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Abstract—As an important technology in LBS (Location 

Based Services) field, Wi-Fi based indoor localization suffers 

signal fluctuation problem which prevents lifelong and high 

performance running. With the fluctuation of wireless signal over 

time, fingerprints collected at the same location become different; 

therefore existing model cannot fit the new collected data well, 

which decreases the localization accuracy. In this paper, a novel 

indoor localization method COSELM (Constraint Online 

Sequential Extreme Learning Machine) is proposed, utilizing 

incremental data to update the old model and overcome the 

fluctuation problem. The performance of COSELM is validated 

in real Wi-Fi indoor environment. Compared with OSELM, it 

can improve more than 5% localization accuracy on average; 

and in contrast to batch learning, COSELM can save more than 

50% time consumption. 

Keywords—Wi-Fi indoor localization; fluctuation; online 

learning; lifelong 

I.  INTRODUCTION  

Indoor localization based on Wi-Fi draws increasing 
attention for its easy implementation and numerous practical 
applications. In general, there are two kinds of indoor 
localization methods: propagation based method [1] and 
fingerprint based method [2]. The propagation based method 
utilizes the nonlinear fading characteristic of Wi-Fi signal to 
establish Received Signal Strength (RSS) and distance 
propagation model, which is further used to estimate distances 
and user’s locations. Fingerprint based method usually has two 
phases: off-line training phase and online locating phase. At 
training phase, features are extracted according to a certain rule, 
and the relationship between features and their corresponding 
locations is established, which constructs a “radio map”; at 
online locating phase, features of unknown location are 
extracted with the same rule, and pattern recognition methods 
are adopted to find the best matched locations on the “radio 
map” to get the final estimated location. As [3] summarized, 
“Fingerprint based methods usually produce the most accurate 
estimation of position in indoor environment”, therefore 
fingerprint methods are widely adopted. 

However, there are some practical problems hinder the 
further prosperity of fingerprint based Wi-Fi localization, and 
the fluctuation of Wi-Fi signal is a major one. With time 
passing by, the unpredictable movement of people, the status of 
door open/closed, the change of temperature and humidity, the 
placement of obstacles and so on, which all lead to the 
fluctuation of Wi-Fi signal. [4] specifically shows the effect of 

dynamic environment that the changing status of door can lead 
to poor positioning accuracy of 4.59-7.17 meters; the changing 
status of relative humidity can increase the localization error by 
almost 20%. [5] investigates the properties of RSS in detail, it 
shows that people’s presence can spread the range of RSS by 
increasing RSS’s deviation. [6] also explains the body effect of 
human that the distortion caused by human body in different 
orientations can easily confuse real location with other 
locations. Works of indoor localization show the severe 
fluctuation of RSS that the difference between maximum and 
minimum value of collected RSS at the same spot can be 
bigger than 10dbm [5,6], which makes existing model perform 
badly over time. 

In order to achieve good performance of localization 
system for long time, Constraint Online Sequential Extreme 
Learning Machine (COSELM) is proposed, leveraging 
incremental data to update existing model, so that the new 
model can cover more possibilities of fingerprints at the same 
location and reflect localization environment better. The 
organization of the rest of paper is: Section II shows the related 
work. Section III introduces the proposed COSELM in detail. 
Section IV evaluates the performance of COSELM in real 
wireless indoor environment. Section V concludes the work. 

II. REALTED WORK 

Fingerprint method is the mainstream of Wi-Fi based 
indoor localization. Most of the traditional fingerprint methods 
are batch learning methods, such as K Nearest Neighbor (KNN) 
[7], Decision Tree (DT) [8], Support Vector Machine (SVM) 
[9] and so on. However, there are some disadvantages of batch 
learning based fingerprint method. One is that it needs training 
data fully prepared to learn a model. While, for indoor 
localization, preparing all the data in advance is laborious and 
time-consuming; especially when the indoor environment is 
large, it is impossible to collect all the needed data ahead of 
time. What is more, when new training data are collected to 
update the model, all the training data have to be used to 
recalculate the model, whose time consumption is undesirable 
for real-time localization systems. Hence, online (incremental) 
methods are applied to indoor localization field, so that not 
only the time consumption can be reduced, but also the 
fluctuation problem can be mitigated. [10] presents a two-fold 
online localization approach: first setting up an initial 
propagation model with mutual measurements from each base 
station, then utilizing online learning technology based on 
Kohonen self organizing map to gradually refined the model. 
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In [11], timeliness management has been brought into online 
incremental learning; considering the signal fluctuation over 
time, newly incremental data are given bigger weight than old 
data in generating new model, so that the updated model can fit 
the current environment and improve localization performance.  

