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Abstract— This work investigates on the widespread use of
fuzzy neural networks in time series forecasting, concerning in
particular the energy commodity markets. We propose a new
learning strategy suited to any neural model. The proposed
approach is further assessed in the case of higher-order Sugeno-
type fuzzy rules, which are able to replicate the daily data and to
reproduce the same statistical features for various Commodity
time series. The data used are obtained from the daily return
series of specific energy commodities, such as coal, natural gas,
crude oil and electricity, over the period 2001-2010 for both the
European and US markets. We will prove that our approach can
obtain interesting results in terms of prediction accuracy and
volatility estimation, compared to well-known neural and fuzzy
neural models and to the ARMA-GARCH statistical paradigm.

I. INTRODUCTION

THIS paper proposes a new neural network approach
for prediction and modeling of financial time series,

focusing on the study of energy commodity market prices.
This is a well-known challenging problem, given the non-
stationarity and, often, non-linearity of time series, which
results in a complex dynamic for prices that is hard to be
successfully modeled by using standard econometric models.

Energy price dynamics are affected by complex risk fac-
tors, such as political events, extreme weather conditions and
financial market behavior. Over the last 10 years the global
demand for crude oil and gas has increased, largely due
to the rapidly increasing demands of non OECD countries,
especially China [1]. Local gas and coal are mainly used in
the electricity generation process and recently their supply
and demand experienced a profound transformation. The
economic exploitation at higher prices of shale gas and shale
oil is modifying the demand for fossil fuels.

It is critical to forecast the price direction of energy com-
modities in order to reduce the negative impact of high price
fluctuations on investment results and on risk management
strategies. Commodity prices forecasting on a daily basis
cannot be easily obtained using standard structural models,
given the lack of daily data on supply and demand, normally
available monthly and a quarter in arrears. Reduced form
models are commonly used to price energy commodities,
i.e., two state variable stochastic models for oil and gas
price dynamics [2], Markov regime switching models for
electricity prices [3]. In most cases, energy price models deal
with the solution of complex stochastic differential equations.
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Various approaches have been proposed so far, ranging
from standard econometric models to the ones based on com-
putational intelligence. Some applications focus on the prin-
cipal processes generating the observed time series and make
use of neural networks as nonlinear models that are more
suited to identify the chaotic behavior of specific commodity
prices with respect to common Autoregressive Integrated
Moving Average (ARIMA) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models.

Neural Networks are used as nonlinear regression models,
which can generalize the stationary and univariate models
used in econometrics in order to provide an effective tool
for capturing the most important features we expect in
Commodity price returns i.e., fat tails, volatility clustering
or persistence and leverage effects [4]–[7]. Among these
approaches well-known solutions were based, for example,
on: hybrid methodology combining ARIMA models, neural
networks and Web mining, from which to extract a rule-
based system and non-linear integration; Generalized Pattern
Matching based on Genetic Algorithm (GPMGA) for multi-
step forecasting; Support Vector Machines (SVM); Multi-
layer Perceptron (MLP), Elman Recurrent Neural Network
(ERNN), and the Recurrent Fuzzy Neural Network (RFNN).
By using a ‘black-box’ approach, the noisy information
contained in the input data is exploited and some critical
assumptions, often necessary to setup analytical models, are
avoided. In a time of unique Commodity market dynamics
and using a new approach to neural networks, we are
intended to produce very robust predictions that can be used
for both investment and risk management.

The dynamics of energy prices is actually complex and
it has shown large unexpected volatility in the last decade.
In this context, a powerful tool providing accurate price
forecasting is needed. Natural gas, coal and electricity prices,
unlike crude oil, present seasonality features that are usually
measured using deterministic techniques. In this paper we
aim to forecast short term price dynamics in order to be able
to adequately measure the existing correlations between the
various commodities. To this extent the seasonality compo-
nent of the gas and coal prices will not affect the results. We
apply the proposed approach to forecast crude oil, natural
gas, electricity and coal prices using data of both European
and US markets collected for the last decade.

The contribution of this paper is twofold. On one hand, we
propose a framework for the prediction of expected values
of times series and the related volatilities involving any
regression approach. On the other hand, a new fuzzy neural
model is proposed, where the consequent, output part of each
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rule is generalized. The parameters of each rule are obtained
through a clustering synthesis in the joint input-output space
and a computationally efficient optimization is also proposed.
It is based on a constructive procedure, by which the number
of rules is progressively increased and the optimal one is
automatically determined on the basis of learning theory
in order to maximize the generalization capability of the
resulting neural network. Extensive computer simulations
prove the validity of the proposed algorithm and show a
favorable comparison with other well-established techniques.

