
Superpixel Appearance and Motion Descriptors for
Action Recognition

Xuan Dong
Faculty of Information Technology
Macau University of Science and
Technology, Avenida Wai Long

Taipa, Macau
Email: dongxuanowen@gmail.com

Ah-Chung Tsoi
Faculty of Information Technology
Macau University of Science and
Technology, Avenida Wai Long

Taipa, Macau
Email: actsoi@must.edu.mo

Sio-Long Lo
Faculty of Information Technology
Macau University of Science and
Technology, Avenida Wai Long

Taipa, Macau
Email: sllo@must.edu.mo

Abstract—This paper introduces a novel video representation
based on superpixel segmentation and appearance and motion
descriptors. Superpixel represents a very useful preprocessing
step for a wide range of computer vision applications, as they
group pixels into perceptually meaningful atomic regions which
can be used for recognizing complex motion patterns. We con-
struct a novel video representation in terms of superpixel-based
histograms of oriented gradients (HOG), histograms of optical
flow (HOF) and motion boundary histograms (MBH) descriptors,
and integrate such representations with a bag-of-features (BoF)
model for classification. The proposed approach is evaluated in
the context of action classification on a challenging benchmark
dataset: UCF Sports dataset and it achieves 87.9% generalization
accuracy. The experimental results demonstrate the advantage of
superpixel-based descriptors compared to other approaches for
human action recognition.

I. INTRODUCTION

Human action recognition in videos has been a very active
research area in computer vision and machine learning over
the past years, as it can be considered as one of the key
pre-requisites for video analysis and understanding, such as
video indexing and retrieval, human-computer interaction, and
activity monitoring [1]–[3]. In general, a popular approach
is to extract a set of local descriptors first, and then to
apply a bag-of-features model [5] for matching these local
descriptors obtained in the set of training video clips, which are
labeled, to those yet unlabeled in the testing set. Despite recent
developments, the representation of local regions in videos is
still an open field of research.

Although much research has been reported on human
action classification, recognizing human actions from realis-
tic videos still presents a challenging problem due to the
significant camera motion, background clutter and changes
in object appearance, scale and illumination conditions [1],
[4], [6], [7]. There are many existing methods for represent-
ing a video, for example, histograms of oriented gradients
(HOG) [8], histograms of optical flow (HOF) [9], motion
boundary histograms (MBH) [10], trace transform [4] etc.
This is because each primitive (descriptor) cannot fully capture
the underlying system dynamics of human action as provided
through pixel intensity variations in space and time in the
video. The idea to utilize superpixels as a primitive for image
analysis and processing was introduced in [11]. Superpixel is
a region in which neighboring pixels with similar low-level

features like color or texture are grouped into perceptually
meaningful homogeneous region, which creates a spatial sup-
port for region-based features [12]. Regions [13] obtained by
superpixels might be a more natural representation of reality
and an object is usually composed of several superpixels.
Meanwhile, superpixel provides a compact representation of
an original image, which has a great improvement in com-
putational efficiency, lower run time and memory cost [14].
Especially for video applications [1], [6], [12], the usage of
superpixels instead of raw pixel data is proposed, as otherwise
a vast amount of data has to be handled. In this paper, the
basic idea is to consider each superpixel as a single entity.
Then a new approach to construct superpixel appearance and
motion descriptors is proposed, and it can be used as one
way of video representation. Once a good set of descriptors
is obtained, the learning would be straightforward, applying
standard classification algorithms like support vector machines,
or kernel machines.

The remainder of the paper is organized as follows:
Section II presents related work. In Section III, we briefly
summarize the generation of SLIC superpixel algorithm, and
then explain our approach for superpixel-based HOG, HOF and
MBH descriptors respectively. The classification framework
is presented in Section IV, and experimental results and
comparisons with other state-of-the-art approaches are shown
in Section V. Some conclusions are given in Section VI.

