
Approximate Planning in POMDPs via MDP Heuristic

Yong Lin, Xingjia Lu and Fillia Makedon

Abstract— MDP heuristic based POMDP algorithms have
been considered as simple, fast, but imprecise solutions.
This paper provides a novel MDP heuristic value iteration
algorithm for POMDPs. Besides the help of MDP, our
algorithm utilizes a weighted graph model for the belief point
approximation and reassignment, to further improve the
efficiency and decrease the space complexity. Experimental
results indicate our algorithm is fast and has high solution
quality for POMDP problems.

I. INTRODUCTION

Partially observable Markov decision processes

(POMDPs) is a powerful probabilistic model for planning

problems with uncertainty. Extensive research works have

been taken on POMDPs and value iteration algorithm. We

summarize two trends of the POMDP research:

First, POMDP models have been thought as notoriously

hard to be solved. In a problem with n physical states,

POMDP planners must reason about belief states in an

(n−1)-dimensional continuous space [3]. The belief space

can be exponentially with the number of states. This will

lead to an intolerable time complexity. Researchers have

tried various approaches to improve the performance.

Second, more robot planning and controlling problems

are modeled as POMDP model. Former POMDP research

focused on simple problems, like Tiger, Shuttle, 4 × 4
Grid, Cheese Maze and 4 × 3 Grid [6] with less than

20 states. These problem configurations try to build a

simple approximation of the real world. Later research puts

into consideration more complex problems and a closer

approximation of the real world, such as Hallway, Hall-

way2, Tiger-grid [4] and Tag-domain [8]. They have tens

or hundreds of states, with actions and observations also

being more than earlier simple POMDP problems. More

and more researchers choose to believe that POMDPs is

an excellent mathematical approach to model real world

control problems. Therefore, with the development of

novel problem models, POMDP algorithms have to be

reevaluated and improved synchronously.

The solution quality is also an importance consideration

of POMDP algorithms. After all, the final purpose of

POMDP algorithms is to find optimal policies for the

planning and execution. The approach of exact belief space

is often considered in small POMDP problems. However,

more and more real world applications appear to have

hundreds and thousands of states, approximate algorithms

seem to be more feasible in solving these problems.

Yong Lin, Xingjia Lu are with the College of Science, Ningbo
University of Technology, Ningbo, Zhejiang, CN (email: {ylin,
xjlu}@nbut.edu.cn).

Fillia Makedon is with the Department of Computer Science and
Engineering, University of Texas at Arlington, Texas, USA (Email:
makedon@uta.edu).

A POMDP solution with a finite set of belief points is

called a point-based algorithm [8]. We build the algorithm

as a learning process by explore and exploit of the belief

space. A belief graph approach is introduced for the

approximation of belief states. Policies from MDP are

taken as heuristic to solve the POMDP problems.

Several MDP heuristic based algorithms from prior re-

search exhibit poor solution quality. The results of QMDP

[4] sometimes cannot achieve goal in POMDP problems.

The most likely state (MLS) [2] algorithm also does not

hold history information. From our experiment, MLS is

very fast for several POMDP problems, but it cannot work

well in the POMDP problem like Hallway2.

In this work, we make use of MDP heuristic in a

different way. Historical belief states are stored in the belief

space, optimal policies are computed by value iteration.

The use of MDP heuristic improves the performance. We

make the belief space size adjustable simply by configu-

ration parameters. The experimental results have verified

the robustness and preciseness of the algorithm.

II. TECHNICAL PRELIMINARY

A. POMDP Model

A Markov decision process (MDP) defines the model

an agent interacting synchronously with a fully observ-

able environment. This is described as a tuple Tmdp =
〈S,A, T, R, γ〉, where S is a set of states, A is a set of

actions, T (s, a, s′) is the transition probability from state

s to s′ using action a, R(s, a) defines the reward when

executing action a in state s, and γ is the discount factor.