II. A GENERALIZED NEURAL NETWORK APPROACH TO
TIME SERIES FORECASTING

Prices related to financial assets are commonly collected
as time series uniformly sampled at hourly, daily or monthly
rate. Let St be a generic time series of prices, where t denotes
the time index. In order to work with stable data sets for
modeling, the financial analysis is usually carried out on the
return series yt defined as:

yt = ln
St
St−1

. (1)

Given the randomness of prices, a return series is conve-
niently modeled as a discrete time stochastic process, for
which we wish to know the conditional probability density
function (pdf) given the conditioning set It−1 associated with
all the available information available prior to time t (i.e.,
past observations and estimated models).

Almost all the prediction techniques aim to estimate
the conditional moments of this pdf, which imply explicit
dependence on past observations. We will assume that all
the necessary estimations can be realized in a time smaller
than the interval between two consecutive observations, in
such a way we can limit our analysis to a ‘one-step-ahead’
prediction, for which the information It−1 is available for
the analysis prior to time t. Otherwise, the prediction should
start earlier, by using the information It−s, s > 1, to perform
a prediction at distance s of the sample at time t.

As the reference background of econometrics, we consider
in this work an additive model of time series:

yt = µt + εt , (2)

where µt is a deterministic component, representing the
forecast, and εt is a random variable, which takes into
account the uncertainty of prediction. In fact, εt = yt − µt
can be considered as the forecast error, or ‘innovation’, and
it is itself a random process usually assumed to having a
zero-mean normal conditional distribution. Thus, the condi-
tional mean of yt is Eyt|It−1

[yt] = µt, Eεt|It−1
[εt] = 0 and

Varεt|It−1
(εt) =Eεt|It−1

[ε2t ] =Varyt|It−1
(yt) = σ2

t .
The conditional variance σ2

t of yt can be considered
as the volatility of the return series at time t and its
accurate estimation, with respect to the implied volatility
of the actual process, is mandatory to any financial tool.
In general, σ2

t changes over time and this phenomenon is
called heteroskedasticity. Many models tends to capture this
behavior, especially the GARCH model that is widely used in

both theoretical and practical applications. A GARCH(P,Q)
model is based on the following estimation of σ2

t by using
past observations [8]:

σ2
t = α0 +

Q∑
i=1

αiε
2
t−i +

P∑
j=1

βjσ
2
t−j ,

P ≥ 0 , Q > 0 ,

α0 > 0 , αi ≥ 0 , i = 1 . . . Q ,

βj ≥ 0 , j = 1 . . . P .

(3)

A common assumption when modeling financial time series
is that forecast errors are zero-mean random disturbances that
are serially uncorrelated from one period to the next although
not independent, evidently.

A GARCH(P,Q) model is a generalization of the early
ARCH model proposed by Engle in [9]; i.e., an ARCH(Q)
model coincides with a GARCH(0, Q) model. However,
specifying the order P,Q of a GARCH model is not easy and
it is still an open problem. Consequently, only low orders are
usually adopted in most applications. Nevertheless, several
extensions of the original GARCH model have been pro-
posed in the past, by specifying a different parametrization
to capture serial dependence on the conditional variance.

The time series model should be completed by a suited
hypothesis of the conditional mean µt as well. A general
choice can be based on the linear regression model:

µt = a0 +

R∑
i=1

aiyt−i +

M∑
j=1

bjεt−j . (4)

Bearing in mind (2), yt follows a general ARMA process
where usual conditions are given on the eigenvalues asso-
ciated with the characteristic AR and MA polynomials, in
order to ensure stationarity and invertibility, respectively.
Energy commodity returns are typically modeled as wide-
sense stationary (WSS) processes, with constant uncondi-
tional mean and constant unconditional variance but non-
constant conditional variance. In the following, we will
consider a default association of an ARMA(R,M ) process
coupled with a GARCH(P,Q) WSS process, denoted as
ARMA(R,M )-GARCH(P,Q), for which the unconditional
variance Varyt(yt) is a computable function of Varεt(εt).

Some generalizations of the ARMA model are also pos-
sible for modeling the conditional mean µt; for example,
the ARIMA model, which is stationarized by adding lags
of the differenced series and/or lags of the forecast errors,
and ARMA with eXogenous inputs (ARMAX), where some
‘exogenous’ or independent variables are added as an ex-
planatory regression data. There are also nonlinear variants
to such models as the Nonlinear ARMA (NARMA) and
Nonlinear ARMAX (NARMAX). Finally, we outline that
the previous ones are all univariate models. A multivariate
generalization is possible by using Vector Autoregression
(VAR) models, which are intended to capture the evolution
and the interdependencies between multiple time series.