II. RELATED WORK

Local space-time features [4], [15] provide a good video
representation for human action recognition. Such features
are usually extracted directly from videos, and they capture
appearance and motion characteristics and provide relatively
independent representation of sequences with respect to their
spatio-temporal shifts and scales as well as background clutter
and multiple motion in the scene [3]. There are a number of
approaches for extracting local space-time features in videos
[4], [15]–[17]. The Harris3D detector [15] introduces spatio-
temporal interest points which are local maxima of a cor-
nerness condition at each pixel. The Cuboid detector [16] is
based on a cornerness function which combines a 2D Gaussian
filter in space with a 1D Gabor filter in time. The Hessian
detector [17] measures the saliency with the determinant of the
Hessian matrix. Trace transform, a generalization of Randon
transform can be used to extract features ]citetrace. Dense
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sampling [3], [18] extracts video patches at regular positions
and scales in space and time. To describe space-time fea-
tures, feature descriptors are introduced to capture shape and
motion in the neighborhoods of selected points using image
measurements, which include higher order derivatives [19],
brightness information [16], HOG [8], HOF [9] and MBH [10],
to spatio-temporal extension of image descriptors, such as 3D-
SIFT [20], HOG3D [2] and extended SURF [17].

Tracking interest points [7] through video sequences is
an alternative approach to handle different characteristics of
space domain and time domain in videos. Spatio-temporal
interest points encode information at a given location in space
and time. In contrast, trajectories track a given spatial point
over time in video sequences and capture motion information.
To obtain feature trajectories, either a KLT (Kanade-Lucas
Tracker) is used [21], [22] or SIFT descriptors between con-
secutive frames are matched [23], [24]. Recently, a few pub-
lications [7], [25], [26] show good performances in a number
of benchmark datasets using a dense trajectories approach.

Since the introduction of the concept of superpixel, it
becomes much more efficient to process high level repre-
sentation in many vision applications [27]–[29] than using
pixels. In general, algorithms for generating superpixels can
be categorized into graph cuts approaches [27], [30]–[32],
generative models [29] and clustering approaches [33]–[36].
Graph cuts approaches treat each pixel as a node and the
similarity between neighboring pixels using an edge weight.
Superpixels are obtained by minimizing a global cost function.
Generative models [29], on the other hand, assumes that
superpixels are generated by an underlying Bayesian model.
Clustering approaches group pixels together into regions by
performing a gradient ascent process iteratively. The clusters
formed are gradually refined until convergence to obtain the
superpixels. In this paper, the Simple Linear Iterative Cluster-
ing (SLIC) [14] is applied to generate superpixels due to its
simplicity and efficiencies in contrast to other state-of-the-art
methods [28], [29], [34].

III. SUPERPIXEL-BASED DESCRIPTORS

In this section, we present a way on how to extract
superpixel-based descriptors from video clips. An overview
of the SLIC algorithm is shown in Section III-A. Then a pre-
sentation of the appearance and motion descriptors is provided
in Section III-B and Section III-C respectively.

A. SLIC superpixel segmentation

SLIC segmentation [14] is an efficient cluster technique,
which bears some resemblance to the k-means clustering
method. Pixels of an image are considered as data points in
a multi-dimensional feature space in which each dimension
corresponds to a color channel or image coordinate of the
pixels under consideration. Superpixels are represented by
clusters in this multi-dimensions feature space and each data
point can only be assigned to one cluster. This assignment de-
termines the segmentation and the superpixel is obtained. SLIC
segmentation technique can produce superpixels with uniform
size and shape, maintain connectivity and compactness, and
preserve original image edges [14], in contrast to those formed
by using a generative model [29], which may allow the shape

and size of superpxiels to vary. As shown in Fig. 1, the lattice-
like superpixels are obtained, which are highly homogenous
and compact.

(a) Diving. (b) Lifting.

(c) Swinging on the pommel horse. (d) Swinging at the high bar.

Fig. 1. Illustration of segmented UCF Sports images by SLIC algorithm. The
red dot points are cluster centers when the superpixel size equals to 30× 30
pixels approximately.

