certain changes in the EEGs that
are not evident in the original full-spectrum EEG may be
amplified when each subband is analyzed separately [8].

B. Epilepsy

Epilepsy is chronic neurological disorder which is gener-
ally characterized the sudden and the recurrent seizures [9].
Epileptic seizures are manifestations of epilepsy, which are
caused by the sudden development of synchronous neuronal
firing in the cerebral cortex and are recorded using the
EEG. They may be partial seizures, which occur only in a
few channels of the EEG recording, or generalized seizures
the whole brain, which involve in every channel of the
EEG recording [9]. The shape of wave may contain useful
information relating to the different psychological states of
the brain [6]. Therefore, EEG signal parameters, extracted
and analyzed using computers, are useful in diagnosing and
assessing brain state, especially epilepsy [6]. So far, most
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studies have focused on detecting epilepsy such as in [6],
[9], [10], [11], [12], [13], and there have been no reports
on the impacts of epilepsy on the performance of person
identification.

Accuracy is one of the crucial requirements of any person
identification system, including EEG-based. Factors which
may affect the accuracy of an EEG-based identification
system can be signal noises, feature extraction methods,
and/or classification algorithms. Mental disorder (such as
epilepsy) may also have some effects on the performance
as it has been shown that, brain state changes from less to
more ordered state, from more to less chaotic, or from more
to less complexity during epileptic seizures. We investigate
this issue by employing feature extraction methods on EEG
signals to obtain different features for EEG-based person
identification systems. Two typical feature extraction meth-
ods chosen are Autoregressive model (AR) and Approximate
entropy (ApEn). AR is to find a set of model parameters
that best describe the signal generation system, therefore the
AR features may not contain epileptic information. ApEn is
an entropy-based feature extraction method that has shown
its ability in reflecting the changes in the chaotic level and
degree of complexity in time series as well [2], [9], [10].
Therefore ApEn features contain epileptic information. If
epilepsy has impacts on EEG-based person identification
systems, the identification rate of an AR-based system should
be different from that of an ApEn-based system. We also
chose two different EEG datasets. The first dataset consists
of EEG data collected from normal subjects, and EEG data
from epileptic subjects are included in the second dataset.
We expect the change of AR-based person identification
rates should be different from that of ApEn-based person
identification rates measured on the same epileptic dataset
since the epileptic information is included in ApEn features
only.

II. AUTOREGRESSIVE MODEL

Autoregressive model (AR) is a predicting method to find
a set of model parameters that best describe the signal
generation system. The AR model, with the order p, is
defined to be linearly related with respect to a number of
its previous samples [2], i.e.

x(n) = −
p∑

k=1

akx(n− k) + y(n) (1)

where x(n) is the data of the signal at the sampled point n,
ak, k = 1, 2, ..., p are the AR coefficients, and y(n) is the
noise input.

AR modeling is an alternate for EEG spectral estimation.
However, the AR model is only applicable to stationary
signals. In contrast, EEG signal is complex, non-linear, non-
stationary, and random in nature [2], [3], [6], [9], [10], [14],
[15], [16], and they are considered stationary only within
short intervals, i.e. ”quasi-stationary” [17], [18]. Therefore,
EEG signal is normally segmented into short intervals prior
to AR modeling process.

AR model has a broad spectrum of applications ranging
from identification, prediction and control of dynamical
systems [19]. The AR modeling has been a popular feature
extraction for EEG-based person identification as seen in [3],
[20], [21].

III. APPROXIMATE ENTROPY

Entropy is a measure of uncertainty. In brain-computer
interface systems, entropy can be used to measure the level of
chaos of the system [2]. It is a non-linear measure quantifying
the degree of complexity in a time series [9]. The advantage
of using entropy methods for EEG feature extraction is
that EEG signals are complex, non-linear, non-stationary,
and random in nature [2], [3], [6], [9], [10], [14], [15],
[16]. Entropy is one of several approaches for non-linear
analysis has been proposed for EEG feature extraction as
randomness of non-linear time series data is well embodied
by calculating entropies of the time series data [22]. Entropy
reflects how well one can predict the behavior of each
respective part of the trajectory from the other. Basically,
higher entropy indicates more complex or chaotic systems,
thus, less predictability [6].