To handle the signal fluctuation problem over time, there 
are many proposed methods. [12] presents LuMA method 
based on manifold alignment to learn the mapping between 
source data and target data (source data and target data are 
collected at different time) in a low dimensional space, so that 
the knowledge can be transferred to target data to guarantee the 
localization performance with time passing by. [13] proposes 
semi-supervised HMM (Hidden Markov Model) method to 
transfer the out-of-
learns the regression weights among RSS data from reference 
points, then builds a radio map at each non-reference point 
location at new time with the same regression weights 
constraint, and finally utilizes expectation-maximization (EM) 
algorithm to get the new localization model. Some works also 
use adaptive learning methods to solve the fluctuation problem. 
[14] re-measures RSS fingerprints at a specific location, then  
calculates  the  new RSS fingerprints and new locations with 
plane-interpolation method; with this adaptive RSS database, 
the algorithm can achieve 80% of positioning correctness in the 
simulated environment. [15] puts forwards a method using 
inter-beacon measurement, so that beacons not only serve as 
localization tools, but also serve as calibration tools to self-
adjust the radio map, and experimental results show that both 
Clustering-based scheme and Regression-based scheme can 
overcome the fluctuation problem. 

 Comparing with the existing works, we propose an easy-
implemented online indoor localization method COSELM with 
fast learning speed and high localization accuracy, which can 
handle the fluctuation problem, and help the localization 
system function well for a long time. 

III. METHODOLOGY 

Huang et al. [16] proposed Extreme Learning Machine 
(ELM) in 2004 to achieve fast learning speed and high 
performance; however, it just guarantees the minimum error 
and lacks of generalization ability. Hence, in 2012, they 
updated the original ELM with L2 constraint [17], so that both 
the generalization ability and minimum error can be ensured 
(here we use ELM-C to represent ELM with L2 constraint). 
ELM itself is a batch learning method, and its online learning 
version was proposed by Liang [18], which is Online 
Sequential Extreme Learning Machine (OSELM); OSELM 
also just guarantees the minimum error criterion. Considering 
the generalization ability of OSELM, we propose COSELM 
(The relationship between COSELM and OSELM is the same 
as the relationship between ELM-C and ELM). 

Assuming the initial data are 
0

0 0
,

N

i i i
X x t , where 

1 2
, ,...,

i i i in
x x x x , 1 2, , ,i i i imt t t t , n  is the dimension of 

input vector (feature), m  is the dimension of output vector 

(label), 0N  is the number of initial data. COSELM neural 

network with L  hidden neurons can be illustrated in Fig.1. 
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Fig. 1. SLFN with L hidden neurons 

The output of this network is as follows: 

  
1

( ) ( , , ), , ,
L

n m

L i i i i i i

i

f x G w b x w b            (1) 

Where 1 2, ,...,i i i inw w w w  is the weight vector connecting the 

thi  hidden neuron and input neurons, ib  is the bias of the thi  

hidden neuron, and ( , , )i iG w b x  is the output of the thi  hidden 

neurons. 1 2, , ,
T

i i i im  is the weight vector connecting 

the thi  hidden neuron and the output neurons.  

If the activation function of hidden neurons is g x , then 

the output of the thi  hidden neuron is: 

               ( , , ) ( ), ,n

i i i i i iG w b x g w x b w b                (2) 

The above two equations can be summarized as: 

                                   H T                                         (3) 
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In order to guarantee the generalization ability and 
minimum error, L2 constraint is brought in, and the target 
becomes: 

0
2 2

1

0

1 1
:

2 2

: 1,......,

N

i

i

T T

i i i

Minimize C

subject to h x t i N

           (5) 

Where i  is the training error vector of training data ix , 

specifically 1 2, ,...,i i i im . As shown in [17], based on 

KKT theorem, the equivalent dual optimization problem is: 

0 0
2 2

1 1 1

1 1

2 2

N N m

i ij i j ij ij

i i j

L C h x t     (6) 
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There are three parameters involved in (6): the Lagrange 

multiplier 
01 2, ,..., N  and 1 2, ,...,i i i im ; the 

output weight matrix ; and the training error i . Therefore 

the KKT corresponding optimality conditions become: 

 0 T

j

L
H                           (7a) 

0 i i

i

L
C                            (7b) 

0 0T T

i i i

i

L
h x t                   (7c) 

By submitting the solutions of 7(a) and 7(b) into 7(c), we 
obtain the output weight, which is: 

1)
1

= T TI
H HH T

C
, when the number of training 

samples is not huge ( THH  is invertible). 

2)
1

= T TI
H H H T

C
, when the number of training 

sample is huge ( TH H  is invertible). 

