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Abstract— Naive Bayes (NB) network is a popular classifica-
tion technique for data mining and machine learning. Many
methods exist to improve the performance of NB by over-
coming its primary weakness—the assumption that attributes
are conditionally independent given the class, using techniques
such as backwards sequential elimination and lazy elimination.
Some weighting technologies, including attribute weighting and
instance weighting, have also been proposed to improve the
accuracy of NB. In this paper, we propose a dual weighted
model, namely DWNB, for NB classification. In DWNB, we first-
ly employ an instance similarity based method to weight each
training instance. After that, we build an attribute weighted
model based on the new training data, where the calculation
of the probability value is based on the embedded instance
weights. The dual instance and attribute weighting allows
DWNB to tackle the conditional independence assumption for
accurate classification. Experiments and comparisons on 36
benchmark data sets demonstrate that DWNB outperforms
existing weighted NB algorithms.

I. INTRODUCTION

BAYESIAN network (BN) is a popular machine learning
algorithm used to predict the label of an instance

by using generative models [1]. In a BN learning task,
a Bayesian network classifier (BNC) from a given set of
labeled training instances represented by a set of attribute
variables is constructed to predict the distribution of a class
variable. The Bayesian approach for classification is to assign
the most probable class label to a test instance.

Given a training set D = {x1, · · · , xN} with N instances,
each of which containing n attribute values and a class label.
We use xi = {xi,1, · · ·xi,j , · · ·xi,n, yi} to denote the ith
instance in the data set D, with xi,j denoting the jth attribute
value and yi denoting the class label of the instance. The
class space Y = {c1, · · · , ck, · · · , cL} denotes the set of
labels that each instance belongs to and ck denotes the kth
label of the class space. For ease of understanding, we use
(xi, yi) as a shorthand to represent an instance and its class
label, and use xi as a shorthand of xi. We also use Aj to
represent the jth attribute. Each attribute can be a discrete
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random variable (with a number of discrete values) or a
continuous random variable. In this paper, we only focus
on categorical (or nominal) attributes. For each attribute Aj ,
we use aτj , τ = 1, · · · , |Aj | to denote the τ th attribute value
of Aj and |Aj | denotes the total number of distinct values
of Aj . For each instance xi, its value satisfies xi,j ∈ Aj .
For an instance (xi, yi) in the training set D, its class label
satisfies yi ∈ Y , whereas a test instance xt only contains
attribute values and its class label yt needs to be predicted
by the BNC model. For BNC classification, a set of training
instances with class label are given in advance to train a BNC
classifier, which can be mathematically formulated as:

c(xt) = argmax
ck∈Y

P (ck)P (xt,1, xt,2, · · · , xt,n |ck) (1)

In Eq. (1), P (ck) denotes the probability of class ck in the w-
hole training set. P (xt,1, xt,2, · · · , xt,n |ck) denotes the joint
distribution of xt conditioned by the given class ck. It is easy
to estimate P (ck) but calculating P (xt,1, xt,2, · · · , xt,n |ck)
is difficult. Unless the number of instances in training data
is very large, we cannot obtain reliable estimations. In fact,
learning an optimal BNC has been proved to be NP-hard
[2]. Alternatively, assume that all attributes are independent,
given the class variable, the probabilities of observing the
conjunction is just the product of the provability of individual
attributes. This is the core concept of Naive Bayes (simply
NB [3]), a simplified yet highly practical Bayesian network
classifier, as defined in Eq. (2).

c(xt) = argmax
ck∈Y

P (ck)

n∏
j=1

P (xt,j |ck) (2)

where P (xt,j |ck) denotes the joint distribution of xt,j con-
ditioned by the given class ck.

The NB classifier is based on the so-called Bayesian
theorem and is particularly suitable for high dimensional data
[4]. This is mainly because that each attribute node in NB has
the class node as its only parent and it does not involve any
other attribute nodes. Training NB is also easy and highly
efficient because it only needs to compile a table of class
probability estimates and a table of conditional attribute-
value probability estimates from the training examples [5].
As a result, despite of its simplicity, NB often demonstrates
very efficient runtime performance and frequently outper-
forms other sophisticated classification models.