The general approach to time series modeling and predic-
tion described so far evidences how both conditional mean µt
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and volatility σ2
t can be estimated through a suited regression

problem, which can be compactly defined by the following
equation for µt:µt = hµ

(
x
(µ)
t ;ω

(µ)
t

)
,

x
(µ)
t = [yt−1 yt−2 . . . yt−R εt−1 εt−2 . . . εt−M ] ,

(5)

and by the following equation for σ2
t :σ

2
t = hσ

(
x
(σ)
t ;ω

(σ)
t

)
,

x
(σ)
t =

[
σ2
t−1 σ

2
t−2 . . . σ

2
t−P ε

2
t−1 ε

2
t−2 . . . ε

2
t−Q

]
,

(6)

where the orders R, M , P , and Q are fixed in advance (they
are analogous to ARMA and GARCH models); ω

(µ)
t and

ω
(σ)
t are the parameter vectors of the regression functions

hµ and hσ , respectively, which obviously change over time.
By this approach, the dynamics of time series is modeled

directly, as actually pursued by GARCH models. However,
both linear and nonlinear ARMA-GARCH models are global
regression methods that do not involve a parametric basis
function expansion of the regression models, similarly to
spline functions or the MLP neural network. For this rea-
son they can be affected by the ‘curse of dimensionality’
problem, since their performances dramatically decrease with
the increment of the model order because of the increasing
sparseness of data in the input space. We propose the use
of clustering for partitioning the data space, so that clusters
of points in significant regions of the data space can be
linked directly to the basis functions of a nonlinear regression
expansion. All the used neural models allow a form of
clustering for nonlinear basis function expansion, this is
particularly true for Radial Basis Function (RBF) and the
proposed fuzzy neural network illustrated in Sect. III.

From a practical point of view, the problem to be solved
is the prediction prior to time t of the sample yt of the return
series and the prediction of the related volatility. In the paper,
these problems are being also refereed to, indifferently, as
the estimation of the conditional mean µt and the conditional
variance σ2

t , respectively. The main data base for the financial
analysis is the collection in the past of the price series Sk,
k = 0 . . . (t − 1), where price S0 is the first sample ever
collected in the past. By using (1), the data base of returns
yk, k = 1 . . . (t − 1), is obtained. Usually, the analysis
at any time t makes use of a training set consisting of a
limited number NT of previous observations. As explained
in the following, the training set is determined by means of
previous models and predictions, using the samples yk, εk,
σ2
k, k = (t−NT ) . . . (t− 1).
A prediction process is usually applied for a given number

NS of time intervals starting at time t = TS , i.e. for
t = TS . . . (TS +NS − 1) and 1 ≤ NT ≤ TS − 1, where NS
also represents the horizon of prediction. Two alternatives are
possible in this regard: the prediction models are estimated
only once, prior to time t = TS ; the prediction models are
estimated at every time step, by changing consequently the
training set at any time. We will consider in the following

the second approach, since the former is a generalization of a
multi-step-ahead prediction for which suited techniques have
been proposed in the literature.

The data-driven regression for time series prediction can
be summarized in the iteration of the following steps [10]:
• Initialization. Let t = TS and find the initial conditions

for εk and σ2
k, k = (TS −NT ) . . . (TS − 1). These val-

ues can be inferred by using any adequate technique. We
used in this regard an ARMA-GARCH model applied
to the samples yk from TS −NT to TS − 1.

• Step 1. With the current value of t, determine the
training set to be used for the model learning. It consists
of two matrices D

(µ)
t and D

(σ)
t , where:

– D
(µ)
t is a NT × (R+M + 1) matrix whose the ith

row d
(µ)
t,i , i = 1 . . . NT , is

d
(µ)
t,i =

[
x
(µ)
t−NT+i−1 yt−NT+i−1

]
; (7)

– D
(σ)
t is a NT × (P +Q+ 1) matrix whose the ith

row d
(σ)
t,i , i = 1 . . . NT , is

d
(σ)
t,i =

[
x
(σ)
t−NT+i−1 σ2

t−NT+i−1

]
. (8)

Each row of these matrices is an input-output pattern
that can be used for learning. In fact, the first M +

N columns of D
(µ)
t and the first P + Q columns of

D
(σ)
t represent the inputs to hµ and hσ , respectively,

for every sample of the training set. The last column
of both matrices is the expected value to be estimated
in correspondence with every pattern. The last row of
matrices holds the most recent observation.

• Step 2. Determine, at the current time t, the parameters
ω

(µ)
t of the regression function hµ by using the training

matrix D
(µ)
t and an appropriate learning algorithm ac-

cording to the chosen regression model. Similarly, learn
the parameters ω(σ)

t of hσ by using D
(σ)
t . For example,

if an ARMA-GARCH model is used, the parameters
can be estimated by maximum Gaussian likelihood [8].
The specific procedure for the proposed fuzzy neural
network is illustrated in the next section.