Therefore, for initial data, the output weight becomes: 

1

0

0 0 0 0= T TI
H H H T

C
                        (8) 

Since solution 1) has the same deduction as solution 2), 
here we just take the solution 2) for example. Making 

0 0 0= TI
K H H

C
, then : 

0 1

0 0 0= TK H T                                     (9) 

Given another chunk of data 0 1

0

+

1 +1
,

N N

i i i N
X x t , 1N  is the 

number of data; with all the training data the target becomes  

             

0 12 21

1

0
0 01

1
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H T
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H T

                 (10) 

Where 1H  is the result when 1X  goes through the network, 1T  

is the output vector of these 1N  incremental data, and 1  is the 

training error for 1X . Utilizing both 0X  and 1X , we get the 

new output weight, which is 0 01 1

1

1 1

=

T
H T

K
H T

. This 

calculation procedure is the similar to the obtaining of 0  in 

(9), except for one major difference that 1K here is 

0 0

1 0 0 1 1 0 1 1

1 1

T

T T T
H HI I

K H H H H K H H
H HC C

. In order 

to find the relationship between 1  and 0 , the item of 

0 0

1 1

T
H T

H T
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0 0 1
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      (11) 

With the expression above, 1  becomes: 

0 01 1

1

1 1

1 0 0

1 1 1 1 1 1
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=

T
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T

H T
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                     (12) 

From (12), we can see that the effect of incremental data on 

output weight matrix is reflected by 1 0

1 1 1 1

TK H T H . By this 

analogy, when the 1
th

k  chunk of data arrive, where 

1

0

0

1

+1

,

k

j

j

k

j

j

N

k i i

i N

X x t , the output weight becomes: 

       

1 1

1 1 1 1

1 1 1 0 0 0, =

k k T k

k k k k

T T

k k k k

K H T H

I
K K H H K H H

C

               (13) 

To sum up, if the existing model is expressed as , and the 

new model is * , then the relationship between *  and  is 
* , where  is the modification caused by newly 

incremental data. 

According to [18], the goal of OSELM is  

:Minimize H T                                 (14) 

After 1k  times incremental learning, the solution of 

OSELM is expressed as: 

                  

1 1

1 1 1 1

1 1 1 0 0 0,

k k T k

k k k k

T T

k k k k

K H T H

K K H H K H H
                 (15) 

Compared the result of COSELM with OSELM, the L2 

regularization leads to the item 
I

C
. When C  approximates , 

0 0 0 0

T TI
H H H H

C
. Therefore OSELM is a special case of 

COSELM. Since the L2 constraint makes the model more 
generalized, and the value of C  can be searched from range 

,  to get the optimized result in (5), COSELM should 

have better performance than OSELM. 
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Fig. 2. Framework of COSELM 

Steps for COSELM based wireless indoor localization are 
summarized as follows: 

1) Prepare initial training data, and normalize the input 
features into [0,1]; 

2) Determine the parameters of COSELM including 

activation function g x , number of hidden neurons 

L  and the regularization penalty C ; 

3) Randomly assign the input weight iw  and bias ib ; 

4) Calculate the hidden layer output 0H  by (4); 

5) Calculate the initial model parameter 0 1

0 0 0= TK H T , 

where 0 0 0= TI
K H H

C
 ; 

6) When the 1
th

k  online data 
1kX  arrives, calculate 

hidden layer output 1kH  by (4); 

7) Update the model by (13) : 

 

1 1

1 1 1 1

1 1 1 0 0 0, =

k k T k

k k k k

T T

k k k k

K H T H

I
K K H H K H H

C

  

8) Calculate the estimated locations when testing data 
are put into the system.   

Step 6) to 7) is the online updating procedure to get new 
model, so that the localization system can run long time with 
desirable performance in highly dynamic indoor environment. 
The framework of proposed COSELM is illustrated in Fig.2.  

IV. EVALUATION 

The performance of proposed COSELM is validated in real 
indoor environment, which is a 15m*10m working area on the 
8

th
 floor of a research building. The layout of this environment 

is shown in Fig. 3. Circle points are locations where data are 
collected. The reason to choose this test bed is that it is a 
typical indoor environment, and peoples’ movement and other 
changing elements lead to the high dynamics. Wi-Fi data are 
casually collected at arbitrary time of days with smart phones 
for two months, and the collection distance is 0.5~2m. There 
are 32 stable APs in the environment, hence, each input vector 
(fingerprint) is a 32 dimension vector, and each dimension’s 
value is the RSS of AP.   