Specifically [14], given an image with 𝑁 pixels, it starts
with sampling 𝐾 regularly spaced cluster centers at every grid
step 𝑆 =

√
𝑁/𝐾, and perturbing them in a 𝑄×𝑄 neighbor-

hood to the lowest gradient position, 𝑄 = 3 in our experiments.
Then clustering is performed in a five dimensional [xylab]
space, where [lab] is the pixel color vector in CIELAB color
space and xy is the pixel position. Pixels in the input image
𝑝𝑖 are assigned to the best matching cluster center 𝑐𝑘 from a
2𝑆×2𝑆 neighborhood around the cluster center by minimizing
the distance measure 𝐷total

𝐷total(𝑝𝑖, 𝑐𝑘) = 𝐷color(𝑝𝑖, 𝑐𝑘) +
𝑚

𝑆
𝐷space(𝑝𝑖, 𝑐𝑘),

where 𝐷color is the color distance which ensures the superpixel
is homogeneous, 𝐷space is the spatial distance which forces the
compactness of superpixel, and 𝑚 controls the relative weight
between color similarity and spatial proximity. The greater the
value of 𝑚, the more spatial proximity is emphasized and the
more compact the cluster. 𝑚 = 10 is chosen in this paper. This
roughly matches the empirical maximum perceptually mean-
ingful CIELAB distance and offers a good balance between
color similarity and spatial proximity. After several iterations
of the above operation, the algorithm converges to the best
position of the cluster centers. Further details can be found in
the supplement of [14].

B. Appearance descriptor

The basic idea of an appearance descriptor is that local
object appearance can often be characterized rather well by the
distribution of local intensity gradients. Histograms of oriented
gradients (HOG) descriptor [8] is one of the appearance de-
scriptors for representing visual appearance of images, which
provides a robust feature set that allows the human form to
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be discriminated clearly, even in cluttered backgrounds and
changed illuminations.

In order to compute a histogram of superpixel-based
gradient orientations, the superpixel can be considered as a
pixel, i.e., the cluster center of SLIC can be considered as a
superpixel representation. The rationale for this is that once
the clustering converged, the cluster center together with its
neighborhood centers contain most information necessary to
characterize an action. A superpixel acts in the same manner
as the cell, and its adjacent superpixels and itself behave
like the block in pixel-based HOG. At each superpixel, the
image gradient vector is calculated and converted to an angle,
voting into the corresponding orientation bin with a vote
weighted by the gradient magnitude. Votes are accumulated
over this superpixel block and a 𝐿2 normalization runs on each
superpixel block to provide strong illumination invariance. The
steps involved in obtaining the superpixel based HOG are
illustrated in Fig. 2. In order to simplify the description, a
circle is used to represent superpixel in Fig2.

Fig. 2. Illustration of the computation of superpixel-based HOG de-
scriptor. (a) Gradient vectors among the middle superpixel and its adjacent
superpixels need to be computed (upper left); (b) An 8-bin histogram of
gradient orientations is computed over a set of gradient vectors (bottom left);
(c) A 72-dimensional histogram for 2D HOG is a result of concatenation
of one superpixel and its eight-orientation neighborhoods. Eight-orientation
neighborhoods means that the xy plane is divided into eight equal parts, and
the cluster center of superpixel falling into a certain part indicates that the
superpixel belongs to the corresponding orientation. If there is no superpixel
in some orientations, an 8-bin zero histogram will be padded (upper right);
(d) An averaged 2D HOG is computed between five frames and the 3D HOG
is a concatenation of three averaged 2D HOG (bottom right).

Empirically, the length of the construction along the video
sequences is set to 15 frames (i.e., 3× 5 frames).

C. Motion descriptors

For encoding the local motion information, histograms of
optical flow (HOF) [9] are employed to analyze the motion
of the objects in an image. In practice, the implementation
of superpixel-based HOF is similar to that of HOG, but the
gradient 𝑔 = (ℐ𝑥, ℐ𝑦) in HOG is replaced by the optical flow
field 𝜔 = (ℐ𝑢, ℐ𝑣) used for HOF, where ℐ𝑥 and ℐ𝑦 are the 𝑥
and 𝑦 derivative of image ℐ respectively, and ℐ𝑢 and ℐ𝑣 are
the horizontal and vertical optical flow components. For the
2D superpixel-based HOF descriptor, an additional zero bin is
added which accounts for the optical flow magnitudes when

they are lower than a threshold. The dimension of the final
HOF descriptor is 243 (i.e., 81× 3).

Optical flow represents the absolute motion between two
frames. We need another motion descriptor which characterizes
human action well while remaining resistant to typical camera
and background motions. Motion boundary histograms (MBH)
descriptor [10] computes the derivatives separately for the
horizontal and vertical components of the optical flow, which
encodes the relative motion between pixels and removes the
locally constant camera motion. For this reason, MBH is much
more robust and discriminative for action recognition [7].