The optimal state-action mapping for the tth step, denoted

as π∗

t , can be calculated by the optimal (t− 1)-step value

function V ∗

t−1:

π
∗

t (s) = argmax
a

[
R(s, a) + γ

∑

s′∈S

T (s, a, s′)V ∗

t−1(s
′)

]
(1)

A POMDP models an agent’s action in uncertainty

world. At each time step, the agent needs to make de-

cision based on the gathered historical information in

Markov model. A policy is defined as a function of

action selection under stochastic state transitions and noisy

observations. A POMDP is represented as Tpomdp−S
=

〈S,A,O, T,Ω, R, γ〉, where S is a finite set of states, A
is a set of actions, O is a set of observations. In each

time step, the agent lies in some state s ∈ S . After

taking an action a ∈ A, the agent goes into a new state

s′. The transition is a conditional probability function

T (s, a, s′) = p(s′|s, a), which is the probability the agent

lies in s′, after taking action a in state s. The agent makes

observations to gather information, with observation result

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1304

o ∈ O. This is modeled as a conditional probability,

Ω(s, a, o) = p(o|s, a).
When belief state is taken into consideration, the orig-

inal partially observable POMDP model changes to a

fully observable MDP model, denoted as Tpomdp−B
=

〈B,A,O, τ,R, b0, bg, γ〉, where b0 is an initial belief state,

and bg is the absorbing states, representing the goals and/or

termination states. The B is the set of belief states, i.e.

belief space. The τ(b, a, b′) = p(b′|b, a) is the probability

the agent changes from b to b′ after taking action a. The

R(b, a) =
∑

s R(s, a)b(s) is the reward for belief state b.

The POMDP framework is used as a control model

of an agent. In a control problem, utility is defined as a

real-valued parameter to determine the action of an agent

in every time step. This is represented as a real-valued

reward R(s, a), which is a function of state s and action

a. The optimal action selection becomes a problem to find

a sequence of actions a1..t to maximize the expected sum

of rewards E (Σtγ
tR(st, at)). In this process, what we

concern is the control effect, achieved from the relative

relationship of the values. When we use a discount factor γ,

the relative relationship remains unchanged, but the values

can converge to a fixed number. When states are not fully

observable, the goal becomes maximizing expected reward

for each belief. The nth horizon value function can be built

from the previous value Vn−1 using a backup operator H ,

i.e. V = HV ′. The value function is formulated as the

following Bellman equation

V (b) = max
a∈A

[R(b, a) + γ
∑

b′∈B

τ(b, a, b′)V (b′)] (2)

Here, b′ is the next step belief state,

b′(s) = bt(s
′) = ηΩ(s′, a, o)Σs∈S

T (s, a, s′)bt−1(s) (3)

where η is a normalizing constant.

When optimized exactly, this value function is always

piece-wise linear and convex in the belief space.

B. POMDP Solutions

Unlike MDPs, in which we can easily find out the

optimal policies. The uncertainty property and the scale

of problem models affect the solution of POMDP. Various

approaches have been tried in prior works. Algorithms

using the historical information to find the optimal policies

can be classified into value iteration and policy iteration.

Value iteration is an algorithm originated from the utility

theory. Some early algorithms, such as Witness algorithm

[3], consider the use of exact value function for the

belief states. Unfortunately, the time and space complexity

of exact value iteration makes it only suitable to solve

POMDPs with dozens of states. More researchers try to

find approximate methods for value iteration. A smooth

and differentiable approximation method called SPOVA is

proposed in [7]. The Boyen-Koller approximation algo-

rithm for belief states is proposed in [1]. It requires the

model to be specified as a dynamic Bayesian network. In

[13], belief states are approximated by sets of (weighted)

samples drawn from particle filter. When a new belief

state is encountered, its Q-value is obtained by finding k

nearest neighbors from historical record, with result being

the linearly averaging of the Q-values.

MDP heuristic is considered in QMDP [4] to solve

POMDPs. The Q value for belief state b is estimated as

Qa(b) =
∑

s b(s)QMDP (s, a). Policies within QMDP do

not take actions to gain information, and decisions are

made under one-step uncertainty. Therefore, QMDP can

lead to loops of belief states [4]. Several methods are

considered to improve the MDP heuristic approach. The

most-likely-state approximation computes the most likely

state x∗ = argmaxx b(x), and defines π(b) = πMDP (x∗).
A transition entropy Q-MDP algorithm is proposed in [6].

