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Abstract— This paper investigates the convergence of Hop-
field neural networks with an event-triggered rule to reduce the
frequency of the neuron output feedbacks. The output feedback
of each neuron is based on the outputs of its neighbours at
its latest triggering time and the next triggering time of this
neuron is determined by a criterion based on its neighborhood
information as well. It is proved that the Hopfield neural
networks are completely stable under this event-triggered rule.
The main technique of proof is to prove the finiteness of
trajectory length by the Łojasiewicz inequality. The realization
of this event-triggered rule is verified by the exclusion of Zeno
behaviors. Numerical examples are provided to illustrate the
theoretical results and present the goal-seeking capability of
the networks. Our result can be easily extended to a large class
of neural networks.

I. INTRODUCTION

IN [1] and [2], the author presented the famous Hopfield
neural network model and its applications, where the

continuous-time Hopfield network is described by
{
𝐶𝑖�̇�𝑖(𝑡) = −𝑥𝑖(𝑡)𝑅𝑖

+
∑𝑚
𝑗=1 𝜔𝑖𝑗𝑦𝑗(𝑡) + 𝜃𝑖

𝑦𝑖(𝑡) = 𝑔𝑖(𝜆𝑖𝑥𝑖(𝑡)), 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚 (1)

with each activation function 𝑔𝑖(⋅) being a sigmoidal func-
tion and symmetric weight condition (𝜔𝑖𝑗 = 𝜔𝑗𝑖 for all
𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑚). This model has a great variety of ap-
plications: for example, it can be used to search for the
local minimum points and values of the quadratic objective
function −1

2

∑𝑚
𝑖,𝑗=1 𝜔𝑖𝑗𝑦𝑖𝑦𝑗 over the discrete set {0, 1}𝑚

[3]-[5]. Particulary, this model can be applied for solving
the traveling-sales problem [6]. From the analysis in [5],
we know that as 𝜆𝑖 goes to infinity and 𝜃𝑖 is sufficiently
small, the limit of the trajectory of (1) is located sufficiently
near one of the local minimum points. Thus the study of the
trajectory convergence (or stability) of the Hopfield neural
network is a fundamental issue.

Over the past several decades, many researchers inves-
tigated stability of all kinds of (Hopfield) neural networks
(see [7]-[11] and references therein). In several papers, the
linearization technique and the classical LaSalle approach
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were used to prove the stability. However, these approaches
would be invalid when the system had non-isolated equilibri-
um points (e.g., a manifold of equilibria) [12]. A new concept
“absolute stability” was proposed in [4], [12], [14] to show
that each trajectory of the neural network is convergent with
any parameters and activation functions satisfying certain
conditions. In these papers, the authors proved the absolute
stability by proving the finiteness of the trajectory length.
This idea was proposed in an earlier important paper [8].
The significant contributions of these works lie in that the
stability analysis does not need any information of equilibria
or even uniqueness/countableness of the equilibria. The key
step of this proof is employing the celebrated Łojasiewicz
inequality [15]-[16].

However, in the model, simultaneous outputs are used as
feedbacks all the time, which is cost in practice for networks
with a large number of neurons. In recent years, with the
development of sensing, communications, and computing
equipment, the concept of event-triggered control [17]-[23]
and self-triggered control [24]-[27] have been proposed.
The remarkable advantage of these two kinds of control
techniques is that the frequency of feedbacks information
exchange is significantly reduced.

In this paper, motivated by this idea, we investigate
stability of Hopfield neural networks with event-triggered
feedbacks. The stability we considered here is completely
stable (see Definition 1). We present an event-triggered rule
to reduce the frequency of the neuron output feedbacks. At
each neuron, the output feedback is based on the outputs
of its neighbours at its latest triggering time and the next
triggering time of this neuron is determined by a criterion
based on its neighborhood information as well. We prove
that the Hopfield neural networks are completely stable
under this event-triggered rule. The main technique used
is using Łojasiewicz inequality to prove the finiteness of
trajectory length. Then we prove that the event-triggered rule
is realizable by the exclusion of Zeno behaviors. The event-
triggered rule is distributed, i.e., each neuron only needs the
information of its neighbors and itself, and asynchronous,
i.e., all the neurons are not required to be triggered in
a synchronous way, and independent to each other, i.e.
triggering of an neuron will not affect or be affected by
triggering of other neurons. It should be emphasized that
our result can be easily extended to a large class of neural
networks. For example, the standard cellular networks [28]-
[29].