The simplest approach to obtain a superpixel-based MBH
descriptor is to treat horizontal and vertical components of the
optical flow 𝜔 = (ℐ𝑢, ℐ𝑣) as independent. Spatial derivatives
{(ℐ𝑢𝑥 , ℐ𝑢𝑦 ), (ℐ𝑣𝑥 , ℐ𝑣𝑦 )} are computed for each of them, and the
orientation information is quantized into 9-bin histograms and
the magnitude is used for vote weighting for each component
(i.e., MBHx and MBHy) in the same manner as those of
the HOF descriptor. Both histogram vectors are normalized
separately with their 𝐿2 norms. For both MBHx and MBHy
the feature vector size is 243 (i.e., 81× 3).

IV. CLASSIFICATION

In this section, we will first describe the bag-of-features
approach as used in our experiments and then we will describe
the dataset and the experimental protocol.

A. Bag-of-features model

The standard bag-of-features (BoF) [19], [37]–[39] ap-
proach is applied to convert the local descriptors from a video
into a fixed dimensional vector. First, a codebook for each
descriptor is constructed separately by the k-mean clustering
algorithm, and then the clusters will be served as visual
words [40]. Descriptors are then assigned to their closest visual
word using the Euclidean distance. This is essentially a vector
quantization step in an unsupervised learning approach. The
resulting histograms of visual word occurrences are used as
video representations.

For classification we use a kernel machine with a 𝜒2 kernel:

𝐾𝜒2(𝐻𝑖, 𝐻𝑗) = 𝑒𝑥𝑝(− 1

2𝐴

𝑉∑

𝑘=1

(ℎ𝑖𝑘 − ℎ𝑗𝑘)2
ℎ𝑖𝑘 + ℎ𝑗𝑘

)

where 𝐻𝑖 = {ℎ𝑖𝑘}𝑉𝑘=1 and 𝐻𝑖 = {ℎ𝑗𝑘}𝑉𝑘=1 are the frequency
histograms of visual word occurrences and 𝑉 is the vocabulary
size. 𝐴 is the average channel distance between all training
samples [41]. In the case of multi-class classification, the one-
against-one SVM is applied. It constructs 𝑀 × (𝑀 − 1)/2
binary classifiers, using all the binary pair-wise combinations
of the 𝑀 classes. Each classifier is qualified by using the
examples of the first class as positive and the examples of
the second class as negative examples. To combine these
classifiers, the Max Wins algorithm is used. It finds the
subsequent class by selecting the class voted by the majority
of the classifiers.

Typically, the approach for integrating the contribution
of different descriptors is the multi-channel SVM, which is
a case of multiple kernel learning. We simply average the
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kernels computed from different representations to combine
different channels using the idea of multi-channel SVM. In
the following, we use the symbol “+” to represent combined
descriptors, for example, “HOG+HOF” and “MBHx+MBHy”.

B. Dataset

The UCF Sports dataset [42] which contains ten actions:
diving, golf swinging, kicking a ball, weight lifting, horse
riding, running, skateboarding, swinging (on the pommel horse
and on the floor) and swinging (at the high bar). The dataset
consists of 150 video clips which are taken from real sports
broadcasts. We follow the same train/test samples protocol
proposed in [43], in which one third of videos from each action
category is taken to form the test set, and the rest of the video
clips are used for training purposes.

V. EXPERIMENTAL RESULTS

This section evaluates superpixel appearance and motion
descriptors (HOG, HOF and MBH) on the UCF Sports dataset.
The kernel machine with a 𝜒2 kernel is employed for classifica-
tion. The experiments are run 10 times for various parameters
and the average accuracy precision (AAP) [39] are reported. In
this paper, 𝑆𝑃 = 𝑛 denotes that the size of superpixel is 𝑛×𝑛
pixels approximately. The parameters of our approach are dis-
cussed in Section V-A. Section V-B presents the performance
of different superpixel sizes for various descriptors. Finally, we
compare our results with those obtained using state-of-the-art
approaches in Section V-C.