From the experimental results of Hallway2 problem, the

goal achievement percentage is 63.7%, comparing with

3.9% for Q-MDP.

Reachable belief state based algorithms (PBVI [8], Ran-

domized PBVI [12]) are considered as a substitute for

each belief update. PBVI produces new beliefs for every

action in a single step forward trajectory. It only keeps

one belief state which is farthest away from any points

already in the belief set B. The randomized PBVI initiates

reachable belief states by randomly exploring the environ-

ment. Instead of backing up every b ∈ B, it backs up

random belief states. Classification and pattern adaptation

are used in [9] to find a decomposition of belief space into

a small number of belief features. The planning is taken

over a low-dimensional space by discerning features and

using standard value iteration to find policies over discrete

beliefs. However, utilizing the classification technique on

the belief spaces, the efficiency issue needs to be taken into

consideration. Another is the cluster approach to aggregate

states [14], according to the optimal MDP values. The soft

clustered belief space is then projected onto the POMDP.

III. BELIEF VALUE ITERATION WITH MDP HEURISTIC

In POMDPs, since the world is uncertain, the process

to find optimal solution is a tradeoff of exploration and

exploitation. By exploring current space, we try to find

out the optimal solution. By exploiting unknown space,

new and better paths to the goal could be found.

A. Belief States Approximation

Belief states are continuous probabilities representing

the current realization of an uncertain environment. A

belief state is a sufficient statistic of the history. Thus,

the POMDP model can be solved using Tpomdp−B
. The

belief states approximation becomes an estimation from

an infinite continues belief space to a finite discrete belief

space, denoted as ˜B = SE(B), where SE is the belief state

estimation function. The solution becomes T
pomdp−B̃

=

〈 ˜B,A,O, V,Π, τ,R, b0, bg, γ〉, where V (s) is the optimal

value derived from TMDP , Π(b) is the optional set of

optimal actions for belief state b, and ˜B is a finite set of

belief states, comparing with the infinite set B.

In a point-based approach, a belief space is built using

the reachable points of belief states [8]. We adopt this kind

of reachable belief state points. A belief state b ∈ B is

1305

a probability distribution over discrete state space s1..n,
∑n

s=1 b(s) = 1. We define a belief point as a label to

identify the belief state b, denoted as ˜b. The identification

of a belief state b ∈ B is a classification of belief points

in the belief space. Our method is in two stages. In

the first stage, we use binary discrimination as a rough

classification of probability distributions. Let b1, b2 be two

belief states with the same state space, we can easily get

two binary similarities:

1) b1 and b2 are ε-binary similar iff ∀s, b1(s) > ε ∧
b2(s) > ε, or b1(s) ≤ ε ∧ b2(s) ≤ ε;

2) b1(s) and b2(s) are (1 − ε)-binary similar iff

∀s, b1(s) > 1 − ε ∧ b2(s) > 1 − ε, or b1(s) ≤
1− ε ∧ b2(s) ≤ 1− ε.

If belief states b1 and b2 are both ε-binary similar and

(1 − ε)-binary similar, then b1 and b2 are binary similar,

denoted as b1 ≈ b2.

Using binary belief discrimination, the continuous infi-

nite belief space B is approximated to a finite belief space
˜B, with size | ˜B| = 2|S|. In section III-C, we will introduce

an approach for the compact representation of belief states

in ˜B. The binary belief discrimination is a rough but

efficient classification for discrete states distribution. Its

time complexity is O(| ˜B||S|).
Although binary discrimination is efficient in approx-

imating the infinite belief space onto a finite horizon,

we have to consider a more precise method to match

belief states with labeled belief points, which becomes

the second stage. There are several mathematical models

to represent the difference of distribution, such as K-

L divergence. Considering the specific belief states dis-

tribution, we adopt the distribution distance and affinity

theory [5]. Let b1 and b2 be two belief states defined on

the same belief space B, the distance between b1 and

b2 is d(b1, b2) =
√

2(1− ρ(b1, b2)), where ρ(b1, b2) is

the affinity of b1 and b2, representing the likeness of the

probability distributions,

ρ(b1, b2) =

√

∑

s∈S

b1(s)b2(s) (4)

Matusita [5] proved ρ(b1, b2) has the following proper-

ties: (i) 0 ≤ ρ(b1, b2) ≤ 1; (ii) ρ(b1, b2) = 1 iff b1 = b2.

