
 
 

 

  

Abstract—This paper presents a new rotor flux estimation 
algorithm using neural network for induction motors, based on 
the left-inversion method. Using the fifth order model of the 
three-phase induction machines in a stationary two axes 
reference frame, a rotor flux “assumed inherent sensor” is 
constructed and its left-invertible is validated. The ANN 
left-inversion flux estimator is composed of two relatively 
independent parts - a static ANN used to approximate the 
complex nonlinear function and several differentiators used to 
represent its dynamic behaviors, so that the ANN left-inversion 
is a special kind of dynamic ANN in essence. The performance 
of the proposed algorithm is tested through simulation, proving 
the driven system has good behavior both in transient and 
steady-state operating conditions. 

I. INTRODUCTION 
rtificial neural networks have been attracting a great 
attentions in the field of power electronics and motor 
drive system, in the last decades [1],[2]. This is due to 

their inherent parallelism which allows for high speed 
processing and permits implementation of real time control 
applications. ANNs also possess the ability to perform in 
noisy environments and are tolerant to faults and missing 
data. As a control method to tackle nonlinear system with 
uncertain factor, the ANNs have entitative advantage. 

In [3], the authors utilized two NNs which approximate the 
nonlinear relations described by flux loop and rotor flux 
decoupled in field-oriented control (FOC), respectively, and 
pointed out that it can replace the traditional FOC. Because of 
the principle of FOC is invariable, although it is robust to 
parameters, the dynamic decoupling cannot be obtained. The 
[4] adapted NN to calculate the reference stator currents of 
two phases stationery components in indirect FOC, in 
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essential, the slip frequency calculating and inverse transform 
loops were replaced with  two NNs, the dynamic decoupling 
was not obtained yet. The implement of proposed structure 
was studied on the experiment setup based on DSP. 

The “current model” (CM) and “voltage model” (VM) are 
traditional solutions to the flux estimation problem in the 
induction motor FOC and their benefits and drawbacks are 
well known [5]. Due to their different parameter sensitivities, 
they are useful at low and high speeds, respectively. On one 
hand, when using current model flux observers, flux 
estimation does not work well at high speed owing to its 
sensitivity to rotor resistance. On the other hand, when using 
current model flux observers, the voltage model flux observer 
can accurately estimate the stator flux when operating at high 
speed. However, at low speed this estimation is highly 
sensitive to the stator resistance variation. Generally, these 
algorithms require some calculations and integrations. 
Sequential integration routines are time consuming and limit 
the performance of real-time implementations  

To avoid the drawbacks of the forenamed approaches, in 
this paper, a neural network is used to obtain a more accurate 
rotor flux estimate by mapping the nonlinear relationship 
between the rotor flux and other measurable motor variables 
based left-inversion measure method and “assumed inherent 
sensor” concepts [6].  

II. IM MODEL AND LEFT-INVERSE ESTIMATION PRINCIPLE  
The flux vector observer is usually based on a set of 

dynamical equations that describes the induction machine 
behavior. These equations can be expressed in different 
reference frames. In this section, the induction machine 
model is defined by the stator currents and rotor flux as state 
variables in the stationary reference frame α-β by the 
following equation: 
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Where ωr, Ψrαβ, Rr and Lr are, rotor angular velocity, flux, 

resistance and inductance, respectively; urαβ, irαβ, Rs and Ls are, 
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stator voltage, current, resistance and inductance, 
respectively; Lm is the mutual inductance; np is the number of 
pole pairs; σ is the leakage coefficient parameter; J is the total 
motor and load moment of inertia, and TL is the external load 
torque. 

As shown in (1), the induction motor is a nonlinear system: 
induced voltages are proportional to the product between 
magnetic flux and rotor speed, and the torque produced is 
proportional to the product between fluxes and currents. 
Defining the vector x of state variables, and the input vector u 
as:  

1 2 3 4 5[ , , , , ] [ ]T T
s s r r rx x x x x x i iα β α βψ ψ ω= =  

1 2[ , ] [ ]T T
s su u u u uα β= =  

To estimate rotor flux x3, x4, we assume that in the 
induction motor (1) exists a subsystem whose inputs just are 
the to-be-estimated x3, x4 while whose outputs are the 
measurable variables x1, x2, x5. Such a subsystem would be 
viewed as an “assumed inherent sensor” (see Fig. 1), with the 
u1~u2 as parameter variables; under the condition that the 
left-inversion of the “assumed inherent sensor” exists, 
cascading the left-inversion with the “assumed inherent 
sensor” can lead to a composite identity system (see Fig. 2). 
Thus, the outputs of the left-inversion can completely 
reproduce the inputs to the “assumed inherent sensor” so that 
the problem of estimating the to-be-estimated variables x3, x4 
can be solved. 

1 2~u u
1x

2x
3x

4x
5x

 
Fig. 1.  The “assumed inherent sensor” in the induction motors. 

( )3 4, Tx x

1x

( )3 4, Tx x

3x
2x

4x
5x

3x

4x

 
Fig. 2.  Estimating principle based on left inversion of the “assumed inherent 
sensor”. 