A. Parameter learning

For the construction of codebook in BoF model, a few
publications [2], [3], [7] argue that fixing the number of visual
words per descriptor to 4000 will give good results for a wide
range of datasets. However, in the superpixel-based case as
shown in Table I, HOG, HOF, MBHx and MBHy all give
the best results in the range of 400 and 500. The reason
is that superpixels are the results of perceptual grouping of
pixels and they carry more information than pixels, so the
number of visual words is reduced. Meanwhile, the usage of
superpixel instead of raw pixel data has a great improvement in
computational efficiency, as otherwise a vast amount of data
has to be handled. In the following experiments, we report
the best AAP between 400 to 600 visual words and cluster
a subset of 15000 randomly selected training features using
k-means clustering technique.

TABLE I. RESULTS OF VARIOUS SIZES OF VISUAL WORDS RANGING

FROM 400 TO 4000 ON HOG, HOF, MBHX AND MBHY DESCRIPTORS

(𝑆𝑃 = 25). THE BEST RESULTS FOR EACH DESCRIPTOR ARE SHOWN IN

BOLD.

HOG HOF MBHx MBHy

400 71.9 79.6 84.0 82.1
500 74.6 77.1 84.2 82.9
600 73.0 76.5 83.8 82.3
800 71.6 76.1 81.9 80.0
1000 69.9 75.3 77.4 77.3
2000 65.9 72.9 76.5 76.1
3000 64.7 69.9 75.1 74.5
4000 63.8 65.8 72.5 70.9

B. Evaluation of superpixel size

We report seven different 𝑆𝑃𝑠 on the UCF Sports dataset in
Table II. The best results for each descriptor are almost always
given by 𝑆𝑃 = 20 except in one case (MBHy). Especially,
superpixel-based HOF gives surprisingly good results by itself
and it achieves the highest accuracy 87.9% in our experiments.
The second best result 86.7% is obtained by the combination
of HOG and HOF. Separate HOF outperforms HOG due
to the intuitive fact that motion is more discriminative than
static appearance for action recognition. Generally, MBHx and
MBHy show similar performance, and both of them obtain a
relatively higher accuracy than other descriptors on various
superpixel size except 𝑆𝑃 = 20. Fig. 3 gives the confusion
tables of different superpixel descriptors.

TABLE II. COMPARISON OF DIFFERENT SUPERPIXEL-BASED

DESCRIPTORS ON THE UCF SPORTS DATASET. IMAGES ARE SEGMENTED

INTO 𝑆𝑃 = 32, 30, 25, 22, 20, 18, 15 BY SLIC [14]. THE SYMBOL ‘+’
DENOTES THAT INTEGRATING THE CONTRIBUTION OF DIFFERENT

DESCRIPTORS WITH THE MULTI-CHANNEL SVM. “COMBINED” INDICATES

THAT ALL DESCRIPTORS (HOG, HOF, MBHX AND MBHY) ARE

COMBINED USING THE MULTI-CHANNEL APPROACH. THE BEST RESULTS

FOR EACH DESCRIPTOR ARE SHOWN IN BOLD.

32 30 25 22 20 18 15

HOG 71.5 72.9 74.6 78.1 80.0 77.8 77.3
HOF 75.7 79.1 79.6 82.9 87.9 82.8 80.5
HOG+HOF 77.2 81.1 81.3 84.4 86.7 84.7 80.3
MBHx 80.6 83.4 84.2 84.8 85.1 85.1 82.3
MBHy 79.4 81.7 82.9 84.9 84.9 85.1 81.9
MBHx+MBHy 81.2 81.9 82.3 85.1 85.1 85.1 83.0

Combined 80.3 82.1 83.4 83.9 84.3 83.9 81.2

Table II shows that the choice of superpixel size is a key
issue for performance. On one hand, using large superpixel
may bring in the risk of a superpixel spanning across multiple
semantic objects. On the other hand, a small superpixel may
contain insufficient points to precisely define a good features.

C. Comparison with state-of-the-art approaches

First, we compare superpixel-based descriptors (HOG,
HOF, HOG+HOF and MBHx+MBHy) with a few pixel-based
descriptors separately in Table III, and comparison of the
superpixel-based descriptors to state-of-the-art approaches is
shown as Table IV.