The paper is organized as follows: in Section II, the
problem formulation and preliminaries are given; in Section
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III, the stability of Hopfield neural networks with event-
triggered feedback is discussed; in Section IV, examples with
numerical simulation are provided to show the effectiveness
of the theoretical results and illustrate its application; the
paper is concluded in Section V.
Notions: ℝ𝑚 denotes𝑚-dimensional real space. The notation
∥⋅∥ represents the Euclidean norm for vectors or the induced
2-norm for matrices, and ∥𝑥∥∞ = 𝑚𝑎𝑥𝑖∣𝑥𝑖∣ for 𝑥 ∈ ℝ

𝑚.
𝐵𝑟(𝑥0) = {𝑥 ∈ ℝ

𝑚 : ∥𝑥 − 𝑥0∥ < 𝑟} stands for the ball
with center 𝑥0 ∈ ℝ

𝑚 and radius 𝑟 > 0. For a function
𝐹 (𝑥) : ℝ

𝑚 → ℝ, ▽𝐹 (𝑥) means the gradient of 𝐹 (𝑥).
For a set 𝑄 ⊆ ℝ

𝑚 and a point 𝑥0 ∈ ℝ
𝑚, 𝑑𝑖𝑠𝑡(𝑥0, 𝑄) =

inf𝑦∈𝑄 ∥𝑥0 − 𝑦∥ indicates the distance from 𝑥0 to 𝑄.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, the neural network model considered in this
paper is introduced, and some related definitions, concepts
and lemmas are given.

A. Problem formulation

Consider a continuous-time Hopfield neural network with
discontinuous output feedbacks as follows

{
𝐶𝑖�̇�𝑖(𝑡) = −𝑥𝑖(𝑡)𝑅𝑖

+
∑𝑚
𝑗=1 𝜔𝑖𝑗𝑦𝑗(𝑡

𝑖
𝑘𝑖(𝑡)

) + 𝜃𝑖

𝑦𝑖(𝑡) = 𝑔𝑖(𝜆𝑖𝑥𝑖(𝑡)), 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚 (2)

where 𝑥𝑖(𝑡) represents the state of the neuron 𝑖 at time 𝑡 ≥ 0;
𝑊 = [𝜔𝑖𝑗 ] is the synaptic symmetric interconnection matrix,
i.e., 𝜔𝑖𝑗 = 𝜔𝑗𝑖 for all 𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑚; 𝜃 = [𝜃1, ⋅ ⋅ ⋅ , 𝜃𝑚]⊤

is the biasing input vector; 𝐶𝑖 > 0 and 𝑅𝑖 > 0 are
neuron self-inhibition coefficients; 𝜆𝑖 is scale factor; each
input-output activation function 𝑔𝑖(⋅) is a sigmoid function:
𝑔𝑖(𝑠) = 1/(1 + 𝑒𝑥𝑝(−𝑠)). The strict increasing triggering
event time sequence {𝑡𝑗𝑘}∞𝑘=1 (to be defined) are neuron-wise
and 𝑡𝑗1 = 0, for all 𝑗 ∈ ℐ with ℐ = {1, ⋅ ⋅ ⋅ ,𝑚}. At each 𝑡,
each agent 𝑗 pulls its neighbours with respect to an identical
time point 𝑡𝑗𝑘𝑗(𝑡) with 𝑘𝑗(𝑡) = 𝑎𝑟𝑔max𝑘′{𝑡𝑗𝑘′ ≤ 𝑡}.

In order to design the appropriate triggering times, we
define the state measurement error as:

𝑒𝑖(𝑡) =

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡
𝑖
𝑘)−

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡) (3)

for 𝑡 ∈ [𝑡𝑖𝑘, 𝑡
𝑖
𝑘+1), 𝑘 = 0, 1, 2, ..., and 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

Let 𝐶 = 𝑑𝑖𝑎𝑔[𝐶1, ⋅ ⋅ ⋅ , 𝐶𝑚], 𝑅 = 𝑑𝑖𝑎𝑔[𝑅1, ⋅ ⋅ ⋅ , 𝑅𝑚],
Λ = 𝑑𝑖𝑎𝑔[𝜆1, ⋅ ⋅ ⋅ , 𝜆𝑚], 𝑔(𝑥) = [𝑔1(𝑥1), ⋅ ⋅ ⋅ , 𝑔𝑚(𝑥𝑚)]⊤,
𝐷𝑔(𝑥) = 𝑑𝑖𝑎𝑔[𝑔

′
1(𝑥1), ⋅ ⋅ ⋅ , 𝑔

′
𝑚(𝑥𝑚)] with 𝑥 ∈ ℝ

𝑚, 𝑒(𝑡) =
[𝑒1(𝑡), ⋅ ⋅ ⋅ , 𝑒𝑚(𝑡)]⊤, 𝑥(𝑡) = [𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑚(𝑡)]⊤.