In practice, the attribute independence assumption of NB
does impact on its classification performance when it is
violated in a learning task. Researchers have proposed many
methods to further improve the performance of NB [6],
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[7], [8]. One major approach to mitigate NB’s primary
weakness (i.e., the conditional independence assumption of
the attributes) is to assign a weight value to each individual
attribute. Because weight values enforce attributes to play
different roles in classification, the resulting Weighted Naive
Bayes (WNB) can help relax the conditional independence
assumption and make NB more efficient for real-world
applications [9]. In order to discover proper weight values for
WNB to improve the resulting classification performance, re-
searchers have proposed many useful methods to evaluate the
importance of attributes. Examples include Gain Ratio [10],
CFS (Correlation-based Feature Selection) attribute selection
algorithm [11], Mutual Information [12], and ReliefF at-
tribute ranking algorithm [13]. Moreover, Hall [14] proposed
a new attribute weighting method, based on the degree of
dependence on other attributes. Recently, we also proposed
a self-adaptive attribute weighting approach base on artificial
immune system [6].

Another practical issue of BNC learning is the high
variance with respect to the limited number of training
samples [15], where the estimated class distribution of
a BNC classifier is inaccurate if the number of training
instances is small. In this case, one can assign different
weight values to instances for probability value estimation.
One similar approach is instance clone, which adds some
clone examples to the training set [16] to generate more
training samples. For instance clone based approaches, the
underlying sample distributions should be known in advance,
which is, unfortunately, not the case in reality. Jiang [17]
put forward an instance-cloned naive Bayes (ICNB), which
produces an expanded training set by cloning some training
instances based on their similarities to the test instance, and
then a naive Bayes classifier is trained from the expanded
training data set to classify test instances. In another instance
weighting approach, Jiang [18] also proposed to use instance
weighting to improve the performance of Averaged One-
Dependence Estimators, which is another Bayesian model.
For this type of weighting method, each training instance
is eagerly weighted according to the similarity with the
“model” of training data set.

The above attribute and instance weighting methods for
NB have achieved good performance to solve domain spe-
cific problems. However, these two types of weighting are
treated in a separated way without utilizing the relationship
between attributes and instances. In this paper, we propose
a novel model, namely DWNB, with a hybrid of instance
and attribute weighting: (1) an instance similarity based
method is used to weight instances in training data; and (2)
apply attribute weighting approach to weight instances for
further estimating probability distributions. In addition, we
also analyze the performance of the proposed DWNB model
compared with attribute weighted NB (AWNB) and instance
weighted NB (IWNB). Experiments and comparisons, on 36
UCI benchmark data sets [19] demonstrate that the proposed
DWNB, with a dual weighting strategy, consistently outper-
forms simple instance or attribute weighted NB algorithms.

Algorithm 1 DWNB (Dual Weighted Naive Bayes)
Input:

Training data set D;
Output:

The target class label c(xt) of a test instance xt;
1: x∗ ← Finding the frequent instance from D.
2: for all xi in D do
3: s(xi, x∗) ← Apply Eq. (3) to measure the similarity

between the instance xi and the frequent instance x∗.
4: w′i ← Apply 1+s(xi, x∗) to set the ith instance weight.
5: end for
6: wj ← Apply a tree based method to calculate the weight

of jth attribute Aj on the instance weighted D.
7: P (ck)← Apply w′i to calculate instance weighted class

probability via Eq. (6).
8: P (aτj |ck) ← Apply w′i to calculate instance weighted

conditional probability via Eq. (7).
9: HDWNB ← Apply wj , P (ck), P (a

τ
j |ck) to build the

DWNB model.
10: c(xt) ← Apply HDWNB to instance xt to predict the

underlying class label.