• Step 3. By means of the parameters ω
(µ)
t and ω

(σ)
t

determined in the previous Step 2, apply (5) and (6)
to forecast the conditional mean µt and the volatility
σ2
t , respectively. Then, let εt = yt − µt, t← t+ 1, and

go back to Step 1 if t ≤ TS .
Once the iteration is stopped, we have NS samples of

conditional mean (forecast), innovation and volatility per-
taining to the time interval where prediction is carried out.
The performance of prediction can be evaluated by means
of suited benchmarks and error measures applied to the
obtained results. A useful collection of such measures will
be illustrated in Sect. IV.

III. THE NEURAL NETWORK FOR DATA REGRESSION

We introduce in the following the architecture of the fuzzy
neural network to be used for regression in (5) and (6).
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It is based on a generalized Sugeno-type fuzzy inference
system (FIS), which is suited to approximate any input-
output function by using a novel approach to estimated the
parameters of high order consequents of C different fuzzy
rules. The kth rule, k = 1 . . . C, has the following form:

If x1 is B(k)
1 and . . . and xn is B(k)

n then

y(k) = h
(
x;ω(k)

)
,

(9)

where x = [x1 x2 . . . xn] is a row vector (or pattern) in
the n-dimensional input space1 and y(k) is the scalar output
associated with the rule. The latter is characterized by the
membership functions (MFs) µ

B
(k)
j

(xj) of the fuzzy input

variables B(k)
j , j = 1 . . . n, and the set of parameters ω(k)

of the related crisp output function.
Several alternatives are possible for the fuzzification of

crisp inputs, the composition of input MFs, and the way rule
outputs are combined [11]. Usually, the structure of the fuzzy
inference system is the following one:

ỹ =

C∑
k=1

µB(k)(x) y(k)

C∑
k=1

µB(k)(x)

, (10)

where B(k) is the overall fuzzy input variable, µB(k)(x) is
the corresponding MF, and ỹ the output estimated for an
input x.

We propose in the following a learning procedure suited
to data regression and financial time series forecasting, by
using a generalization of a well-known fuzzy neural model
falling within this framework, that is the Adaptive Neuro-
Fuzzy Inference Systems (ANFIS), in which Sugeno first-
order type (linear) output functions are adopted. With the
proposed approach any kind of output function can be used,
in particular we will focus on quadratic structures and we will
prove that they are able to obtain significant improvements in
spite of the increase of the model complexity. Consequently,
the proposed model will be referred to in the following as
‘Higher-Order Neuro-Fuzzy Inference System’ (HONFIS);
its parameters will be estimated though a data-driven ap-
proach and a constructive procedure is adopted in order to
find a suitable number of fuzzy rules.

The numerical parameters of rules are obtained through a
learning process and using a training set of NT input-output
pairs (xt, yt), t = 1 . . . NT . The crucial problem during the
learning is to obtain a good generalization capability. This
issue has been deeply investigated in the literature; usually,
the generalization capability is optimized by checking data
set for overfitting model validation [12]. In this case, the gen-
eralization capability is maximized only if HONFIS consists
of a suitable number of rules. However, the determination of
the optimal number is a very critical problem to be solved,
also considering the increased complexity of rule output

1In the present case, either n = R+M or n = P +Q, as for (5) or
(6), respectively.

functions, since the neural network might be easily overfitted
in case of noisy or ill-conditioned data. In this paper, a
constructive procedure for the automatic determination of
rules is also proposed. It aims to a regularization of the
network architecture based on learning theory and hyperplane
clustering-based techniques.

A. Synthesis of Rules by Clustering

When dealing with numerical data, the rules of HON-
FIS networks are commonly synthesized using clustering
techniques that can reduce the redundancy of data so that
significant rules are determined directly from the clusters
modeling the training set. The main drawback due to conven-
tional clustering approaches is that induced clusters do not
always reflect the real data structure. An innovative approach,
dubbed Hyperplane Clustering Synthesis (HCS), was firstly
proposed in [13]. By HCS, clusters are determined in joint
input-output space, with the rules’ shape corresponding to
the underlying function adopted for the output, that was a
hyperplane in the case of ANFIS linear rules.

A similar approach is herein proposed, with the aim to gen-
eralize the HCS algorithm also in case of HONFIS networks
with general output functions. The basic steps for clustering
in the joint input-output space, which is fundamentally an
alternating optimization technique aiming to identify the
cluster prototypes, are summarized in the following. Let
Γ = {Γ1,Γ2, . . . ,ΓC} be a set of C clusters (each associated
with a rule output) and let every pattern of the training
set be assigned randomly to one of these clusters. Then,
the clustering procedure with C prototypes is based on the
following iterative steps:
• Step 1. The coefficients ω(k), k = 1 . . . C, of each rule

consequent are evaluated by solving a set of (generally)
nonlinear equations; the generic equation is:

yt = h
(
xt;ω

(k)
)
, (11)

where yt is the output associated with the input xt, as
for (7) or (8), respectively; index ‘t’ spans only the
pairs of the training set assigned to the kth cluster. In
this regard, we propose to solve the set of nonlinear
equations in (11) and estimate the coefficients for the
nonlinear regression using an iterative least squares
estimation [14].