Denote

𝑓𝑖(𝑥(𝑡)) = −𝑥𝑖(𝑡)
𝑅𝑖

+

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡
𝑖
𝑘𝑖(𝑡)

) + 𝜃𝑖.

Let 𝑓(𝑥(𝑡)) = [𝑓1(𝑥(𝑡)), ⋅ ⋅ ⋅ , 𝑓𝑚(𝑥(𝑡))]⊤. For 𝑥0 ∈ ℝ
𝑚, we

regard 𝑥0 as a constant function, thus 𝑓𝑖(𝑥0) and 𝑓(𝑥0) are
well defined.

B. preliminaries

In this paper, we consider the completely stable (or con-
vergence) system (2). Denote the set of equilibrium points
for (2) as

𝒮 = {𝑥 ∈ ℝ
𝑚 : 𝑓(𝑥) = 0}.

Definition 1: [30] System (2) is said to be completely
stable (or convergence) if for any trajectory 𝑥(𝑡) of (2), there
exists 𝑥0 ∈ 𝒮 such that

lim
𝑡→∞𝑥(𝑡) = 𝑥0.

Next we will show that all solutions for (2) are bounded,
and there exists at least one equilibrium point.

Property 1: For any given triggering event time sequence
{𝑡𝑖𝑘, 𝑖 ∈ ℐ, 𝑘 = 1, 2, ⋅ ⋅ ⋅ }, any initial condition in ℝ

𝑚, there
exists a unique solution for the piece-wise Cauchy problem
(2), and the solution is bounded for all 𝑡 ≥ 0.

Proof: (a) For any given {𝑡𝑖𝑘} ordered as 0 = 𝑡1 <
𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ (same items in {𝑡𝑖𝑘} treat as one).
It is clear that in [𝑡1, 𝑡2], there exists a unique solution of
(2) for any initial condition 𝑥(𝑡1) ∈ ℝ

𝑚 (existence and
uniqueness theorem [31]). Thus, we can regard 𝑥(𝑡2) as the
initial condition for next interval [𝑡2, 𝑡3]. By induction, we
can conclude that there exists a unique solution for the piece-
wise Cauchy problem (2).

(b) 1Since 0 < 𝑔𝑖(𝑠) < 1 for all 𝑠 ∈ ℝ, then there exists
𝑀1 > 0 such that

−𝑥𝑖(𝑡)
𝑅𝑖
−𝑀1 ≤ 𝑓𝑖(𝑥(𝑡)) ≤ −𝑥𝑖(𝑡)

𝑅𝑖
+𝑀1.

Thus for any given 𝜀0, there exists 𝑟0 > 0 such that
{
𝑓𝑖(𝑥(𝑡)) < −𝜀0, ∀𝑥𝑖(𝑡) ≥ 𝑟0
𝑓𝑖(𝑥(𝑡)) > 𝜀0, ∀𝑥𝑖(𝑡) ≤ −𝑟0,

for all 𝑖 ∈ ℐ. Thus

𝒞 = {𝑥 ∈ ℝ
𝑚 : ∥𝑥∥1 ≤ 𝑟0}

is positively invariant. Moreover, if 𝑥(0) /∈ 𝒞, 𝑥(𝑡) will enters
𝒞 in finite time. This implies that all solutions for (2) are
eventually confined in 𝒞, hence they are bounded on 𝑡 ∈
[0,+∞).

Obviously, 𝒮 also is the equilibrium points set for the
following continuous-time Hopfield neural network with
continuous inputs

{
𝐶𝑖�̇�𝑖(𝑡) = −𝑥𝑖(𝑡)𝑅𝑖

+
∑𝑚
𝑗=1 𝜔𝑖𝑗𝑦𝑗(𝑡) + 𝜃𝑖

𝑦𝑖(𝑡) = 𝑔𝑖(𝜆𝑖𝑥𝑖(𝑡)), 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚
Thus from [12], we have

Property 2: For the equilibrium points set 𝒮, the follow-
ings statements hold:

1) 𝒮 is not empty;
2) there exists 𝑟1 > 0 such that 𝒮∩(ℝ𝑚 ∖𝐵𝑟1(0)) = ∅.