II. DWNB: DUAL INSTANCE AND ATTRIBUTE
WEIGHTED NAIVE BAYES

In this section, we propose a dual instance and attribute
weighting approach for weighted NB classification. In our
design, the instance weighting and attribute weighting is in an
irreversible order, because the attribute weighting is based on
distributions estimated from the instance weighting strategy.
In DWNB, we first employ an instance similarity based
approach to weight each instance in the training data and then
use a decision tree based attribute weighting method to build
weighted naive Bayes models, in which the probabilities are
calculated by embedding the instance weight information.

A. Instance Weighted Strategy

In this section, we first introduce some important notations
and definitions, then propose our solutions.

DEFINITION 1 Similarity between Instances: Given two
instances xi and xj , the similarity, denoted by s(xi,xj),
between them is as

s(xi,xj) =
n∑
k=1

I(xi,k = xj,k) (3)

where I(·) is 1, if the condition inside is true and 0 otherwise.

DEFINITION 2 Frequent Instance: A frequent instance
is an artificial instance created by using the most frequent
value of each attribute (i.e., we check the frequency of each
attribute value across the whole training set, and find the
most frequent attribute value for each attribute to create a
frequent instance.)

For each single instance xi ∈ D, we compute its similarity
with the frequent instance x∗, s(x∗,xi). After that, the
instance weight of xi, w′i, will be set to 1 + s(x∗,xi).
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B. Attribute Weighting Strategy

Given a test instance xt, which only contains attribute
values, the class label yt of xt needs to be predicted by
a DWNB model trained from weighted instances in D, as
defined in Eq. (4),

c(xt) = argmax
ck∈Y

P (ck)

n∏
j=1

P (xt,j |ck)wj (4)

where wj denotes the weight of the jth attribute. In DWNB,
we employ a weighting method proposed by Hall [14] that
assigns weight values to the attributes, which strongly depend
on other attributes. In order to estimate each attribute’s
dependence on other attributes, an unpruned decision tree
is constructed from the training instances with a minimum
depth indicating the depth for testing the tree. The weight
for the attribute Aj is set as

wj = 1/
√
dAj (5)

Where dAj is the minimum depth at which the attribute Aj
is tested in the tree. Attributes that do not appear in the tree
receive a zero weight value.

C. Instance Weight Embedding Probability Estimation

The challenge for DWNB is to accurately calculate the
priori probability P (ck) and the conditional probability
P (xt,j |ck), by taking the instance weights into consideration.
In this paper, we propose an instance weighting embedded
Laplace-estimate to solve the above problem as given in Eqs.
(6) and (7).

P (ck) =
nk + 1.0

Nk + L
(6)

P (aτj |ck) =
n
(j,τ)
k + 1.0

nk + |Aj |
(7)

Nk =
∑
xi∈D

w′i; nk =
∑

xi∈D;yi=ck
w′i;

n
(j,τ)
k =

∑
xi∈D;yi=ck;xi,j=aτj

w′i
(8)

where |Aj | is the number of distinct values of attribute Aj ,
and L is the number of classes in D. w′i denotes the weight
of the ith instance.

Algorithm 1 lists detailed procedures of the proposed D-
WNB. Given a training data set D with N instances, DWNB
firstly finds the frequent instance x∗ from the training data.
For each single instance xi ∈ D, we compute the similarity
s(x∗,xi) by using Eq. (3), and then set the weight of xi, w′i,
to 1 + s(x∗,xi). After that DWNB trains a weighted naive
Bayes, in which a tree based approach is employed to obtain
the attribute weight. Meanwhile, we propose an instance
weighting method to calculate the underlying probabilities
by using Eqs. (6) and (7).