• Step 2. The assignment of patterns to clusters is up-
dated. Each pair (xt, yt), t = 1 . . . NT , of the training
set is now assigned to the cluster Γq , with q such that:

dt =
∣∣∣yt − h(xt;ω(q)

)∣∣∣ =

= min
k=1...C

∣∣∣yt − h(xt;ω(k)
)∣∣∣ . (12)

Evidently, a pattern is assigned the cluster having the
minimum distance from it.

• Step 3. For every cluster Γk the local approximation
error is evaluated:

Dk =
1

Nk

∑
t
dt , (13)
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where index ‘t’ spans only the Nk pairs of the training
set assigned lately (i.e., in Step 2) to the kth cluster.

• Step 4. The convergence is based on the quantity:

Θ =

∣∣D −D(old)
∣∣

D(old)
, (14)

where D is the global approximation error over the
whole data set in the current iteration defined by:

D =
1

NT

NT∑
t=1

di , (15)

and D(old) is the global approximation error calculated
in the previous iteration. If Θ is less than a predeter-
mined threshold θ, the clustering algorithm is stopped.
Otherwise, the iteration goes back to Step 1 by using the
current updated association of patterns to clusters. The
default value θ = 0.01 will be used in the following.

The clustering algorithm described so far yields only the
consequents of the Sugeno-type fuzzy rules. To achieve the
complete structure of the HONFIS network, it is mandatory
to determine the firing strengths of the rules’ antecedents. To
this end, once the iterations of clustering have stopped, each
pattern of the training set can be labeled with an integer q,
1 ≤ q ≤ C, representing the rule it has been assigned during
Step 2 of the last iteration. By using the labeled training
set, a classification problem can be solved in the input space
only; at the end of the training process, the input space will
be tiled by a classification model able to assign a fuzzy label
L(x) to any pattern x of the input space:

L(x) = [µB(1)(x) µB(2)(x) . . . µB(M)(x)] , (16)

where the kth element of L(x) represents the fuzzy mem-
bership of the pattern to the kth class and hence, it can
be assumed as the firing strength µB(k)(x) of the kth rule
associated with the hyperplane corresponding to that class.

When the output ỹ must be estimated for any input x
during the normal HONFIS operation (i.e., testing), the
classifier is used to determine the fuzzy label (16) using only
the input value x; then, the output ỹ is calculated using (10)
by means of the firing strengths contained in the fuzzy label
L(x) and the output consequents in (9), whose parameters
have been early determined by clustering in the joint input-
output space. In this phase it is not necessary, in general,
to assign the test sample x a specific hyperplane cluster. In
the following, we will adopt a K-nearest neighbor (K-NN)
strategy for classification within HONFIS networks. Namely,
let xt1 ,xt2 , . . . ,xtK be the K patterns of training set that
score the smallest Euclidean distance from x; then, the fuzzy
label of x will be determined as:

L(x) =
1

K

K∑
q=1

L(xtq ) . (17)

In the following the default value K = 3 will be used for
K-NN classification into the input space.

The use of clustering in HONFIS networks is suited to
capture volatility clustering in energy commodity prices.

GARCH models are able to model volatility clustering
mainly because the model parameters are estimated repeat-
edly over time. This is also obtained by our proposed
approach. However, the standard GARCH model in (3) is
only a linear one, which unlikely can capture the clusters
present inside the training set. Consequently, this makes
very critical the choice of the number of past observations
to be used for prediction. Nonlinear GARCH models can
alleviate this problem, although using a global nonlinear
regression. The training algorithm of HONFIS networks is
intended to find such clusters as its primary goal; nonetheless,
the capability of HONFIS to find volatility clustering and
nonlinear phenomena in the energy commodity time series
will be clearly proved in Sect. IV.

B. Optimization of the HONFIS Structure

When training a HONFIS network, the main problems
are the local convergence of estimation algorithms and the
correct determination of the number C of rules. The former
problem mainly depends on a good (usually random) initial-
ization of numerical parameters associated with each rule2.
The latter one is a well-known problem, which is directly
related to the generalization capability of the neurofuzzy
network and it can also be referred to as ‘structural optimiza-
tion’ problem. In fact, the HONFIS performance could be
inadequate if the training set is either underfitted or overfitted
by a lacking or an excessive number of rules, respectively.

A plain solution to these problems is based in this paper
on the use of the clustering algorithm with different values
of C and with different initializations for every value of C.
Once the set of different HONFIS networks is generated, the
best network can be chosen by relying on the supervised
nature of the learning procedure, i.e. by using a cost func-
tion measuring the overall generalization capability of the
network in terms of its complexity and its approximation
error. Basic concepts of learning theory can be adopted in
this regard [11], [12]. Namely, the ANFIS network achieving
the best generalization capability is the one that, under the
same performance on the training set, is characterized by the
lowest number of rules.

