
 
 

 

  

Abstract—This paper presents a new decoupling control of 
five-phase fault-tolerant permanent-magnet (FTPM) motor 
drives, in which support vector machine (SVM) and inverse 
system theory are incorporated. The inverse system is 
constructed to compensate the original system into a 
pseudo-linear system, while SVM is utilized to obtain the inverse 
system without knowledge of accurate motor model. The 
proposed FTPM motor drive is verified in Matlab/Simulink 
environment, showing that the d-axis current and speed of 
five-phase FTPM motor system are successfully decoupled. 
Additionally, the proposed motor drive offers fast speed 
response and high control accuracy. 

I. INTRODUCTION 

ERMANENT magnet synchronous motors (PMSMs) 
are widely used because of their advantages such as high 

torque to current ratio, high efficiency, high power density, 
and low noise. However, in some high performance 
applications like electric vehicles and aerospace applications, 
high reliability and continued operation are required. So, 
fault-tolerant permanent-magnet (FTPM) motor has been 
investigated and used [1]. FTPM motors has not only the 
common features of permanent magnet motor, but also the 
characteristic of physical isolation, thermal isolation, 
magnetic separation, electrical isolation and inhibition of 
short circuit current. Therefore, the safety and reliability of 
the system has been improved. Compared with traditional 
three-phase one, five-phase FTPM motor has the advantages 
of high fault tolerance and fault isolation capabilities, high 
power density, and low torque ripple. 

Recently, many control strategies have been investigated 
for FTPM motor drives [2-5]. It is well known that a PMSM 
drive is a strong nonlinear system. So, decoupling and 
linearization are the key issues of control. However, due to 
the nonlinear nature and the coupling variables of the 
nonlinear system, linear control methods are inappropriate for 
them. Hence, nonlinear system control strategies have been 
presented [6]. 

The feedback linearization method is one of the nonlinear 
system control methods. It contains differential geometry 
method and inverse system method. The differential 
geometry method mainly relies on precise mathematical 
equations. It is hard to promote in practical applications. 
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Similar to differential geometry, the control law of inverse 
system also bases on the dynamic equations. Nevertheless, it 
is intuitive, simple and more direct than differential geometry 
method. So, the inverse system method is widely used for 
decoupling control of nonlinear system. However, the main 
drawback of the inverse system method is that the parameters 
of the controlled subject are required. The accurate 
parameters are very difficult to know in practice. Therefore, 
intelligent control has been proposed to solve the uncertainty 
and complexity of the controlled subject.  

Neural network, as one of intelligent control methods, has 
been discussed in many literatures [7], [8]. By introducing the 
neural network method into inverse system, a new control 
method, called neural network inverse (NNI), is proposed to 
compensate the nonlinear system into a linear controllable 
system. Then linear control strategies can be applied. So far, 
many of the reported works have investigated back 
propagation (BP) neural network. However, BP neural 
network still exist some problems, e.g., over learning, local 
minimum and slow convergence speed. In order to solve 
these problems, support vector machine (SVM) which applies 
the structural risk minimization (SRM) is established [9]. It 
exhibits a good performance in solving small sample, 
nonlinear and high dimensional pattern recognition. SVM can 
also be applied to other machine learning problems such as 
function fitting. Therefore, a method based on SVM inverse 
system is developed. The method uses SVM to replace BP 
neural network and approach the inverse system. Then, by 
putting the inverse system and the original system in series, a 
pseudo-linear subsystem, which can be controlled using 
linear control strategies, will be built. SVM inverse system 
method synthesizes the merits both of inverse system and 
SVM. It has been successfully used in three-phase 
surface-mounted PMSM system [10]. 

In this paper, a new decoupling control for five-phase 
FTPM motor will be proposed based on SVM and the inverse 
system theory. The proposed control method can decouple the 
d-axis current and speed, offering fast speed response and 
high control accuracy. The mathematical model of five-phase 
FTPM motor will be introduced in Section II. Then the 
inverse system will be deduced based on the inverse theory 
and interactor algorithm. In Section III, the foundation theory 
of the SVM will be described. Then, the construction of SVM 
inverse system will be given to compensate the original 
system into a pseudo-linear system. Finally, computer 
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simulation will be performed to verify of the proposed 
method. 

II.  MATHEMATICAL MODEL AND INVERSION SYSTEM 
Fig. 1 shows the cross section of a five-phase FTPM. It 

consists of rotor, stator, permanent-magnet, coil, armature 
tooth and fault-tolerant tooth (FTT). The back-EMF of the 
motor is sinusoidal.  

 
Fig. 1.  Cross section of FTPM motor. 

By using the multiple-reference-frame transformation 
which is extended from Park’s transformation in three phase 
motors, the mathematical model of the motor can be derived. 

The multiple reference frame transformation is given by 
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where θ is the electrical rotor angle. 
Then, the five-phase FTPM motor mathematical model can 

be derived as following: 
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where id and iq are the stator currents in corresponding 
rotating frames; ωe is the electrical rotor speed; ud and uq are 
the d- and q- axis stator voltage, respectively; Ld and Lq are 
inductances in the rotating frames; Rs is the stator resistance; 
φm is the permanent magnet flux linkage; np is the number of 
pole pairs; J is the moment of inertia of rotating parts; and TL 
is the load torque. 