In Algorithm 1, we list the process for the estimation

of belief state b′, which is the next belief state computed

from b. If b′ is an existing belief state in ˜B, the algorithm

returns its belief point label. For a new belief point, we

will insert b′ in ˜B.

B. The MHVI Algorithm

As discussed above, the MDP heuristic based belief

value iteration (MHVI) algorithm utilizes an alternative tu-

ple T
POMDP−B̃

to model the POMDP problems. Solution

for the POMDP problem becomes a process to compute

the tuple. Besides the elements provided in Section III-A,

we introduce other elements in the following. The Π can

be obtained from the result of TMDP . We will provide

the method to compute B and τ later. With the above

Algorithm 1 Belief States Estimation

search b′ in {bx|τ(b, a, bx) > 0} by binary discrimination
if b′ ∈ {bx} then

find a best match belief point y by belief affinity
else

search b′ in B̃ − {bx} by binary discrimination
find a best match belief point y by minimal distribution
distance or belief affinity
if not found then

insert b′ into B̃
end if

end if

information, the value for belief point can be computed

by iterating equation (2). The approximate belief space ˜B
is initialized as |O|+ 2 belief points (one belief point for

each observation, plus b0 and bg), denoted as ˜B0..|O|+1. Let

belief point created by observation o be ˜B(o, s), ˜B(o, s) =
ηΩ(s, ∀a ∈ A, o). Unlike other belief points, during the

entire algorithm, the belief points ˜B0..|O|+1 keep fixed

without change.

On initialization, τ has a single entry, τ(bg, ∀a ∈
A, b0) = 1. More transitional relationships can be learned

during the explore-exploit process of value iteration.

Algorithm 2 MHVI Explore-exploit Iteration

repeat
b ← b′ of previous step
for any a ∈ A do

exploit belief point b′ from b by simulate one step forward
trajectory using action a

insert new belief point b′ to B̃

update τ by entry τ (̃b, a, b̃′)
update V(b′) = b′ × V (S)
if a ∈ Π(b) then

compute Va(b) using equation (2)
end if

end for
find b′ by π = argmaxa Va(b)

until converge

As is shown in Algorithm 2, MHVI assumes the optimal

policy π to be an element of the optimal policy set for

belief point Π(˜b), which is obtained from the tuple Tmdp.

We do not constrain the exploit process using the policy

set. Therefore, potential unknown belief points can still be

found, which will benefit the final solution. Benefit of this

constraint for optimal policies over Π(˜b) is, the solution

can be more failure-proof. Since |Π(b)| ≤ |A|, this will

also be helpful to decrease the exploration and search time.

For the transition probabilities of belief points, we have

τ(˜b, a, ˜b′) = Σo∈O
[Ω(b, a, o)T (b, a, o, b′)]

= Ω(b, a, o)

where T (b, a, o, b′) = 1 if SE(b, a, o) = ˜b′,

T (b, a, o, b′) = 0 otherwise.

We find out Ω(b, a, o) by the following processes. First

we compute b′, b′(s) = b(s′) = ηΣs∈S
b(s)T (s, a, s′),

where η is a normalizing factor. By Ω(b, a, o, s) =
ηb′(s)B(o, s), we can finally obtain the transition prob-

ability for τ(˜b, a, ˜b′).