TABLE III. COMPARISON OF SUPERPIXEL-BASED DESCRIPTORS WITH

PIXEL-BASED DESCRIPTORS. THE FIRST FIVE ROWS ARE THE RESULTS OF

LOCAL SPACE-TIME FEATURES APPROACHES AND THE NEXT THREE ROWS

ARE THOSE OF TRAJECTORIES APPROACHES. AVERAGE ACCURACY OVER

ALL CLASSES ARE REPORTED ON THE UCF SPORTS DATASET. MBH IS

THE COMBINATION OF MBHX AND MBHY.

HOG HOF HOG+HOF MBH

Harris3D [15] 71.4 75.4 78.1 –
Cuboids [16] 72.7 76.7 77.7 –
Hessian [17] 66.0 75.3 79.3 –
Dense sampling [3] 77.4 82.6 81.6 –
Dense cuboids [7] 80.2 77.8 – 83.2
SIFT trajectory [23] 74.2 69.9 – 72.1
KLT trajectory [21] 80.2 72.7 – 78.4
Dense trajectory [7] 84.3 76.8 – 84.2

Superpixel-based 80.0 87.9 86.7 85.1

For HOG case, the best results is obtained by dense
trajectory [7]. Because UCF Sports dataset is sports related and
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(a) Confusion table of superpixel-based HOG.
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(b) Confusion table of superpixel-based HOF.
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(c) Confusion table of superpixel-based MBH.
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(d) Combined descriptors (HOG+HOF+MBH).

Fig. 3. Confusion tables of superpixel-based descriptors on the UCF Sports
dataset, and 𝜒2 kernel SVM is applied.

the spatial context is very informative for sports actions as they
often involve specific equipment and scene types. Meanwhile,
HOG is designed to encode the static context information, and
dense trajectories capture the background which may provide
useful context information. However, for HOF, HOG+HOF
and MBH cases, superpixel motion descriptors outperform
the other approaches significantly. Superpixel-based HOF and
MBH descriptors improve the results as they represent zero-
order (HOF captures the absolute motion between two frames)
and first order (MBH encodes relative motion between pixels
in the optical flow) motion information.

TABLE IV. COMPARISON OF THE SUPERPIXEL-BASED DESCRIPTORS

TO STATE-OF-THE-ART APPROACHES, AS REPORTED IN THE CITED

PUBLICATIONS.

UCF Sports

Wang et. al. [3] 85.6
Kläser et. al. [44] 86.7
Kovashka et. al. [46] 87.3
Le et. al. [45] 86.5
Wang et. al. [7] 88.0

Superpixel-based 87.9

Table IV compares the proposed approach to state-of-the-
art results on the UCF Sports dataset. We can observe that
superpixel-based descriptors improve over these four pixel-
based local space-time features approaches [3], [44]–[46] and
are comparable to dense trajectories approach [7]. The en-
couraging results illustrate the ability of our method to extract
effective features for classification using superpixel appearance
and motion descriptors. The improvement of our descriptors is
also substantial as the number of features used for training and
testing is decreased and it is faster and more memory efficient
under the framework of BoF model.

VI. CONCLUSIONS

In this paper, a novel approach for efficient video repre-
sentation based on superpixel segmentation technique are pro-
posed. Superpixel segmentation preserves the salient features
of a pixel-based representation. Superpixel appearance and
motion descriptors are designed to be robust to the significant
intra-class variations, occlusion and background cluster. In the
experimental results, it is found that our approach has been
shown to outperform previous approaches which extract local
features on the common pixel-based representation. It is also
indicated that superpixel size is a critical factor in the de-
scriptor performance. The experiments verified that superpixel-
based video representation is effective for recognizing the
natural and realistic actions, and using hybrid features of
appearance and motion can improve the average recognition
accuracy.

In future work, we wish to investigate additional cues or
features for describing superpixels, i.e., edge information and
spatial location information. Meanwhile, we will consider the
temporal link between superpixels in successive images, e.g.,
the same image regions in consecutive frames are consistent.
We believe that temporal superpixels will bridge the relation-
ship between superpixels and videos.

Acknowledgements. This work was financially supported
by Fundo para o Desenvolvimento das Ciências e da Tec-

1177



nologia, Macau Special Administrative Region, China. Grant
Number: 034/2011/A2.

REFERENCES

[1] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos
‘in the wild”’, CVPR, 2009.
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