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Abstract— Blood vessel segmentation is an important prob-
lem for quantitative structure analysis of retinal images, and
many diseases are related to the structure changes. Manual
segmentation is time consuming and computer aided segmenta-
tion is required to deal with large amount images. This paper
presents a new supervised method for segmentation of blood
vessels in retinal photographs. Multiple kernel learning (MKL)
is introduced to deal with the problem, utilizing features from
Hessian matrix based vesselness measure, response of multiscale
Gabor filter, and multiple scale line strength features. The
method is evaluated on the publicly available DRIVE and
STARE databases. The performance of the MKL method is
evaluated and experimental results show the high accuracy of
the proposed method.

I. INTRODUCTION

Changes in retinal blood vessel structures may reveal
several serious diseases, such as diabetes, hypertension,
cardiovascular disease and stroke. For example, changes in
vessel caliber, branching angle or vessel tortuosity are results
of hypertension [1]. The abnormal growth of new blood
vessels in retinal is a sign of diabetic retinopathy [2], which
is the leading cause of blindness in developed countries. The
presence of arteriovenous nicking is an important precursor
of stroke [3]. The early detection of these changes is very
important in order to perform early intervention and prevent
the patients from major vision loss. Vessel segmentation is
a critical step for quantitative analysis of these changes.
Location of the vessels can help to reduce the number of
false positives in the detection of microaneurysms [4], can be
used as a means for registration of images taken at different
time [5], and can help to find optic disk and the fovea in
retinal images.

However, manual segmentation of blood vessel is labor
intensive and time consuming, especially when the number of
images needing process is large. Thus, automatic vessel seg-
mentation has received great attentions and several methods
have been proposed. A complete review of existing methods
for retinal blood vessel segmentation can be referred to [6].
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Liu et al. [7] proposed a recursive tracking method to
detect vasculature in retinal angiograms, which starts from
some seed points and following the vessel center line guided
by local information. Once a segment has been tracked, it is
deleted in the angiogram image by growing the deletion in
intensity value over the gray levels representing the vessel.
Yin et al. [8] utilized a Bayesian based tracking method for
vessel segmentation.

Based on the assumption that the intensity profile along
the cross-section of a vessel has a typical shape, such as
Gaussian, matched filter methods have been utilized by
Chaudhuri et al. [9] for vessel detection. Hoover et al. [10]
combined local and region-based properties of retinal blood
vessels for segmentation using a threshold probing technique
on a matched filter response image generated by the method
in [9].

Recently, several supervised methods have been proposed
to deal with the vessel segmentation problem [11], [12],
[13], [14]. In these methods, each image pixel is represented
by a feature vector, computed to represent local or global
information of the image. A supervised classifier, such as
artificial neural networks, K nearest neighbors, support vector
machines (SVM), is then used classify each pixel as vessel or
non-vessel after training with known samples. These meth-
ods could achieve higher accuracy than other unsupervised
methods with the help of training samples.

In this paper, a new supervised method for segmentation
of blood vessels by using multiple kernel support vector
machine (MKSVM) is proposed. Although multiple kernel
learning (MKL) method [15] has been widely used for
pattern recognition, as far as the authors know, this is the
first time of applying MKL for the segmentation of vessels in
retinal image. The following features are used, the Vesselness
measure proposed by Frangi [16], multiscale gabor response
[12], multiple scale line strength features [17], and the
original inverted green channel grayscale value.

The organization of this paper is as follows. In Section
II, the features used in the method are introduced and the
MKSVM method is brief introduced in Section III. The
performance of the method is presented in Section IV. And
the paper is concluded in Section V.

II. EXTRACTED FEATURES

The image pixels of a fundus image will be represented
by feature vectors, and statistical classifiers is used in order
to segment the image. In our case, two classes (vessel or
nonvessel) are involved. The training set for the classifier
comes from manual segmentations of training images, i.e.,
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pixels segmented by hand are labeled as vessel while the
remaining pixels are labeled as nonvessel.

Eight features are used to represent each pixel, which
includes: Frangi vesselness (2 features), the Gabor filter
response at multiple scales (4 features), and multiscale line
operator response (1 feature), and the original green inverted
grayscale value (1 feature).

1) Frangi vesselness (2 features) [16]: It uses values
derived from image Hessian matrix analysis. The numerical
estimation of the Hessian of the intensity image I in the scale
space at a point (x, y) is:

H(x, y) =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

]
=

[
Ixx Ixy
Iyx Iyy

]
(1)

The partial derivatives are computed by convolving the
intensity function with the first derivatives of a Gaussian
kernel. A ridgeness score RB is computed as the ratio of
the eigenvalues of the Hessian, λ1, λ2, with |λ1| ≤ |λ2|.
The score is defined as RB = λ1

λ2
. The vesselness measure

is defined by

ν0 =

{
0, λ2 > 0

exp(− R2

2β2 )
(
1− exp(− S2

2c2 )
)
, otherwise

(2)

where S is the Frobenius norm of the Hessian,

S = ‖H‖F =
√
λ21 + λ22 (3)

β, and c are two weights that control the sensitivity of the
filter, β = 0.5 and c is set to half of the maximum Frobenius
norm of the Hessian computed on the whole image.