1The proof of this part comes from [12] with minor modifications.
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We consider the following candidate Lyapunov (or energy)
function from [2]:

𝐿(𝑥) =

𝑚∑

𝑖=1

[
1

𝜆𝑖𝑅𝑖

∫ 𝑔𝑖(𝜆𝑖𝑥𝑖)

0

𝑔−1𝑖 (𝑠)𝑑𝑠− 𝜃𝑖𝑔𝑖(𝜆𝑖𝑥𝑖)

− 1

2

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑔𝑖(𝜆𝑖𝑥𝑖)𝑔𝑗(𝜆𝑗𝑥𝑗)

]
. (4)

A function 𝐿 : ℝ
𝑚 → ℝ is said to be a strict Lyapunov

function for (2), if 𝐿 ∈ 𝐶1(ℝ𝑚), and the derivative of 𝐿
along trajectories of (2), �̇�(𝑥(𝑡)), satisfies �̇�(𝑥) ≤ 0 for 𝑥 ∈
ℝ
𝑚 and �̇�(𝑥) < 0 for 𝑥 /∈ 𝒮 (see [12]).
The following inequality, named Łojasiewicz inequality

[15], will play an essential role in the proof our main result.
Lemma 1: Consider a function 𝐹 (𝑥) : ℬ ⊆ ℝ

𝑚 →
ℝ, which is analytic in the open set ℬ. Suppose that the
following set

𝒮▽ = {𝑥 ∈ ℬ : ▽𝐹 (𝑥) = 0}
is not empty. Then, for any 𝑥0 ∈ 𝒮▽, there exist constants
𝑟(𝑥0) > 0 and 0 < 𝑣(𝑥0) < 1, such that

∥▽𝐹 (𝑥)∥2 ≥ ∣𝐹 (𝑥)− 𝐹 (𝑥0)∣𝑣(𝑥0)

for 𝑥 ∈ 𝐵𝑟(𝑥0)(𝑥0).
Let 𝑥(𝑡), 𝑡 ∈ [0,+∞), be some trajectory of (2). For any

𝑡 > 0, the length of 𝑥(𝑡) on [0, 𝑡) is given by

𝑙[0,𝑡) =

∫ 𝑡

0

∥�̇�(𝑠)∥𝑑𝑠.

Significant contributions of [8] lies in that one can prove
the existence of equilibrium and its stability (convergence of
the trajectory) simultaneously by proving the finiteness of
the length. This idea was also used in [12] to discuss global
stability of analytic neural networks.

III. CONTINUOUS MONITORING

We consider the case of symmetric case, i.e., 𝜔𝑖𝑗 = 𝜔𝑗𝑖
for all 𝑖, 𝑗 ∈ ℐ. The main result on complete stability for
the neural network model (2) is presented in the following
theorem.

Theorem 1: Set 𝑡𝑖𝑘+1 as the time point such that for any
fixed 𝛾 ∈ (0, 1)

𝑡𝑖𝑘+1 = max

{

𝜏 ≥ 𝑡𝑖𝑘 :

∣
∣
∣
∣

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡
𝑖
𝑘)−

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡)

∣
∣
∣
∣

≤ 𝛾
∣
∣
∣
∣−
𝑥𝑖(𝑡)

𝑅𝑖
+

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡
𝑖
𝑘) + 𝜃𝑖

∣
∣
∣
∣, ∀𝑡 ∈ [𝑡𝑖𝑘, 𝜏 ]

}

.

(5)

Then, system (2) is completely stable.
Proof: The main techniques of the proof come from [12]

with some modifications.
Firstly, we will prove following claim.

Claim 1: The 𝐿(𝑥) in (4) is a strict Lyapunov function
for (2).

Note, for any point 𝑥 ∈ ℝ
𝑚

∂

∂𝑥𝑖
𝐿(𝑥)

=
1

𝜆𝑖𝑅𝑖
𝜆𝑖𝑥𝑖𝜆𝑖𝑔

′(𝜆𝑖𝑥𝑖)− 𝜃𝑖𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖)

−
𝑚∑

𝑗=1

𝜔𝑖𝑗𝑔𝑗(𝜆𝑗𝑥𝑗)𝜆𝑖𝑔
′(𝜆𝑖𝑥𝑖)

=− 𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖)
[
− 1

𝑅𝑖
𝑥𝑖 + 𝜃𝑖 +

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑔𝑗(𝜆𝑗𝑥𝑗)

]

=− 𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖)𝑓𝑖(𝑥). (6)

Thus, for any trajectories 𝑥(𝑡) of (2)2

∂

∂𝑥𝑖
𝐿(𝑥(𝑡))

= −𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖(𝑡))
[
− 1

𝑅𝑖
𝑥𝑖(𝑡) + 𝜃𝑖 +

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡)

]