1306

s

s

s

s

s

s

s

s

s

s

s

s

s

action
s

state

s
initial state absorbing state

s

s

(a) State Graph

(b) Belief Graph

Fig. 1. Example of State Graph and Belief Graph

C. Belief Graph and Belief Space Compression

The transitional relationship for fully observable prob-

lems is often represented as a state graph (Fig. 1(a)). In a

state graph, a node is a system state. States in a state space

are bijective to nodes in the state graph. The initial state s0
is the beginning node of a trajectory, and it can be revisited

during the traversal. The application appoints which node

be the initial state. Fig. 1(a) has only a single initial state.

This is because in every trajectory, we have only one initial

state. A state graph may have multiple absorbing states.

An edge in a state graph represents an action a ∈ A.

The transitional relationship is described as the probability

T (s, a, s′). A state graph may have loop, which starts from

state s and ends in s. A state graph may contain cycle,

which passes through state s, goes in some other states,

and returns to s. The absorbing states cannot be in a cycle.

In a state graph, reward from action a is represented as the

weight of edge, i.e. weight(s, s′) = R(s, a, s′).
The optimal policies of a state graph can form a path

P∗

s , starting from s0 and going into sg. There is no loop or

cycle in the optimal path P∗

s of a state graph. In a specific

application, the action may be uncertain, for example, a

traveler has 0.8 probability to reach new state and 0.2
probability to stay in current position of each step. This

may result in a loop in the real trajectory, but not a loop

in the optimal path P∗

s .

When it comes to the partially observable problems,

we can use the belief graph to show the transitional

relationship (Fig. 1(b)). In a belief graph, a node is a belief

point ˜b, which labels a belief state b. By using approximate

belief space, the cardinality |B| changes from infinite to

a finite value | ˜B|. Therefore, belief states from the real

belief space are surjective to nodes in belief graph. A belief

graph has an initial belief point b0 and an absorbing belief

point bg. An edge in a belief graph represents the action

and observation pair (a, o). A belief graph can contain a

loop, which starts from a belief point b and ends at b.

A belief graph may contain cycle, which passes through

belief point b, goes in some other belief points, and returns

to b. In a belief graph, the weight for an edge is the

reward from the action and observation pair (a, o), i.e.

weight(˜b, ˜b′) = R(b, a, o, b′).
Each benchmark POMDP problem initialized by former

researchers makes an assumption that, states in POMDP

are only partially observable, except for the absorbing

states. This makes the absorbing belief states identifiable.

The optimal policies of a belief graph form a path

P∗

b , starting from b0 and going into bg. Suppose a belief

graph is built from the exact belief space, i.e. every node

represents a different belief state, there will be no cycle

or loop in P∗

b . When we use the approximate belief space
˜B, multiple belief states may be projected onto one belief

point by surjection, therefore P∗

b may contain loop or even

cycle. This is different from the optimal path of a state

graph. If a path P∗

b is optimal, we have two constraint

conditions for the belief graph:

1) (Loop) ∀˜b, ˜b′ ∈ P∗

b , ˜b = ˜b′ ⇒ b 6= b′;

2) (Cycle) ˜b1, ˜b2, .., ˜bk, ˜b
′

1 ∈ P
∗

b , ˜b1 = ˜b′1 ⇒ b 6= b′1.

Belief space is an important factor influencing the

performance of the POMDP algorithm. The computing

cost for one iteration can be O(|A||S|2 + |A|| ˜B||S|). We

cannot change |S| and |A|. For POMDP problem with big

state space, the compression of belief space is an effective

strategy to maintain good performance. Other algorithms

also have some kind of constraints in order to restrict the

size of belief space. PBVI appoints only one belief point

in each time step. In this part, we introduce a least visited

belief point reassignment (LVBPR) approach.

At each time step, we record the visited count for each

belief point. Let ` be the belief point reassignment level.

We setup a buffer to store the belief points. At every time

step, the system has a probability to release the belief point

with visited count lower than `, and assign it to the new

belief state. Details of LVBPR approach are as following:

Let ϕ(˜B) be the buffer belief space with lower-bound

xϕ(˜B)y, size |ϕ(˜B)|, and upper-bound pϕ(˜B)q. At initial

time, let xϕ(˜B)y = ˜B
|O|+2, and the upper-bound of the

buffer belief space be pϕ(˜B)q = ˜B
|O|+2+|ϕ(B̃)|.