III. EXPERIMENTS

A. Experimental Conditions

We implemented the proposed method using WEKA [20]
data mining tool and validate its performance on 36 bench-
mark data sets from the UCI data repository [19]. The
data characteristics are described in Table I. Because naive
Bayes classifier is designed for categorical attributes, in our
experiments, we first replace all missing attribute values
using unsupervised attribute filter ReplaceMissingV alues
in WEKA. Then, we apply unsupervised filter Discretize
in WEKA to discretize numeric attributes into nominal
attributes by using unsupervised 10-bin discretization. Ap-
parently, if the number of values of an attribute is close to
the number of examples in a data set, it will result in poor
probability estimation. Thus, we use an unsupervised filter
named Remove in Weka to remove this type of attributes.

B. Baseline Methods

For comparison purposes, we use the following baseline
algorithms in our experiments.

1. NB: The standard naive Bayes classifier with condi-
tional attribute independence assumption [3].

2. AWNB: Attribute weighted naive Bayes with the
weight of each attribute inversely proportional to the
degree of correlation between the underlying attribute
and all other attributes [14].

TABLE I
DETAILED INFORMATION OF THE BENCHMARK DATA SETS

Data set Instances Attributes Classes Missing Numeric

anneal 898 39 6 Y Y
anneal.ORIG 898 39 6 Y Y
audiology 226 70 24 Y N
autos 205 26 7 Y Y
balance-scale 625 5 3 N Y
breast-cancer 286 10 2 Y N
breast-w 699 10 2 Y N
colic 368 23 2 Y Y
colic.ORIG 368 28 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
diabetes 768 9 2 N Y
Glass 214 10 7 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-statlog 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypothyroid 3772 30 4 Y Y
ionosphere 351 35 2 N Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymph 148 19 4 N Y
mushroom 8124 23 2 Y N
primary-tumor 339 18 21 Y N
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
sonar 208 61 2 N Y
soybean 683 36 19 Y N
splice 3190 62 3 N N
vehicle 846 19 4 N Y
vote 435 17 2 Y N
vowel 990 14 11 N Y
waveform-5000 5000 41 3 N Y
zoo 101 18 7 N Y
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TABLE II
EXPERIMENTAL RESULTS FOR DWNB VS. AWNB, IWNB, NB, SBC, AND C4.4: CLASSIFICATION ACCURACY AND STANDARD DEVIATION.