= −𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖(𝑡))
[
𝑓𝑖(𝑥(𝑡))− 𝑒𝑖(𝑡)

]
. (7)

Then, the time derivative of 𝐿(𝑥(𝑡)) along (2) is

�̇�(𝑥(𝑡)) =

𝑚∑

𝑖=1

∂

∂𝑥𝑖
𝐿(𝑥(𝑡))

𝑑𝑥𝑖(𝑡)

𝑑𝑡

= −
𝑚∑

𝑖=1

𝜆𝑖
𝐶𝑖
𝑔′(𝜆𝑖𝑥𝑖(𝑡))

[
𝑓𝑖(𝑥(𝑡))− 𝑒𝑖(𝑡)

]
𝑓𝑖(𝑥(𝑡)) (8)

From (5) and (8), and noting 𝑔𝑖(𝑠) is strict monotone
increasing, we have

�̇�(𝑥(𝑡))

≤−
𝑚∑

𝑖=1

𝜆𝑖
𝐶𝑖
𝑔′(𝜆𝑖𝑥𝑖(𝑡))𝑓𝑖(𝑥(𝑡))𝑓𝑖(𝑥(𝑡))

+ 𝛾
𝑚∑

𝑖=1

𝜆𝑖
𝐶𝑖
𝑔′(𝜆𝑖𝑥𝑖(𝑡))𝑓𝑖(𝑥(𝑡))𝑓𝑖(𝑥(𝑡))

=− (1− 𝛾)
𝑚∑

𝑖=1

𝜆𝑖
𝐶𝑖
𝑔′(𝜆𝑖𝑥𝑖(𝑡))𝑓𝑖(𝑥(𝑡))𝑓𝑖(𝑥(𝑡))

≤0, (9)

and ∀𝑥 /∈ 𝒮 , there exits 𝑖0 ∈ ℐ such that 𝑓𝑖0(𝑥) ∕= 0. Thus
�̇�(𝑥) < 0. This completes the proof of of Claim 1.
Secondly, similar to [12], we have following result.

Claim 2: (Property 4 in [12]) There exist a finite number
𝑚0 ≥ 1 of different energy levels 𝐿𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚0,
such that each set of equilibrium points

𝒮𝑗 = {𝑥 ∈ 𝒮 : 𝐿(𝑥) = 𝐿𝑗}
𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚0, is not empty.
Without loss of generality, assume that the energy levels
𝐿𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚0 are ordered as 𝐿1 > 𝐿2 > ⋅ ⋅ ⋅ > 𝐿𝑚0

.

2Equation (6) represents the normal partial derivative of the function
𝐿 : ℝ𝑚 → ℝ in (4) and in order to avoid ambiguity, we point out that
𝑓𝑖(𝑥) = − 𝑥𝑖

𝑅𝑖
+
∑𝑚

𝑗=1 𝜔𝑖𝑗𝑔𝑖(𝜆𝑖𝑥𝑖) + 𝜃𝑖, for all 𝑖 ∈ ℐ. Equation (7)
represents the partial derivative of the function 𝐿 along trajectories of (2).
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Thus there exists 𝛾 > 0 such that 𝐿𝑗 > 𝐿𝑗+1 + 2𝛾, for any
𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚0 − 1. For any given 𝜖 > 0, define

Γ𝑗 = {𝑥 ∈ ℝ
𝑚 : 𝑑𝑖𝑠𝑡(𝑥,𝒮𝑗) ≤ 𝜖}

and

𝒦𝑗 = Γ𝑗
∩{

𝑥 ∈ ℝ
𝑚 : 𝐿(𝑥) ∈ [𝐿𝑗 − 𝛾, 𝐿𝑗 + 𝛾]

}
.

Claim 3: (Property 5 in [12]) For 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚0 − 1,
𝒦𝑗 is a compact set and 𝒦𝑗

∩𝒮 = 𝒮𝑗 .
Thirdly, we will prove following claim.

Claim 4: For any trajectory 𝑥(𝑡) of (2) and any given 𝑡0 ≥
0, suppose 𝑥(𝑡0) ∈ 𝒦𝑗 ∖𝒮 for some 𝑗 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑚0}, then
there exist a constant 𝑐𝑗 > 0 and 𝑣𝑗 ∈ (0, 1) such that

∣�̇�(𝑥(𝑡0))∣
∥𝑓(𝑥(𝑡0))∥ ≥ 𝑐𝑗 ∣𝐿(𝑥(𝑡0))− 𝐿𝑗 ∣

𝑣𝑗 . (10)