In the background where no structure or contrast is present,
the Frobenius norm of the Hessian is low, on the other hand,
when vessel structure is present, the Frobenius norm will
be large, since one of the eigenvalues is large. Therefore, S
is also used to distinguish between background and vessel
pixels. See Fig.1 for examples of Frangi vesselness on
STARE and DRIVE images.

Fig. 1. Vesselness measure examples. (a) a color image in STARE, (b)
inverted green channel image of (a), (c) Frangi vesselness of (b); (d) a
color image in DRIVE, (e) inverted green channel image of (d), (f) Frangi
vesselness of (e)

2) Multiscale Gabor Filter (4 features) [12]. Gabor filter
has been widely used in several applications for multiscale
and multidirectional edge detection. The Gabor filter can be
fine-tuned to particular frequencies, scales and directions.
The impulse response of a Gabor filter kernel is defined by
the product of a Gaussian kernel and a complex sinusoid. It
can be expressed as

g(x, y) = exp

{
−0.5

(
x′2 + γy′2

2σ2

)}
exp {i(2πfx′ + ψ)}

(4)
where f is the modulation frequency of the complex sinusoid,
ψ is the phase offset, σ is the scale of the Gaussian envelope,
γ is the spatial aspect ratio, x′ = x cos θ+ y sin θ, and y′ =
−x sin θ + y cos θ with orientation θ.

The Gabor filter response is obtained by a 2D convolution
operator with FFT computation in the frequency domain.
Four scales (σ = 2, 3, 4, 5) are used in the paper, and 4
features are extracted for each pixel. For each scale, filter
responses of 18 orientation are computed (with θ spans from
0◦ to 170◦ with increment of 10◦), and the maximum is taken
as the feature of the specific scale. Fig.2 shows the Gabor
filter response of example images.

Fig. 2. Multiscale Gabor filter. (a) a green channel inverted image in
STARE, (b) Gabor filter response of (a) with scale 2, (c) Gabor filter
response of (a) with scale 5. (d) a green channel inverted image in DRIVE,
(e) Gabor filter response of (d) with scale 2, (f) Gabor filter response of (d)
with scale 5.

3) Multiple Scale Line Strength Features (1 feature) [17].
The retinal vasculature can be approximated with piece-
wise linear features, with variable width. Based on this
observation, Ricci et al. [17] has used linear operator and
morphological attributes to segment blood vessels in retinal
images.

At each pixel position, a window of size W ×W pixels
centered on the pixel is identified and the average gray
level is computed as IWavg . Twelve lines of length W pixels
oriented at 12 different directions also centered on the pixel
are identified and the average of gray levels of pixels along
each line are computed. Denote the maximum average value
among these 12 lines as ILmax, and the line response at a
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pixel is then computed as

RW = ILmax − IWavg (5)

In [13], a fixed length of 15 pixels is used. As long
length line detectors can deal with central reflex problem in
retinal images, they tend to merge close vessels and produce
false positives along the vessels. While short length line
detectors can avoid wrongly merge of close vessels, they may
introduce background noise in the image. To combine their
advantages and avoid disadvantages. The fixed length line
detection method has been further extended to multi-scale
line detection [17], [18]. In this paper, the line responses at
8 scales (from 1 to 15 with a step 2) are linearly combined to
get the final response, as in [17]. See Fig.3 for an example.

Fig. 3. Multiple scale line strength features example. (a) original image in
DRIVE, (b) green channel inverted image, (c) multiple scale line strength
feature.

III. MULTIPLE KERNEL SVM CLASSIFIER

MKL [15] is investigated for the classification, which
extends SVM with multiple kernel. SVM algorithms were
developed based on statistical pattern recognition theory, and
they are considered capable of achieving better performance
than neural networks, C4.5 in terms of accuracy and compu-
tational complexity for many binary classification problems.
Given pairs of training examples {(xi, yi)}ni=1 where xi ∈ X
and yi ∈ {−1,+1}. Each x is mapped to a φ(x) by the
kernel function K with K(xi, xj) = φ(xi)

Tφ(xj) for any
xi, xj ∈ X . Then, the optimization problem in SVM is

min
w,b,ξ

1
2‖w‖

2 + C
∑n
i=1 ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , n

(6)

where ξ1, . . . , ξn are the slack variables for the errors and C
is a user defined regularization parameter that trades off the
margin with error. The final classification for a new sample
x is

y = sgn(
∑
i=1

nwiK(x, xi) + b) (7)

Unlike SVM with a single kernel K, in the MKL method,
we have a set of M base kernels K1, . . . ,KM , with the
corresponding kernel induced feature maps φ1, . . . , φM . The
optimization problem of MKL can be formulated as [15]:

min
w,b,ξ

1
2

∑M
i=1 ‖w‖2 + C

∑n
i=1 ξi

s.t. yi(
∑M
i=1 w

T
k φk(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , n

(8)

where wk is the weight for component φk. The final kernel
in MKL is formed by a convex combination of the kernels

K =
M∑
k=1

ukKk (9)

the relation between w and u is:

wk = uk

n∑
i=1

αiyiφk(xi) (10)

where 0 ≤ αi ≤ C, and

uk ≥ 0,
M∑
k=1

uk = 1 (11)

For more details please refer to [15]. MKL has been widely
used in several applications and showing better performance
over SVM.