In every time step, we verify the visited count of xϕ(˜B)y
with `, if it is upper than `, xϕ(˜B)y ← xϕ(˜B)y + 1. We

get the available belief point from buffer ϕ(˜B). The current

location is set to an entry between xϕ(˜B)y and pϕ(˜B)q,

denoted as ϕ(˜Bx). If the visited count of current entry φ =
ϕ(˜Bx) is lower than `, we release τ(φ, ∀a ∈ A, ∀ ˜Bi ∈ ˜B)
and τ(∀ ˜Bi ∈ ˜B, ∀a ∈ A, φ), with φ assigned to the new

1307

belief state. Otherwise we search the available belief point

in next buffer entry. At each time step, if ϕ(˜Bx) ≤ pϕ(˜B)q,

ϕ(˜Bx) =

{

ϕ(B̃x) + 1 ∼ 1− p

xϕ(B̃)y ∼ p

where p is the probability to return to xϕ(˜B)y.

If ϕ(˜Bx) > pϕ(˜B)q, then pϕ(˜B)q ← pϕ(˜B)q + 1, the

entry of ϕ(˜Bx) is assigned to the current belief state, and

ϕ(˜Bx)← xϕ(˜B)y. We make use of the parameters `, ϕ(˜B)
and p to adjust the performance. Therefore, LVBPR is a

dynamic and configurable algorithm.

IV. EXPERIMENTAL EVALUATION

A. Performance Comparison

To evaluate the performance of MHVI, the benchmark

problems of Tiger-grid, Hallway, Hallway2 [4], Tag [8] and

RockSample [10] are chosen in the simulation experiments.

The experiments are implemented on Intel 2.4GHz CPU

2GB memory by Matlab.

The first experiment aims to get comparable results

with other algorithms. Replicating earlier experimental

setting, each problem is executed 100 times, terminates

after convergence, and max 251 steps. Results are averaged

over 100 runs. Table I provides the comparison results with

selected previous published algorithms. The comparison

is based on the goal completion rate, sum of rewards,

policy computation time and number of belief points. We

test Persus and MHVI in the same environment. Other

algorithms are listed as a reference. The comparison results

indicate MHVI achieves competitive performance.

Method Goal% Reward Time(s) |B|

Tiger-grid (36s 5a 17o)

QMDP[8] n.a. 0.198 0.19 n.a.

PBVI[8] n.a. 2.25 3448 470

Persus* n.a. 2.34 61.6 93

HSVI2[11] n.a. 2.30 52 1003

MHVI* n.a. 3.21 1.67 61

Hallway (60s 5a 21o)

QMDP[4] 47.4 0.261 0.51 n.a.

PBVI[8] 96 0.53 288 86

Persus* n.v. 0.51 61.4 105

HSVI2[11] n.v. 0.52 2.4 147

MHVI* 100 0.71 2.80 72

Hallway2 (92s 5a 17o)

QMDP[4] 25.9 0.109 1.44 n.a.

PBVI[8] 98 0.34 360 95

Persus* n.v. 0.35 64.7 124

HSVI2[11] n.v. 0.35 1.5 114

MHVI* 100 0.65 3.96 66

Tag (870s 5a 30o)

QMDP[8] 17 -16.9 16.1 n.a.

PBVI[8] 59 -9.18 180880 1334

Persus* n.v. -6.17 1542 418

HSVI2[11] n.v. -6.36 24 415

MHVI* 100 -7.37 9.24 104

RockSample[4, 4] (257s 9a 2o)

HSVI1[10] n.a. 18.0 577 458

HSVI2[11] n.a. 18.0 0.75 177

MHVI* n.a. 18.4 6.64 74

RockSample[5, 5] (801s 10a 2o)

HSVI[10] n.a. 19.0 10208 699

MHVI* n.a. 20.4 13.56 83

RockSample[5, 7] (3201s 12a 2o)

HSVI[10] n.a. 23.1 10263 287

MHVI* n.a. 23.0 225 98

RockSample[7, 8] (12545s 13a 2o)