The “assumed inherent sensor” can be achieved by 
coupling the first order derivative of x1, x2 as the first, second 
equations in (1): 
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Obviously, we can get:  
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If ( ) ( )( )1 2 3 4, , 0Tdet x x x x∂ ∂ ≠ according to the inversion 

theory [7], [8], the “assumed inherent sensor” (2) will be 
left-invertible and its left-inversion can be expressed by the 
following inverse function:  

 
( )3 4 1 2 1 2 5[ , ] , , , , ,Tx x x x x x x= uϕ                (3) 

 
Obviously, it is hard to implement directly the 

left-inversion (3) by analytic means due to high inaccuracy 
and nonlinearity of the induction motors. To overcome this 
problem, a static ANN is adopted to approximate the static 
nonlinear function φ(•) appearing in (3) by taking advantage 
of ANN’s strong potential to approximate the nonlinear 
function, thus resulting in an ANN left-inversion. 

 The static ANN adopts Back Propagation (BP) network 
with a three-layers structure of 7-25-2 using “tan sigmoid” 
transfer function on the nodes of hidden layers, and “linear” 
transfer function on the output layer. Besides the static ANN, 
the ANN left-inversion flux observer also feathers a set of 
differentiators that describing its dynamic behaviors (see Fig. 
3) so that it is a kind of dynamic ANN in essence. 
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Fig. 3.  ANN left-inversion of the “assumed inherent sensor” (s denotes a 
differentiator). 

Replacing the traditional “current model” (CM) or “voltage 
model” (VM) flux observer with the ANN left-inversion flux 
observer, the block diagram of proposed induction motor 
field-oriented control is showed in Fig.4. 
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Fig. 4. Block diagram of proposed FOC with NN left-inversion flux observer. 
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III. OFF-LINE TRAINING OF THE NEURAL NETWORKS  
The complete drive system including the motor, the 

controllers and the observer was simulated in the computer 
using Matlab/Simulink. A 1.1-kW three-phase induction 
machine has been used whose parameters are summarized in 
Table I.  

TABLE I 
PARAMETERS OF THE INDUCTION MOTOR 

Motor  type Squirrel-cage Y90s-4- X2/W 

Rated power（kW） 1.1 Stator resistance（Ω ） 5.9 

Rated voltage（V） 220/380 Rotor resistance（Ω ） 5.6 

Rated speed（rpm） 1400 Stator inductance（H） 0.57 

Rated current（A） 2.7 Rotor inductance (H) 0.58 

Number of pole pairs 2 Mutual inductance(H) 0.55 

To train the neural network, an induction motor drive 
system with conventional direct field-oriented control is 
firstly implemented in the Matllab/Simulink [9]. The training 
data are produced by applying different speed step inputs and 
rotor flux step inputs to the simulation system.The input and 
output training data of neural network are obtained from the 
response of the system. The training input data [x1, x2, x5, u1, 
u2]Tand output data [x3, x4]T are obtained from the simulation 
results. One set of sampled speed and flux datas is showed in 
Fig.5.and Fig.6.The training input data 1 2[ , ]Tx x is obtained 
by using 5-point derivative method that can guarantee high 
accuracy. Thus, we obtain the ultimate ANN training data sets 
(about 8000 sampled sets).  

It should be noted that the sampled flux data is estimated 
using the current model flux observer or the voltage model 
flux observer in low or high speed range, corresponding. So, 
using the better estimated flux to train NN in all speed range 
is guaranteed.  
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Fig. 5. The sampled speed data from the simulation system.  
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Fig. 6. The sampled flux data from the simulation system.  

The ANN was trained with Levenberg-Marquardt training 
algorithm due to its faster convergence than common BP 
algorithms and trained after 500 iterations (requiring about 15 
minutes on a Pentium 2.8GHz computer). The sum-squared 
error goal 1.42 × 10-4 is reached (see Fig. 7). In addition, the 
trained ANN left-inversion was tested with the data not used 
for training. The test results showed that the generalization of 
the ANN left-inversion is appropriate for actual application. 

 
Fig. 7. The sum-squared error goal varying with the training epochs. 

IV. SIMULATION RESULT 
In both of classical FOC control and FOC control using 

proposed ANN left-inversion estimator, the command inputs 
are the speed reference step from 100rad/s to 80rad/s at 2 
seconds, and the rotor reference step 0.8Wb to 1.0Wb at 4 
seconds. 
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Fig. 8.  The speed response with conventional FOC. 
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Fig. 9.  The flux response with conventional FOC. 
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Fig. 10.  The speed response with proposed NN left-inversion FOC. 
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Fig. 11.  The flux response with proposed NN left-inversion FOC. 

The results in Fig. 8 and Fig. 9 represent the speed response 
and rotor flux response in the classical FOC. The results using 
the proposed NN left-inversion estimator are shown in Fig. 10 
and Fig. 11. Though both methods produce same speed 
response, flux response by the proposed method is more 
stable than conventional FOC. Fig. 9 shows that the flux has 
the typical “saw-tooth” waveform by conventional FOC. Fig. 
11 shows the “saw-tooth” waveform in the flux is completely 
vanished by proposed NN left-inversion FOC. 

V. CONCLUSION  
A new approach for flux estimation based on the 

“assumed inherent sensor” Left-inverse method of induction 
motors using ANN has been presented. The ANN was 
trained to estimate the rotor flux for direct control and map 
the nonlinear behavior of the rotor flux. Some important 

advantages of the proposed method are summarized as 
follows: 

1) The ANN improves the time response since no 
time-consuming routines are required. 

2) The effect of motor parameters is reduced since the 
training of the ANN can be held with experimental 
measured quantities (voltages, currents, and speed). 

3) Improvement of drive robustness can also be 
achieved with ANNs since they are fault tolerant and 
can extract useful information from noisy signals. 

Finally, the simulation results revealed some interesting 
features and showed that this method can be used in real-time 
induction motor control.  
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