Due to the existence of coupling effect between d-axis 
stator current and the rotational speed, id and ωe are chosen to 
be the output of the FTPM motor system. The output 
variables are y = [y1, y2]T = [id, ωe]T. The input variables are u 
= [u1, u2]T = [ud, uq]T. Moreover, the state variables are x = [x1, 
x2, x3]T = [id, iq, ωe]T. Consequently, (2) can be expressed as: 
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According to the inverse system theory, the corresponding 
Jacobi matrix can be described as: 
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Then the rank of the Jacobi matrix can be calculated as: 
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Obviously, (5) is not equal to zero. The relative order of the 
system is α = (α1, α2) = (1, 2), and the order of the system is n 
= 3. Since the relative order is equal to the order of the system, 
the inverse system is existent and can be described as: 

1 1 2 2 2( , , , , )u y y y y yφ=                            (6) 

III. DESIGN OF SVM INVERSE SYSTEM CONTROL 

A. SVM Algorithm 
Although the inverse system has been obtained by the 

above-mentioned method, it is still hard to obtain the 
equations exactly. So, the investigation for effectively 
constructing the inverse system is significant. 

SVM is a kernel-based learning machine and plays an 
important role in classification problems. The basic theory 
has been described in [11]. SVM has the advantages of simple 
structure, strong robustness and better generalization. 

It has been known that the linear un-separable samples in 
low dimensional space can be linear separable in high by 
using nonlinear mapping. Then a linear regression function 
can be built. The linear regression function in high 
dimensional space is given as: 

( ) ( , ( ))f x w x bϕ= +                              (7) 
where w is the weight vector in high dimensional space; b is 
the threshold.  

The given training sample set is {xi, yi}, i = 1, 2,…, n. The 
purpose of (7) is searching for the optimal approximation in 
high dimensional space. According to the SRM principle, (7) 
should guarantee the structural risk function minimize. By 
introducing the relaxation factors ξi

* and ξi , the solution of (7) 
can be turned into solving the following constrained 
optimization problem: 
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where C is the penalty parameter. After using the lagrange 
function, duality principle and kernel function theory, the 
problem transforms into a quadratic programming problem. It 
can be rewritten as: 
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where αi
* and αi are lagrange multipliers; K(·, ·) is an arbitrary 

symmetric function. It should be mentioned that Guass 
function is chosen to be the kernel function in this work. 
Finally, the regression function can be expressed as: 
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where m is the number of support vectors. The kernel function 
is used to map the vectors selected from the original 
dimensional space into a component in high feature space. 

B. SVM Inverse System 
In Section II, the existence of the inverse system has been 

proved. Then the SVM inverse system is established. It 
consists of some integral elements used as dynamic 
compensation and one SVM applied as nonlinear mapping. 

So, SVM inverse system can realize dynamic decoupling of id 
and ωe. Then, the original system will be decoupled into two 
subsystems, current subsystem and speed subsystem. The 
developed method does not need the accurate model of the 
original system. The pseudo-linear system is shown in Fig. 2. 
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Fig. 2.  Construction of the pseudo-linear system. 

IV. VERIFICATION 
In order to verify the effectiveness of the proposed method, 

a Matlab/Simulink-based simulation model has been 
developed. The complete simulation block diagram is 
developed in Fig. 3. The FTPM motor parameters are shown 
in Table I. SVM inverse system and BP-NNI system has been 
compared when the FTPM motor operates under the same 
condition. The training samples of SVM and BP-NN are 
20000. According to the effectiveness of training 
approximation and generalization, the parameters of SVM 
and BP-NN are adjusted to obtain best results. The C and the 
insensitive coefficient ε of SVM are chosen to be 200 and 
0.02. 

 
Fig. 3.  Diagram of the complete simulation system. 

TABLE I 
MOTOR PARAMETERS 

Symbol Signification Value 
Ld d-axis inductance 381 × 10−6 H 
Lq q-axis inductance 956 × 10−6 H 
Rs stator resistance 0.21Ω 
J moment of inertia 0.015Kg·m2

φm permanent-magnet flux linkage 0.043Wb 
np number of pole-pairs 4 

 
Fig. 4.  Speed response for step changes from 100 to 350 rpm. 
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(a) 

 
(b) 

Fig. 5.  Speed responses of the proposed scheme. (a) D-axis current; (b) Rotor 
speed. 

 
(a) 

 
(b) 

Fig. 6.  Speed responses of BP-NNI scheme. (a) D-axis current; (b) 
Rotational speed. 

In all simulated results, the dash line means the reference 
value, while the solid line stands for the response value. 

Fig. 4 shows the simulated speed response for step changes 
input by the SVM inverse control method. The reference 
speed is switching between 100 and 350 rpm. It can be seen 
that the proposed scheme follows the reference speed rapidly. 
Additionally, there is no overshoot, undershoot, and steady 
state error. 

Figs. 5 and 6 show the decoupling effectiveness of SVM 
inverse control scheme and BP-NNI scheme. D-axis current 
changes at 8 s and rotational speed changes at 16 s. It can be 
seen from Figs. 5 (b) and 6 (b) that the speed response time of 
the proposed control strategy is faster than BP-NNI control 
method. Additionally, comparing Figs. 5 (a) and 6 (a), the 

d-axis current of the proposed control method is more steady 
when the speed changes. 

I. CONCLUSION 
A SVM inverse system control strategy for five-phase 

FTPM motor has been presented. The proposed method and 
BP-NNI control method has been compared. From the 
simulation results, it can be concluded that the proposed 
control strategy successfully decouples the d-axis current and 
rotor speed of five-phase FTPM motor system. Also, speed 
and current can follow the reference value accurately. 
Moreover, SVM inverse control method provides faster and 
more stable speed response than BP-NNI control strategy. 
The whole system has good dynamic and static performances. 
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