As a measure of the network performance on the training
set, the mean squared error (MSE) is adopted:

E =
1

NT

NT∑
t=1

(yt − ỹt)2 , (18)

where ỹt is the output generated by the HONFIS network in
correspondence to the tth input pattern xt of the training set.
The optimal network is selected by using the following cost
function depending upon the number of HONFIS rules:

F (C) = (1− λ)
E(C)− Emin

Emax − Emin
+ λ

C

NT
, (19)

where Emin and Emax are the extreme values of the per-
formance E that are encountered during the analysis of the

2In the present case, the initialization is carried out by assigning the
patterns to clusters randomly before the clustering iteration starts.
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different HONFIS networks; λ is a weight 0 ≤ λ ≤ 1. This
weight is not critical, since the results are slightly affected by
its variation in a large interval centered in 0.5. Evidently, for
a given value C = C̄, the HONFIS network showing the best
value F (C̄) in (19) will be the one whose initialization and
the successive clustering iterations yield the best performance
E(C̄) on the training set.

The plain maximization of (19) is obtained by a construc-
tive procedure, where the number of rules is increased from 1
to Cmax, being Cmax a fraction of the training set cardinality
NT that represents the maximum complexity allowed to the
network. For each value of C, different initializations (i.e.,
starting values of the network parameters) are considered
and several HONFIS networks are generated through the
previous clustering procedure. In fact, the latter is based
on a random initialization and hence, different initializations
might produce different networks for the same value of
C because of the presence of local minima. If different
T initializations are carried out for each value of C, the
optimization procedure will generate TCmax networks and
the optimal one will be selected according to (19).

IV. PERFORMANCE EVALUATION

The validity of the proposed approach has been validated
by means of extensive computer simulations. Some illustra-
tive examples are summarized in this section, where actual
return series related to energy commodity prices are used.
The numerical results are obtained by using well-known
neural and fuzzy neural models, which are compared with re-
spect to the commonly used combination of ARMA-GARCH
models estimated by maximum Gaussian likelihood.

The training procedure of neural regression models follows
the scheme illustrated in Sect. II. Bearing in mind the
introduced notation, let yt, t = TS . . . (TS +NS − 1), be the
set of actual samples of the time series to be predicted.
For each sample, the neural networks are trained using the
previous NT observations of the time series, i.e. from t−NT
to t−1, together with the related innovations and conditional
variances. A one-step-ahead prediction is therefore applied
and this procedure is iterated NS times. After every pre-
diction, the sequences of innovations, conditional mean and
conditional variance forecast are updated. As mentioned, we
adopt quadratic functions within HONFIS networks for the
output of the kth rule, k = 1 . . . C:

h
(
x;ω(k)

)
=ω

(k)
21 x

2
1 + · · ·+ ω

(k)
2n x

2
n+

ω
(k)
11 x1 + · · ·+ ω

(k)
1n xn + ω

(k)
0 .

(20)

In addition to the proposed HONFIS neural network,
structurally optimized by the constructive procedure previ-
ously illustrated, we further consider three well-known neural
architectures: RBF, MoG and ANFIS. The former is a feed-
forward neural network trained by a constructive procedure
that iteratively creates a radial basis network one neuron at a
time. Neurons are added to the network until an error goal or
a maximum number of neurons is reached [15]. The Mixture
of Gaussian (MoG) neural network is particularly suited for

ill-posed and non-convex approximation and prediction tasks;
it is trained by an Expectation-Maximization (EM) algorithm
[16]. The ANFIS network, which use linear consequent
functions in (9), is trained by a subtractive clustering method
for rule extraction [17], while the rule parameters are ob-
tained by means of a standard least-squares method coupled
with the back-propagation optimization [11]. All the training
procedures also aim to optimize the structural complexity
(i.e., number of kernels, hidden nodes, fuzzy rules, etc.) of
the resulting neural network by cross-validation. For reasons
of conciseness we will not provide details about complexity
in the following, since it is optimal as long as the neural
network exhibits a good generalization capability, which is
evaluated as described in the following by means of the
network’s performance on test sets not used during training.

We take particular care to the criteria adopted to eval-
uate the performance of the algorithms. Let µt be the
set of conditional means representing the prediction (ob-
tained by using any model) of the corresponding values yt,
t = TS . . . (TS +NS − 1). The error measures used in this
paper are the following ones:
• Mean Squared Error (MSE):

MSE =
1

NS

∑
t
(yt − µt)2 ; (21)

• Normalized Mean Squared Error (NMSE):

NMSE =

∑
t (yt − µt)2∑
t (yt − ȳ)

2 ; (22)

• Noise-to-Signal Ratio (NSR):

NSRdB = 10 log10

∑
t (yt − µt)2∑

t y
2
t

; (23)

where ȳ is the average of the actual NS samples of yt.
Evidently, the lower is the value of all these errors the better
is the prediction accuracy.