Data Sets DWNB AWNB IWNB NB SBC C4.4

anneal 91.15±2.08 89.73±1.94 • 97.07±1.50 ◦ 94.32±2.23 ◦ 94.03±2.37 ◦ 99.06±0.91 ◦
anneal.ORIG 89.92±2.67 88.11±2.53 • 88.24±3.14 88.16±3.06 84.66±3.74 • 92.26±2.43 ◦
audiology 79.15±8.21 71.92±6.67 • 80.18±8.17 71.40±6.37 • 70.91±7.09 • 77.58±7.82
autos 75.26±9.15 67.76±10.51 • 65.47±10.94 • 63.97±11.35 • 70.10±9.38 83.68±7.70 ◦
balance-scale 89.90±1.95 90.03±1.99 91.25±1.40 ◦ 91.44±1.30 ◦ 91.44±1.30 ◦ 68.55±4.20 •
breast-cancer 72.17±7.74 72.39±7.47 72.18±8.18 72.94±7.71 73.25±7.60 68.29±7.84
breast-w 97.50±1.76 97.34±1.81 97.47±1.75 97.30±1.75 97.30±1.75 94.02±2.87 •
colic 83.67±5.45 83.64±5.47 80.30±5.85 • 78.86±6.05 • 82.28±5.86 79.91±6.00 •
colic.ORIG 76.19±6.10 76.00±6.53 73.34±7.08 74.21±7.09 74.57±5.85 76.68±6.71
credit-a 86.23±3.86 86.46±3.85 84.57±3.76 84.74±3.83 85.75±4.16 83.36±4.24 •
credit-g 76.79±3.70 76.14±3.62 75.99±3.93 75.93±3.87 72.43±3.61 • 68.97±3.95 •
diabetes 76.26±5.23 76.91±5.07 75.09±5.03 75.68±4.85 75.93±5.07 70.73±4.39 •
glass 60.16±9.42 57.44±9.37 58.90±10.12 57.69±10.07 56.22±10.36 54.64±8.56
heart-c 82.32±6.48 83.57±6.04 82.92±6.98 83.44±6.27 84.20±6.37 75.32±7.75 •
heart-h 83.51±6.31 83.34±6.28 84.36±5.89 83.64±5.85 82.59±6.40 75.60±6.72 •
heart-statlog 83.26±5.43 84.04±5.90 83.19±5.56 83.78±5.41 84.19±6.07 76.67±7.94 •
hepatitis 84.28±8.12 83.35±8.24 85.50±9.63 84.06±9.91 83.60±9.77 79.83±9.98
hypothyroid 93.63±0.51 93.58±0.50 92.69±0.75 • 92.79±0.73 • 93.52±0.48 92.39±0.75 •
ionosphere 92.03±3.86 92.00±4.06 88.75±5.16 • 90.86±4.33 90.89±4.72 85.75±5.81 •
iris 95.27±5.47 95.53±5.19 94.00±6.46 94.33±6.79 96.87±4.29 94.20±5.25
kr-vs-kp 94.75±1.25 94.21±1.29 • 88.25±1.88 • 87.79±1.91 • 92.38±1.56 • 99.44±0.40 ◦
labor 89.17±11.99 88.10±12.66 94.23±10.25 96.70±7.27 84.97±12.91 84.00±15.37
letter 67.63±2.01 65.99±2.08 • 67.08±1.92 65.80±2.04 • 67.32±2.22 72.02±2.09 ◦
lymph 81.90±9.09 82.20±10.01 85.15±8.77 85.97±8.88 ◦ 82.72±9.39 76.55±10.76
mushroom 99.54±0.61 97.82±1.10 • 96.97±1.58 • 93.58±2.03 • 98.12±1.14 • 99.75±0.36
primary-tumor 48.14±5.32 45.54±5.39 • 46.82±6.34 47.20±6.02 45.78±6.84 40.65±6.50 •
segment 90.89±1.63 90.48±1.56 89.96±1.68 • 89.03±1.66 • 90.46±2.10 93.81±1.58 ◦
sick 97.30±0.84 96.94±0.92 • 97.07±0.82 • 96.78±0.91 • 96.81±0.89 • 97.83±0.76 ◦
sonar 75.33±9.00 75.36±8.81 76.96±9.55 76.35±9.94 73.54±9.45 68.74±8.79 •
soybean 94.30±2.09 92.85±2.90 • 93.95±2.69 92.20±3.23 • 91.00±3.31 • 92.56±2.74
splice 96.12±1.01 96.14±1.03 95.57±1.11 95.42±1.14 • 95.84±1.03 92.16±1.40 •
vehicle 60.97±3.59 61.75±3.44 60.72±3.42 61.03±3.48 56.32±4.01 • 69.24±4.15 ◦
vote 94.83±3.01 94.83±3.01 90.32±3.86 • 90.21±3.95 • 94.46±2.81 95.21±3.11
vowel 66.71±5.01 66.65±4.73 65.94±4.81 66.09±4.78 62.75±5.10 • 78.56±4.88 ◦
waveform-5000 80.24±3.04 79.56±3.00 80.24±2.83 79.80±2.97 79.71±2.97 68.65±5.07 •
zoo 93.61±7.18 90.65±7.29 96.05±5.60 94.37±6.79 91.51±7.68 93.41±7.28

Mean 83.34±4.73 82.45±4.79 82.69±4.96 82.16±4.88 81.90±4.99 81.11±5.20

◦, •: Statistically significant upgradation and degradation, respectively.

3. IWNB: Instance weighted naive Bayes with the
weighting method based on the instance similarity [18].

4. SBC: A bagged decision-tree based attribute selection
filter for naive Bayes [21].

5. C4.4: A specially designed tree to improve C4.5 [22]
performance on classification ranking.

6. DWNB: The proposed method, dual weighting naive
Bayes, which calculates the probabilities through a
instance weight embedding method.