HSVI1[10] n.a. 15.1 10266 94

HSVI2[11] n.a. 20.6 1003 2491

MHVI* n.a. 21.6 1959 140

n.a.=not applicable, n.v.=not available

TABLE I

PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS (THE

ITEMS LABELED BY ∗ ARE TESTED IN OUR PLATFORM)

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

Time(secs)

R
e
w
a
rd

(a) Hallway2

0 1000 2000 3000 4000
−9

−8

−7

−6

−5

Time(secs)

R
e
w
a
rd

(b) Tag

Fig. 2. MHVI Performance of Reward

In experiment 1, since the performance of MHVI is good

for every POMDP problem, we make them use the same

configuration. Rewards and | ˜B| are greatly affected by the

experimental configuration. For example, in Tag-domain

problem, the reward of MHVI is −7.37 and Persus can be

−6.17. In our experiments, the reward of MHVI can even

be −5.83. The size of ˜B is also changeable, i.e. it can be

small or large simply by changing the configuration.

B. Stage Convergence and Post-Convergence Iteration

Rewards and | ˜B| from the experiment 1 are taken under

given experimental configuration. Since we use discount

factor γ in Bellman equation, and the state space of MDP

is fixed, the value for each state is deterministic to converge

after sufficient iteration steps. The iteration process for

MHVI serves as a learning process to build the POMDP

model. The algorithm does not prohibit the increase of the

set ˜B. However, LVBPR method guarantees the increase

of historical information in a slow process.

With discount factor γ, the value function will always

converge for the POMDP problems. Given an approxima-

tion belief point set ˜B, since the belief point of absorbing

states bg ⊂ ˜B, if the values V(˜B0..|B̃|

) converge, the

absorbing states are sure to be visited, i.e. the goal has

been completed at least one time when values converge.

A belief space is a continuous space containing infinite

belief points. For a finite approximate belief space ˜B with

converged values V(˜B1..|B̃|

), when a new belief point is

discovered, ˜B will be changed to ˜B′, and values will

converge to V(˜B1..|B̃′
|

). This indicates, unlike MDP, a

POMDP model can converge in multiple stages, which we

call stage convergence. We refer post-convergence iteration

to the iteration after a convergence stage. Result of post-

converge iteration will lead to a new stage of convergence.

In the MHVI algorithm, there are multiple stages of

convergence. The second experiment clearly shows this

process. From Table I, MHVI converges within no more

than 251 steps for all four problems. In experiment 2, the

POMDP problems are all executed 10000 time steps and

then stops after the values converge. The results indicate

they often stop within 50 steps after the original 10000
steps. Fig. 2 is the average of discounted reward.

The average discount reward for Tag problem increases

to −5.83 at the 10000 time step. From Tag problem

(Fig. 3(b)), the average steps to absorbing states decrease

steadily when the time steps increase. This indicates,

1308

0 500 1000 1500
20

40

60

80

100

120

Time(secs)

#
S
te
p
s

(a) Hallway2

0 1000 2000 3000 4000
0

50

100

150

200

250

Time(secs)

#
S
te
p
s

(b) Tag

Fig. 3. MHVI Performance of Average Steps to Absorbing States

during the post-convergence iteration, the POMDP finds

better paths to the goal. The value iteration serves as a

learning process for the Tag POMDP model. However,

the increase of reward for Hallway2 (Fig. 3(a)) is not

obvious. The average steps to absorbing states keep nearly

the same. That is to say, the model is nearly optimal. These

experimental results verify that in MHVI, the model comes

close to optimal after multiple convergence processes.

In experiment 3, we want to make clear the effect of

belief points reassignment level ` on the performance. The

system takes 500 time steps and stops after convergence.

For each `, we execute the system 10 times and average the

results. Results of the test problems Hallway, Hallway2,

Tiger-grid and Tag are considered for the comparison.

When ` takes 2, there is no belief points reassignment,

the belief points can be over 2000. In Fig. 4(a), | ˜B| is

high for each problem, and it is lower than 100 for all the

problems. Comparing with the results in Table I, the time

step is lower than 251, | ˜B| = 107, and ` = 3. By Fig. 4(b),

the reward decreases only a little when ` increases. Thus,

using `, | ˜B| becomes an adjustable parameter.