A successful model describing spot prices dynamics must
capture the statistical features of the analyzed data in the
simulated series. To this aim, the unconditional moments
from the first up to the fourth order are estimated (as
time averages) and considered for both actual and predicted
sequences. A given model is suited to forecast and model
energy commodity prices when the first four moments of
the predicted sequences result as close as possible to the
moments estimated on the market data. Being able to re-
produce the probability distribution of the observed series
together with an accurate prediction of the daily prices will
allow investors and risk managers to estimate the profit/loss
scenarios to set up the adequate risk management strategies.

We consider the time series obtained from the daily prices
of specific energy commodities. We carried out several tests
to assess the validity of the proposed approach. Coal, natural
gas, crude oil, and electricity prices over the period 2001-
2010 were collected for both the European and the US
markets. The results reported in this paper refer to the
US market only, similar results have been obtained for the
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TABLE I
NUMERICAL RESULTS FOR DJUSCL RETURN SERIES

Errors Unconditional Moments
Model

MSE NMSE NSR Mean Variance Skewness Kurtosis

DJUSCL −0.31 0.74 −0.41 5.60

GARCH 0.80 1.08 0.33 0.34 0.33 0.07 9.36

RBF 0.76 1.03 0.13 −0.39 0.88 −0.18 5.28

MoG 0.78 1.04 0.18 0.77 1.01 −0.32 5.20

ANFIS 0.77 1.04 0.17 −0.27 0.91 −0.41 5.34

HONFIS 0.76 1.04 0.17 −0.29 0.81 −0.35 5.52

MSE, mean, and variance are scaled by 10−3

European data set not showing significant differences in
the forecasting ability. The studied commodities and the
related indexes are: coal (DJUSCL, in $/ton); Henry Hub
natural gas (HH, in $/MMBtu); crude oil (WTI, in $/barrel),
and electricity (PJM, in $/MWh). For electricity prices we
chose the peak load contract referred to h. 12:00. For each
commodity price log-returns are estimated using (1). We
chose a well representative time window across the ‘very
critical’ year 2008, i.e. from the beginning of 2006 to the end
of 2009. So, taking into account that we have approximately
250 prices and 249 returns per year in the case of coal,
natural gas and crude oil series, each return series consists
of about 1000 samples. In the case of electricity prices we
have a series of 365 data, given that electricity is traded every
day of the year; in this application, for comparison purposes,
we adjust the series to 250 trading days only. Each model
is trained on the previous NT = 500 samples (almost two
years) and NS = 500 samples are predicted, i.e. the last two
years starting from t = 501 to the last sample of 2009.

The prediction errors of the conditional mean are eval-
uated; in addition, the four unconditional moments are es-
timated for both the predicted sequences and the related
original series. Prior investigations can be made in order to
find the best combination of the model orders and the size of
the training set as well; a fine tuning for the optimal estimate
of every model can be addressed in future research works. In
order to obtain an accurate comparison of the performances
obtained by the proposed neural networks with respect to
standard models, we carried out a preliminary optimization
of the main model parameters, i.e. R, M , P , and Q, so as
to obtain the best performance of the reference ‘GARCH’
model for a given time series. Then, every model will use
the same parameters when applied to the same time series.

The optimal parameters of the coal DJUSCL returns are
R = 1, M = 1, P = 5, Q = 1; hence, a GARCH reference
model ARMA(1, 5)-GARCH(1, 1) is fitted. The numerical
results are summarized in Table I: all the neural models score
a prediction error better than GARCH; RBF obtains the best
NSR but the skewness is not properly matched as in the case
of ANFIS and HONFIS that have a comparable performance.
HONFIS achieves a good NSR performance of 0.17 dB and
it is able to follow the dynamics of both conditional mean
and increasing volatility, as proved by the behavior of the
estimated conditional variance shown in Fig. 1.

500 600 700 800 900 1000
−0.2

0

0.2
Conditional mean: forecast (black), actual time series (gray)

500 600 700 800 900 1000
−0.2

0

0.2
Forecast error (innovation)

500 600 700 800 900 1000
0

2

4
x 10

−3 Conditional variance (volatility)

Fig. 1. Prediction of coal returns using the HONFIS neural network.