Approximate entropy (ApEn) is a statistic measure that
can estimate the complexity of signals from the discrete-
time sequences, especially for real-time applications [9]. This
measure can quantify the complexity or irregularity of the
system. ApEn is less sensitive to noise and can be used
for short-length data. In addition, it is resistant to short
strong transient interferences such as spikes [9]. ApEn gives
a robust entropy estimate from short and noisy data sets and
increasing values correspond to more irregularity [6].

So far, ApEn has been popularly used for automatic
epilepsy detection [6], [9], [11], [12], [23] as it has robust
characteristics in the characterization of the epileptic patterns
and low computational burden [12], [23]. In particular, it has
been shown that there are significant differences between
epileptic and normal EEG, and the degree of complexity
for epileptic EEG signal is lower than that of normal EEG
signal [9]. Epileptic EEG is more regular and less com-
plex than the normal, and entropies of epileptic activity
are less as compared to that of non-epileptic activity [6].
With these findings and the ApEn’s robustness in epileptic
pattern characterization, we assume that feature extraction by
ApEn would be able to show the effects of epilepsy on the
performance of person identification system.

Let X = [x(1), x(2), ..., x(N)] be the data sequence
containing N data points and let x(i) be the subsequences
of X such that x(i) = [x(i), x(i+ 1), ..., x(i+m− 1)], for
1 ≤ i ≤ N −m where m is the number of samples used for
prediction.

The distance between any two of the above vectors, x(i)
and x(j) is defined as: d[x(i), x(j)] = maxk=0,...,m−1|x(i+
k)− x(j + k)|

Consider Mm(i) is the number of x(i) that satisfies
d[x(i), x(j)] < r, where r ∈ R+ and is a filtering level.
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Cm
r (i) =

Mm(i)

N −m+ 1
; i = 1, ..., N −m+ 1 (2)

Define:

φmr =
1

N −m+ 1

N−m+1∑
i=1

log(Cm
i (r)) (3)

Approximate entropy is defined as:

ApEn(m, r,N) = φm(r)− φm+1(r) (4)

ApEn indicates that the system is regular (not complex)
if two sequences similar for m points will remain similar at
next m+1 points, and vice versa [9].

IV. DATASETS

Our experiment was conducted on the Australian EEG
(AEEG) dataset [24]. The dataset was collected in the John
Hunter Hospital, New South Wales, Australia, over a period
of 11 years. The recordings were made by using 23 electrodes
(23 channels) placed on the scalp of a subject with the
sampling rate of 167 Hz for about 20 minutes. The subset
of the data used for our experiments consists of the EEG
data of 80 subjects, being divided into two groups, namely
normal and epileptic. The dataset is summarized in Table I.
The normal group is chosen as a baseline so that we can
compare the differences in the identification rates between
the two groups.

Number Number Number Number Trial
Group of of of of length

subjects channels trials sssions (seconds)
Normal 40 23 1 1 1200

Epileptic 40 23 1 1 1200

TABLE I
AEEG DATASET DESCRIPTIONS

V. FEATURE EXTRACTION

We extract EEG features based on AR and ApEn methods.
The feature extraction is described in Fig. 2 and Fig. 3, in
which EEG signal is firstly filtered into three wave bands,
i.e, alpha (8-13 Hz), beta (14-26 Hz), gamma (30-45 Hz).
Features are then extracted and classified separately for each
sub-band. In particular, the filtered signal (about 1200 second
length) is then fragmented into one-second [9] segments.
Next, AR and ApEn features from every segment of each
channel are extracted. The optimal order of AR was 16
(AR16). The selected parameters for ApEn in the Eq. 4 are
m = 4, r = 0.5 ∗ std, and N = 167 equaling to one-
second data. Consequently, 16 features (by AR16) or one
feature (by ApEn) from each sub-trial are extracted for one
channel. After that, all the features from 23 channels are
joined together to form a feature vector for each sub-trial
[17]. In brief, there are about 1200 vectors of 368 or 23
features regarding to the feature extraction method, AR16 or
ApEn, respectively.