IV. EXPERIMENTAL RESULTS

The method has been evaluated using two public available
databases (STARE and DRIVE). The DRIVE database [11]
contains 40 color images of the retina along with manual
segmentation of vessels. These images are captured using a
Canon CR5-3CCD camera at 45◦ field of view (FOV). The
size of images is 565 × 584 pixels and used 8 bits in each
color channel. The image set is divided into training and test
set, each of them contains 20 images. The images in the
training set are marked by one observer, and the images in
the test set are marked by two observers. The first observer
marked 12.7% pixels as vessel, and the second observer
marked 12.3% pixels as vessel. The first marker is used as
ground truth.

The STARE database [10] contains 20 colored retinal
images, among them 10 images contain pathologies. The
images are captured by a TopCon TRV-50 fundus camera
at 35◦ FOV. The size of images is 700 × 605 pixels, with
24 bits per pixel (standard RGB). The FOV in the images
is approximately 650 × 550 pixels. Each image is manual
segmented by two observers. The first observer marked
10.4% of pixels as vessel, the second one marked 14.9%. The
segmentation of the first observer is used as ground truth.

The classification performance is measured with true pos-
itive rate (TPR), false positive rate (FPR), and accuracy.
Denote the true positive number of a classifier to be TP ,
false positive number to be FP , true negative number to be
TN , and false negative number to be FN , then TPR is
defined as

TPR =
TP

TP + FN
(12)

FPR is defined as

FPR =
FP

FP + TN
(13)

Accuracy (ACC) is defined as

ACC =
TP + TN

TP + FP + TN + FN
(14)
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TABLE I
VESSEL EXTRACTION PERFORMANCES ON DRIVE DATASET

Method TPR FPR Average Accuracy
Chauduri et al. [9] 0.6168 0.0259 0.9284

Staal et al. [11] 0.6780 0.0170 0.9441
Mendonca et al. [19] 0.7344 0.0236 0.9452

Martinez-Parez et al. [20] 0.7246 0.0345 0.9344
Our method (MKL) 0.7352 0.0226 0.9467

TABLE II
VESSEL EXTRACTION PERFORMANCES ON STARE DATASET

Method TPR FPR Average Accuracy
Normal cases

Chauduri et al. [9] 0.7335 0.0218 0.9486
Hoover et al. [10] 0.6766 0.0338 0.9324
Soares et al. [12] 0.7554 0.0188 0.9542

Our method (MKL) 0.7822 0.0214 0.9619
Abnormal cases

Chauduri et al. [9] 0.5881 0.0384 0.9227
Hoover et al. [10] 0.6736 0.0528 0.9211
Soares et al. [12] 0.6869 0.0318 0.9416

Our method (MKL) 0.7432 0.0362 0.9516

For the SVM kernel, 10 RBF kernels are investigated,
while other kernels such as polynomial kernels may also be
used. The performance comparison of our method with other
approaches in terms of TPR, FPR and accuracy is shown in
Table 1 and Table 2. Fig.4 shows several segmentations of
our method on DRIVE dataset, and results on STARE are
show in Fig.5. The algorithm was performed on a workstation
with Intel Core 2 Duo CPU 2.4G and 4G RAM. The time
required to process a single image is less than two minutes
and thirty seconds. From the figures and tables, it can be
seen that our method achieved better performance than other
methods. On the DRIVE, an accuracy of 0.9467 is obtained
and an accuracy of 0.9568 is obtained on STARE dataset.
Especially on pathology cases in STARE dataset, the TPR
is increased from 0.6869 to 0.7432, which indicate that
our method is less affected by pathology features. MKL
outperforms traditional SVM in our application may due to it
can handle different characteristics of features by integrating
several kernels.

V. CONCLUSIONS

In this paper, an effective multiple kernel learning based
retinal segmentation method is proposed. Several features
are used in the method, obtained from Frangi vesselness
measurement (2 features), Multiscale Gabor Filter (4 fea-
tures), Multiple Scale Line Strength Features (1 feature),
and the inverted green channel grayscale value (1 feature).
On DRIVE dataset, an accuracy of 94.67% is achieved, and
95.68% is achieved on STARE dataset, which is comparable
or better than several previous methods. In the future, we
plan to investigate more features and to improve further the
accuracy of the method.
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Fig. 4. Segmentation result of an image in DRIVE. (a) original color image, (b) green channel inverted image, (c) manual segmentation result, (d) result
of Chauduris method, (e) result of Staal result, (f) result of the proposed method.

Fig. 5. Results on STARE. (a) original image of an image, (b) manual segmentation of (a), (c) our result on (a), (d) another image, (e) manual segmentation
of (d), (f) our result on (d).
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