TABLE II
NUMERICAL RESULTS FOR HH RETURN SERIES

Errors Unconditional Moments
Model

MSE NMSE NSR Mean Variance Skewness Kurtosis

HH −0.46 1.72 1.46 10.62

GARCH 1.97 1.14 0.57 1.65 0.12 2.49 67.15

RBF 1.87 1.09 0.37 −0.44 1.92 0.27 4.54

MoG 1.80 1.05 0.21 −0.34 1.90 1.13 9.94

ANFIS 2.05 1.19 0.75 −0.47 1.87 0.71 7.35

HONFIS 1.67 1.03 0.13 −0.45 1.77 0.99 8.46

MSE, mean, and variance are scaled by 10−3

The numerical results for HH returns of natural gas are
reported in Table II. The optimal parameters are in this
case R = 2, M = 2, P = 2, Q = 1, so a GARCH
reference model ARMA(2, 2)-GARCH(2, 1) is fitted. The
HONFIS neural network has the best NSR performance of
0.13 dB and the related moments adequately fit with those
of the original time series. A sufficient accuracy is also
obtained by RBF and ANFIS neural networks. The GARCH
is not suitable for the prediction of HH returns, since the
moments are estimated very poorly, especially the kurtosis.
The numerical results of the HONFIS neural network are
qualitatively confirmed by the accurate predictions reported
in the plots of Fig. 2, especially in the case of volatility.

The large volatility of crude oil WTI returns at the end
of 2008 is the feature that requires an accurate forecasting
technique. A more complex model is therefore necessary,
using R = 4, M = 2, P = 2, Q = 3. The GARCH reference
model ARMA(4, 2)-GARCH(2, 3) is evidently outperformed
by the neural networks, as evidenced by the results sum-
marized in Table III. The best NSR is once again obtained
by HONFIS, although the predicted sequence does not fit the
skewness of the original one; the ANFIS performance suffers
from the same drawback. The MoG network is able to fit
the original moments, also maintaining a good prediction
accuracy and following the changes of volatility in the
underlying process.

Finally, the numerical results for the returns of PJM elec-
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Fig. 2. Prediction of natural gas returns using the HONFIS neural network.

TABLE III
NUMERICAL RESULTS FOR WTI RETURN SERIES

Errors Unconditional Moments
Model

MSE NMSE NSR Mean Variance Skewness Kurtosis

WTI −0.10 0.11 0.34 6.51

GARCH 0.12 1.00 0.01 0.43 0.01 0.48 9.38

RBF 0.11 0.94 −0.27 −0.01 0.12 0.16 4.06

MoG 0.11 0.92 −0.36 −0.10 0.10 0.44 5.73

ANFIS 0.09 0.89 −0.50 −0.05 0.12 −0.25 7.22

HONFIS 0.08 0.85 −0.71 −0.08 0.13 −0.01 6.98

MSE, mean, and variance are scaled by 10−3

TABLE IV
NUMERICAL RESULTS FOR PJM RETURN SERIES

Errors Unconditional Moments
Model

MSE NMSE NSR Mean Variance Skewness Kurtosis

PJM 0.22 1.21 0.38 5.52

GARCH 1.19 0.98 −0.09 1.53 0.24 0.53 8.10

RBF 0.71 0.58 −2.36 −0.11 1.64 −0.01 2.96

MoG 0.57 0.47 −3.28 −0.41 1.77 0.28 4.61

ANFIS 0.64 0.53 −2.76 −0.21 1.24 0.26 5.58

HONFIS 0.60 0.51 −2.92 −0.17 1.21 0.29 5.46

MSE, mean, and variance are scaled by 10−3

tricity index are reported in Table IV. The model parameters
are R = 3, M = 2, P = 1, Q = 1; the GARCH
reference model is ARMA(3, 2)-GARCH(1, 1). The MoG
neural network performs better than the other models in
this case. Anyway, the proposed HONFIS model performs
better than the original ANFIS network. Globally, neural
networks improve the NSR performance of more than 2 dB
with respect to GARCH, despite a biasing that shifts the
estimate of the mean to negative values.

V. CONCLUSION

A new neural network approach is proposed for model-
ing time series associated with energy commodity prices,
which is based on fuzzy neural networks using higher-order
Sugeno-type consequent rules. The use of a constructive

procedure determining automatically the optimal number of
fuzzy rules is also illustrated in order to avoid overfitting and
maximize the generalization capability of the neural network.

The proposed approach provides an accurate description
of energy prices dynamics, allowing us to estimate daily
prices for energy commodities over a long time horizon.
The validation performed on historical data shows that the
neural network approach generates prices that are able to
replicate the daily data and to reproduce the same probability
distribution for the various series. The proposed HONFIS
model, using quadratic consequent rules, outperforms the
original ANFIS network in almost all cases, making useful
significantly the increased complexity of the related model.

Currently, we are investigating more advanced techniques
for the application of the proposed approach to a multivariate
time series analysis and for the automatic and more reliable
selection of the samples to be used for prediction, including
the order of regression models and the resulting complexity
of neural models.
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