Fig. 2. AR16 Feature extraction

Fig. 3. ApEn Feature extraction

VI. CLASSIFICATION

The extracted features are used to train Linear Support
Vector Machine (SVM) classifiers for person identification
as described in [17], [18]. One advantage of SVM is the
hyperplane selection that maximizes the margins, which is
known to increase the generalization capabilities in classi-
fication. SVM also uses a regularization parameter C that
enables accommodation to outliers and allows errors on
the training set [17]. Originally, SVM was designed for
binary classification; therefore, it cannot deal with multi-class
classification directly [25]. The Multi-class SVM is described
in [18]. The binary SVM classifiers can be combined to
handle the multi-class case. In test phase, the voting strategy
was used as follow: each binary classification was considered
to be a voting where votes could be cast for all data points
x. The final result was the class with maximum number of
votes.

During the classification, two-third of the datasets are
used for cross-validation training, and one-third are used for
testing. Linear SVM classifiers are trained in 3-folds with
parameter C ranging from 1 to 1000 in 5 steps [18]. The
selection of parameter C is conducted by using a Weka’s
meta-classifier named CVParameterSelection. After finding
the best parameters of C, the meta-classifier then uses them
to build SVM’s models on the training data. In the test phase,
the testing data will be evaluated against the trained models
for person identification.

VII. EXPERIMENTAL RESULTS

Experimental results are presented in Tables II and III, and
in two Figures 4 and 5.

Our task is to compare the change of identification rates
between the AR and ApEn feature extraction methods from
the normal dataset to the epileptic one. We are not aiming
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to compare the identification rates between the two datasets
on the same feature extraction method, however we can
have a remark on why the epileptic group has slightly better
accuracy than the normal one for the AR16 features as seen
in Table II and Fig. 4. The maximum difference is 3.2%
being observed in the gamma band in the test phase. Al-
though it is not significant to see whether random difference
between the two datasets or epilepsy has contributed to the
performance of the classification results, the later case would
be appropriate as [2], [9] state that epileptic EEG signals are
less chaotic and complex than normal EEG signals. As a
result, this may make epileptic EEG signals more suitable
with linear methods such as Autoregressive model, thus, it
probably helps to increase the accuracy of EEG-based person
identification.

Band AR16
NORMAL EPILEPTIC

Gamma 91.9 95.1
Beta 91.6 93.2

Alpha 89.1 91.9

TABLE II
PERSON IDENTIFICATION RATES OF AR16

Fig. 4. Person identification rates of AR16

In contrast, epileptic group tends to have lower accuracy
than the normal group for ApEn features. As demonstrated in
the Table III and Fig. 5, the accuracy of epileptic group has
a maximum 8.5%, recorded in ApEn’s beta band, lower than
the normal group. This would support the hypothesis that
epilepsy has impact on the performance of EEG-based person
identification systems. As stated above, epileptic EEG signals
are less chaotic and complex than normal EEG signals [2],
[9]. In addition, entropy estimation is based on chaotic levels,
i.e, the higher entropy value reflects the more chaotic signals,
and vice versa [2]. As a result, the less chaotic property of
the epileptic EEG signals makes the lower entropy values,
and this has been proved in [9]. Therefore, it causes the lower
inter-class variation which results in the poorer identification
rates of epileptic group.

Overall we can see a change on the person identification
rates for the epileptic dataset. The AR-based person identi-

fication rates are higher than the ApEn-based ones.

Band ApEn
NORMAL EPILEPTIC

Gamma 64.2 62.5
Beta 70.8 62.3

Alpha 48.4 45.4

TABLE III
PERSON IDENTIFICATION RATES OF APEN

Fig. 5. Person identification rates of ApEn

VIII. CONCLUSIONS

We have found that epilepsy does have impacts on the
accuracy of EEG-based person identification systems. The
identification rates decrease for the epileptic dataset if the
EEG features extracted from this dataset contains epileptic
information. extraction method. This implies that a person
identification system will not provide high performance on
the users that have mental disorder such as epilepsy. For
further investigation, we will conduct experiments on other
feature extraction methods as well as on a larger scale of
datasets for confirming the influences of epilepsy on person
identification.
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