In our experiments, we implemented DWNB, IWNB,
AWNB, and SBC, and used implementation of NB and C4.4
in Weka framework. For the attribute weighting approaches,
we used the package provided by Mark Hall [14]. C4.4 is
J48 in Weka with Laplace correction and without pruning.

We compare the performance of the proposed DWNB
with AWNB, IWNB, NB, SBC and C4.4. The attribute
weighting method in AWNB and instance weighting strategy
in IWNB are similar to the ones used in DWNB. For the
proposed DWNB, we do not consider any other attribute and

instance weighting approaches. This is due to the fact that
DWNB intends to propose a general dual weighting model,
which can be applied to any attribute or instance weighting
approach. The purpose of our experiment is to demonstrate
the effectiveness of the proposed dual weighting model.

In our experiments, the algorithms are evaluated in terms
of classification accuracy, which is a well accepted evaluation
metric in many real-world applications [23], [24], [25]. The
accuracy performance of each method is calculated by the
percentage of successful predictions on the test data sets via

TABLE III
TWO-TAILED t-TEST ON ACCURACY WITH 95% CONFIDENCE LEVEL.

C4.4 SBC NB IWNB AWNB

SBC 12/13/11
NB 13/12/11 5/25/6
IWNB 13/12/11 9/23/4 8/28/0
AWNB 15/11/10 6/27/3 7/26/3 7/25/4
DWNB 15/12/9 9/25/2 12/21/3 9/25/2 10/26/0
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10 runs of 10-fold cross validation, with all algorithms being
evaluated on the same training and testing data sets. Finally,
we compare related algorithms via two-tailed t-test with a
95% confidence level. Based on the statistical theory, the
difference is statistically significant only if the probability of
significant difference is at least 95 percent, i.e., the p-value
for a t-test between two algorithms is less than 0.05.

C. High Performance of Dual Weighted DWNB

Table II reports the detailed results (the accuracy and
standard deviation) of DWNB and other baseline algorithms,
with the mean values and standard deviation on all data sets
being summarized at the bottom. In the table, symbols ◦ and
• represent statistically significant upgradation and degrada-
tion over DWNB with the p-value less than 0.05. Besides,
Table III illustrates the compared results of two-tailed t-
test, in which each entry w/t/l means that the algorithm
in the corresponding row wins in w data sets, ties in t data
sets, and loses in l data sets on the 36 benchmark UCI data
sets, compared to the algorithm in the corresponding column.
Overall, the results can be summarized as follows:

1. Instance weighting IWNB significantly outperforms NB
(8 wins and 0 losses), and the average classification
accuracy on 36 benchmark UCI data sets for IWNB
(82.69±4.96) is higher than NB (82.16±4.88).

2. Attribute weighting AWNB sightly outperforms NB
with (7 wins and 3 losses), and the average classification
accuracy on 36 benchmark UCI data sets for AWNB
(82.45±4.79) is higher than than NB (82.16±4.88).

3. AWNB shows a little better performance compared with
IWNB (7 wins and 4 losses). However, the average clas-
sification accuracy for AWNB (82.45±4.79) is lower
than IWNB (82.69±4.96).

4. DWNB significantly outperforms IWNB (9 wins and 2
losses), also significantly outperforms AWNB (10 wins
and 0 losses) on 36 benchmark UCI data sets.

5. DWNB greatly outperforms all other baselines with the
superior average classification accuracy on 36 data sets
(83.34±4.73).

IV. CONCLUSION AND FUTURE WORK

We proposed a dual weighting strategy for weighted naive
Bayes classification, which calculates the probability values
by using a dual instance and attribute weighting approach.
The experiments and comparisons on 36 benchmark UCI data
sets with respect to the classification accuracy performance
show that DWNB outperforms existing NB weighting mod-
els, such as instance weighted IWNB and attribute weighted
AWNB. The proposed dual attribute and instance weighting
can also be extended to other Bayesian networks.
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