In order to avoid ambiguity, we point out that 𝑓𝑖(𝑥(𝑡0)) =

−𝑥𝑖(𝑡
𝑖
𝑘𝑖(𝑡0))

𝑅𝑖
+
∑𝑚
𝑗=1 𝜔𝑖𝑗𝑦𝑗(𝑡

𝑖
𝑘𝑖(𝑡0)

) + 𝜃𝑖, for all 𝑖 ∈ ℐ .
From (7) and (5), we have
∣
∣
∣
∣
∂

∂𝑥𝑖
𝐿(𝑥(𝑡0))

∣
∣
∣
∣ =

∣
∣
∣
∣𝜆𝑖𝑔

′(𝜆𝑖𝑥𝑖(𝑡0))
[
𝑓𝑖(𝑥(𝑡0))− 𝑒𝑖(𝑡0)

]∣∣
∣
∣

≤
∣
∣
∣(1 + 𝛾)𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖(𝑡0))𝑓𝑖(𝑥(𝑡0))

∣
∣
∣. (11)

Let

ℎ𝑗 = min
𝑖∈ℐ

[min
𝑥∈𝒦𝑗

1

(1 + 𝛾)𝜆𝑖𝑔′(𝜆𝑖𝑥𝑖)
] > 0.

Thus,
∥𝑓(𝑥(𝑡0))∥ ≥ ℎ𝑗∥∇𝐿(𝑥(𝑡0))∥.

Additionally, letting

𝜉𝑗 = min
𝑖∈ℐ

[min
𝑥∈𝒦𝑗

(1− 𝛾) 𝜆𝑖
𝐶𝑖
𝑔′(𝜆𝑖𝑥𝑖)] > 0,

from (5) and (9), we have

∣�̇�(𝑥(𝑡0))∣ ≥ 𝜉𝑗∥𝑓(𝑥(𝑡0))∥2.
By the same arguments as in the proof of Lemma 2 in [12],
we can complete the proof of Claim 4.
Fourthly, like [12], we can prove that the length of 𝑥(𝑡) on
[0,+∞) is finite.

Claim 5: (Theorem 3 in [12]) For any trajectories 𝑥(𝑡) of
(2) has finite length on [0,+∞), i.e.,

𝑙[0,+∞) =

∫ +∞

0

∥�̇�(𝑠)∥𝑑𝑠 = lim
𝑡→+∞

∫ 𝑡

0

∥�̇�(𝑠)∥𝑑𝑠 < +∞.
Finally, by the same argument as the proof of Theorem 1
in [12], we can prove that for any trajectories 𝑥(𝑡) of (2),
there exists lim𝑡→+∞ 𝑥(𝑡) = 𝑥1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 𝑥1 is
an equilibrium point of (2).

Next we will prove that the above event-triggered rule
(5) is realizable, i.e., the inter-event times (the time length
between two continuous triggering times), are lower bounded
away from zero, which is also known as not exhibiting Zeno
behavior [32]. This is proven in the following theorem:

Theorem 2: For the event-triggered rule in Theorem 1 and
any initial condition of each neuron, at any time 𝑡 ≥ 0 there

exists at least one neuron 𝑗1 for which the next inter-event
time is strictly positive.

Proof: The main techniques of the proof in this part
come from [17] with some modifications. We will show that
there exists at least one neuron such that its next inter-event
interval is bounded from below by a certain time 𝜏𝐷 > 0.
Denoting

𝑗1 = 𝑎𝑟𝑔max
𝑖∈ℐ

∣
∣
∣
∣−
𝑥𝑖(𝑡)

𝑅𝑖
+

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡
𝑖
𝑘𝑖(𝑡)

) + 𝜃𝑖

∣
∣
∣
∣.

Thus
∣𝐶𝑗1 �̇�𝑗1(𝑡)∣ ≥

1√
𝑚
∥𝐶�̇�(𝑡)∥.

In addition,
∣
∣
∣
∣

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡
𝑖
𝑘)−

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑦𝑗(𝑡)

∣
∣
∣
∣ = ∣𝑒𝑖(𝑡)∣ ≤ ∥𝑒(𝑡)∥.

So ∣𝑒𝑖(𝑡)∣
𝐶𝑗1 ∣�̇�𝑗1(𝑡)∣

≤
√
𝑚∥𝑒(𝑡)∥
∥𝐶�̇�(𝑡)∥ .