V. CONCLUSIONS AND FUTURE WORKS

We present the algorithm of MHVI to solve POMDP

problems. MHVI adopts MDP heuristic and weighted

graph to model the approximate belief space, as well as a

dynamic, configurable mechanism to manage graph nodes.

Theoretical analysis and experimental results indicate that

MHVI is a fast, flexible and robust algorithm.

Potential improvements of the MHVI algorithm are

as follows. First, every benchmark problem domain is

based on the assumption that there are absorbing states.

Whether or not the POMDP model without any goal or

termination state has realistic meanings to improve the

graph models is still unclear. Second, whether or not a

more intelligent management of belief space could benefit

the performance for big state space problem domains needs

to be determined in further work.

VI. ACKNOWLEDGMENTS

This work is sponsored by the Scientific Research Foun-

dation for the Returned Overseas Chinese Scholars, State

Education Ministry.

REFERENCES

[1] Xavier Boyen and Daphne Koller. Tractable inference for complex
stochastic processes. In Proceedings of UAI, pages 33–42, July 24–
26 1998.

3 4 5 6 7 8 9 10 11 12
60

80

100

120

140

160

180

200

220

Belief Points Reassignment Level

S
iz
e
 o
f
B
e
lie
f
S
p
a
c
e

Hallway

Hallway2

Tiger−grid

Tag

(a) Size of Belief Space |B|

3 4 5 6 7 8 9 10 11 12
−8

−6

−4

−2

0

2

4

Belief Points Reassignment Level

R
e
w
a
rd

Hallway

Hallway2

Tiger−grid

Tag

(b) Reward

Fig. 4. Effect of Belief Points Reassignment Level ` on the Performance

[2] Anthony R. Cassandra, Leslie Pack Kaelbling, and James A. Kurien.
Acting under uncertainty: Discrete bayesian models for mobile-
robot navigation. In Proc. IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 963–972, 1996.
[3] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassan-

dra. Planning and acting in partially observable stochastic domains.
Artif. Intell., 101(1-2):99–134, 1998.

[4] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kael-
bling. Learning policies for partially observable environments:
scaling up. In Proceedings of ICML, pages 362–370, 1995.

[5] Kameo Matusita. On the notion of affinity of several distributions
and some of its applications. Ann. Inst. Statist. Math., 19:181–192,
1967.

[6] Francisco S. Melo and M. Isabel Ribeiro. Transition entropy
in partially observable markov decision processes. In Intelligent

Autonomous Systems, pages 282–289. IOS Press, 2006.
[7] Ronald Parr and Stuart Russell. Approximating optimal policies for

partially observable stochastic domains. In Proceedings of IJCAI,
pages 1088–1094, 1995.

[8] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Point-
based value iteration: An anytime algorithm for POMDPs. In
Proceedings of IJCAI, pages 1025–1032, 2003.

[9] Nicholas Roy and Geoffrey Gordon. Exponential family pca for
belief compression in pomdps. In Proceedings of NIPS, pages 1043–
1049, 2003.

[10] Trey Smith and Reid G. Simmons. Heuristic search value iteration
for POMDPs. In Proceedings of UAI, 2004.

[11] Trey Smith and Reid G. Simmons. Point-based POMDP algorithms:
Improved analysis and implementation. In Proceedings of UAI,
pages 542–547, 2005.

[12] Matthijs T. J. Spaan and Nikos A. Vlassis. A point-based POMDP
algorithm for robot planning. In Proceedings of ICRA, pages 2399–
2404, 2004.

[13] Sebastian Thrun. Monte Carlo POMDPs. In Proceedings of NIPS,
pages 1064–1070, 2000.

[14] Yan Virin, Guy Shani, Solomon Eyal Shimony, and Ronen I.
Brafman. Scaling up: Solving POMDPs through value based
clustering. In Proceedings of AAAI, pages 1910–1911, 2007.

1309