We can calculate the time derivative of ∥𝑒(𝑡)∥
∥𝐶�̇�(𝑡)∥ :

𝑑

𝑑𝑡

∥𝑒(𝑡)∥
∥𝐶�̇�(𝑡)∥

=
[𝑒(𝑡)]⊤[−�̇�(𝑡)]
∥𝑒(𝑡)∥∥𝐶�̇�(𝑡)∥ −

∥𝑒(𝑡)∥[𝐶�̇�(𝑡)]⊤𝐶�̈�(𝑡)
∥𝐶�̇�(𝑡)∥2∥𝐶�̇�(𝑡)∥

=
[𝑒(𝑡)]⊤[−𝑊Λ𝐷𝑔(Λ𝑥(𝑡))�̇�(𝑡)]

∥𝑒(𝑡)∥∥𝐶�̇�(𝑡)∥
− ∥𝑒(𝑡)∥[𝐶�̇�(𝑡)]

⊤𝐶[−𝐶−1𝑅−1�̇�(𝑡)]
∥𝐶�̇�(𝑡)∥2∥𝐶�̇�(𝑡)∥

≤𝑘1 + 𝑘2 ∥𝑒(𝑡)∥∥𝐶�̇�(𝑡)∥
where 𝑘1 = 𝑚𝑎𝑥𝜏∈[𝑡,+∞)∥𝑊Λ𝐷𝑔(Λ𝑥(𝜏))∥ ≤ 1

4∥𝑊Λ∥,
𝑘2 = ∥𝐶−1𝑅−1∥.

Via comparison principle, we have ∥𝑒(𝑡)∥
∥𝐶�̇�(𝑡)∥ ≤ 𝜙(𝑡, 𝜙0),

where 𝜙(𝑡, 𝜙0) is the solution of following differential equa-
tion

{
𝑑𝜙
𝑑𝑡 = 𝑘2𝜙+ 𝑘1

𝜙(𝑡, 𝜙0) = 𝜙0
.

Hence the inter-event times of agent 𝑣𝑗1 are bounded from
below by the time 𝜏𝐷 which satisfies 𝜙(𝜏𝐷, 0) = 𝛾√

𝑚
. We

can calculate 𝜏𝐷 as follows.
∫ 𝛾√

𝑚

0

𝑑𝜙

𝑘2𝜙+ 𝑘1
=

∫ 𝜏𝐷

0

𝑑𝑡,

which yields

𝜏𝐷 =
1

𝑘2
𝑙𝑛(1 +

𝑘2
𝑘1

𝛾√
𝑚
). (12)

This completes the proof.
Remark 1: Here we should point out that although for

some neurons the next inter-event time may infinite, from
the proof process of Theorem 1, we still can conclude that
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the Hopfield neural networks are completely stable under the
event-triggered rule (5).

Remark 2: As the discussion in [21], since larger 𝜏𝐷
implies less control updating times, a larger 𝜏𝐷 implies that
less resources are needed for the equipment, like embedded
microprocessors, to communicate between neurons. On the
other hand, a smaller �̇�(𝑥(𝑡)) means a faster convergence
speed. We know from (12) that 𝜏𝐷 is increasing with respect
to 𝛾. Then a larger 𝛾 leads to less control updating times for
each neuron, while a smaller 𝛾 leads to bigger low bound
of the system convergence rate according to (9). It should
be emphasized that we can not say a smaller 𝛾 leads to
faster convergence according to (9). Therefore, the protocol
designer should choose a proper 𝛾 for a compromise between
control actuation times and system convergence rate.

IV. EXAMPLES

In this section, three numerical examples are given to
demonstrate the effectiveness of the presented results and
their application.
Example 1, consider a 2-dimension Hopfield neural network
with

𝐶 = 𝑅 = Λ = 𝐼2, 𝜃 =

[
1
−1

]
, 𝑊 =

[
2 −1
−1 2

]
.

The initial value of each neuron is randomly selected within
the interval [−1, 1] in our simulations. Figure 1 shows that
the state 𝑥(𝑡) converges to 𝜈 = [2.7072,−1.6021]⊤.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 t

 

 

 x
1

 x
2

Fig. 1. Convergence of 𝑥(𝑡) with 𝑥(0) = [−0.6802, 0.4267]⊤ and 𝛾 =
0.99.

Then, the parameter 𝛾 takes different values while adopt-
ing the triggered principles provided in Theorem 1 and the
corresponding simulation results are listed in Table I. The 𝑇1
in the table denotes the first time when ∥𝑥(𝑡)−𝜈∥ ≤ 0.0001,
which can be seen as an index representing the convergence
speed of the event-triggered rule. All the data in this table
are the averages over 50 overlaps. It can be seen that all
the actual minimum inter-event times are greater than the
corresponding 𝜏𝐷 calculated by (12). The minimum value of
event interval and the actual number of event decreases with
respect to 𝛾, and 𝑇1 increases with respect to 𝛾, which are

consistent with the theoretical analysis. The 𝜏𝑚 in the table
represents the minimum value of the length of event interval.
The 𝑁𝑚 in the table stand for number of event times.

TABLE I

SIMULATION RESULTS WITH DIFFERENT 𝛾 UNDER THE TRIGGERED

PRINCIPLE IN THEOREM 1.

𝛾 𝜏𝐷 𝜏𝑚 𝑁𝑚 𝑇1
0.1 0.0901 0.6072 42.10 31.6612
0.2 0.1727 0.8920 26.90 32.5330
0.3 0.2491 1.0560 21.16 32.8354
0.4 0.3200 1.1643 17.92 33.0597
0.5 0.3862 1.2014 15.58 33.0533
0.6 0.4483 1.2020 14.48 33.2765
0.7 0.5068 1.2018 12.70 33.4677
0.8 0.5620 1.2028 13.22 33.4744
0.9 0.6144 1.2043 12.76 33.4854

Noting the definition of (4), if we choose ∥𝜃∥ sufficient
small and let 𝜆𝑖 → +∞ for all 𝑖 ∈ ℐ, then

𝐿(𝑥) ≈ −
𝑚∑

𝑖=1

1

2

𝑚∑

𝑗=1

𝜔𝑖𝑗𝑔𝑖(𝜆𝑖𝑥𝑖)𝑔𝑗(𝜆𝑗𝑥𝑗).

Next, as an application of our result, we will give two
simple examples of seeking local minimum point of quadrat-
ic polynomial 𝐻(𝑦) = −1

2 𝑦
⊤𝑊𝑦. As an illustration, we

still consider 2-dimension problem. To minimize 𝐻(𝑦) =
−1
2 [𝜔11𝑦

2
1 + 𝜔22𝑦

2
2 + 𝜔12𝑦1𝑦2] over {0, 1}2. Denote 𝑦(Λ) =

lim𝑡→+∞ 𝑔(Λ𝑥(𝑡)), where 𝑥(𝑡) is the trajectory of (2). Thus
𝑦(Λ) is the local minimum point of 𝐻(𝑦) if ∥𝜃∥ sufficient
small and 𝜆𝑖 → +∞ for all 𝑖 ∈ ℐ .
Example 2, let

𝐶 = 𝑅 = 𝐼2, 𝑊 =

[
1.5 −0.2
−0.2 1.1

]
.

Figure 2 shows that the terminal limit 𝑦(Λ) converge to a
local minimum point [1, 0]⊤ as 𝜆𝑖 → +∞ for all 𝑖 ∈ ℐ .

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 y
1

 y
2

Fig. 2. The limits 𝑦(Λ) converge to a local minimum point [1, 0]⊤. We
select 𝜃 = [0.001, 0.001]⊤, 𝛾 = 0.99, and random initial data within the
interval [−5, 5]. 𝜆1 = 𝜆2 are select from 0.01 to 100.

Example 3, let

𝐶 = 𝑅 = 𝐼2, 𝑊 =

[
1.0965 −1.0787
−1.0787 1.2535

]
.
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Obviously, the objective function has two local minimum
points: [1, 0]⊤ and [0, 1]⊤. Figure 3 shows that the terminal
limit 𝑦(Λ) converge to such two local minimum points as
𝜆𝑖 → +∞ for all 𝑖 ∈ ℐ .
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0.8

1

 y
1
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2

Fig. 3. The limits 𝑦(Λ) converge to two local minimum points [1, 0]⊤
and [0, 1]⊤. We select 𝜃 = [0.001, 0.001]⊤, 𝛾 = 0.99, and random initial
data 𝑥(0) within the interval [−5, 5]. 𝜆1 = 𝜆2 are select from 0.01 to 100.

V. CONCLUSION

In this paper, an event-triggered output feedback rule for
Hopfield neural network with symmetric synaptic neuron
interconnection matrix is proposed. It is proved that the
Hopfield neural network is completely stable under this
event-triggered rule, and that Zeno behavior can be excluded.
In addition, this event-triggered rule is not only distributed
and asynchronous but also independent. As a result, the
information exchange frequency among all neurons can be
significantly reduced. It should be point out that the main
technique to prove the absolute stability in main result is
finite-length of trajectory, and the core of the proof of
finite-length of trajectory is the Łojasiewicz inequality [12].
Three numerical examples are given to demonstrate the
effectiveness of the presented results and their application.
Our future work will include the self-triggered formulation
and event-triggered stability of other more general systems.
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