The localization performance of difference algorithms is 
evaluated from localization accuracy and time consumption. 
The experimental configuration is as follows: DELL PC with 
32 bit Operation System, 2.00G RAM, Intel Core2 CPU, and 
Matlab R2009b. 

A. Comparison with other localization algorithms 

To show the effectiveness of proposed online learning 
method, we first compare the performance of COSELM with 
some existing batch learning localization methods like: NN [7], 
DT [8], SVM [9], ELM [16] and ELM-C [17]. 

Here the total dataset contains 2400 training data and 1050 
testing data. For batch learning methods, all the training data 
are used to get the model at one time; for COSELM, 1000 
training data are used as initial data, and the rest training data 
are incremented for 8 times. The classification accuracy is 
illustrated in Fig.4(a). All the algorithms adopt sigmoid (“sig”) 
function as activation function. Other parameters for different 

algorithms are: 1) SVM: 32 , 1c g ; 2) ELM: 500 hidden 

neurons; 3) ELM-C: 1500 hidden neurons, 122C ; 4) 

COSELM: 1500 hidden neurons, 122C . 

In Fig.4(a), the proposed online learning algorithm 
COSELM achieves 92.19% classification accuracy, which is 
similar to SVM (92.38%), ELM (90.86%), ELM-C (91.90%), 
and better than NN (79.33%), DT (81.90%). Even though 
COSELM utilizes online data to gradually update the model, it 
performs no worse than batch learning methods. And with the 
increase of error distance, localization accuracy (localization 
accuracy is the percentage that the number of right localized 
spots accounts for the total number of testing data, and right 
localized spot indicates that the distance between estimated 
location and expected location is smaller than error distance) 
for each algorithm improves, and COSELM still has the similar 
performance to SVM, ELM, ELM-C, and better than NN and 
DT, which is shown in Fig.4(b). 

 

Fig. 3.  Layout of indoor environment 
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 (b) Localization accuracy 

Fig. 4.  Localization accuracy for different algorithms 

TABLE I. TIME CONSUMPTION 

 NN DT SVM ELM ELM-C COSELM 

Training 

Time(s) 
0 0.875 2.23 2.25 3.12 1.57 

Testing  

Time(s) 
14.26 0.875 0.93 0.09 0.25 0.25 
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  (a) Incremental number=7                      (b) Incremental number=11 
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   (c) Incremental number=15                    (d) Incremental number =19 
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        (e) Incremental number=43               (f) Incremental number=53 

Fig. 5.  Localization accuracy with different incremental number 

Localization accuracy is one important measurement index 
for localization method, and time cost is another important one. 
The time consumption for different algorithms is shown in 
Table I. From Table I, we can see that ELM has the least 
testing time consumption. ELM-C and COSELM cost more 
time than ELM, which is reasonable, for they have bigger 
number of hidden neurons than ELM. ELM related algorithms’ 
(ELM, ELM-C, and COSELM) cost less time than SVM and 
DT, because their input weight and bias are randomly assigned. 
NN costs most of the time, for it has to calculate similarity 
(dissimilarity) sample by sample which leads to its 

1 2O M M  time complexity, where 1M  and 2M  are the 

number of training data and testing data. Considering the 
tradeoff between localization accuracy and time consumption, 
COSELM has relatively better performance. 

B. Performance with time changing 

As claimed that Wi-Fi signal fluctuates severely over time 
due to the highly dynamic environment. To validate the 
localization performance along the timeline, COSELM is 
compared with incremental learning method OSELM and batch 
learning methods ELM and ELM-C. We only compare 
COSELM with one online learning method OSELM, for the 
greater effectiveness of OSELM than other sequential learning 
methods has been shown in [18]. The experiment is set as 
follows: At first, 200 data are collected to set up an initial 
model; then incremental data are gathered to update the 
existing model; finally, testing data are obtained to validate the 
localization performance. 

The result of COSELM is shown in Fig. 5. Each of the six 
figures is the performance of COSELM when the incremental 
number is 7, 11, 15, 19, 43 and 53 respectively. The 
incremental number indicates how many times the model has 
been updated, when incremental number equals 0, it means 
there is no update of model, only initial model. Usually the 
incremental data arrive along timeline. For all these six figures, 
X axis represents the incremental number; Y axis is the 
localization accuracy when the error distance is 1m. All these 
figures have the same trend, which is localization performance 
improves when the incremental number increases. This 
phenomenon is reasonable for two reasons. One reason is that 
the total training dataset is enlarged by newly incremental data, 
so the dataset can cover more possibilities for fingerprints at 
the same location. The other reason is the newly updated model 
can reflect current indoor environment better.  
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TABLE II. ACCURACY COMPARISON 

    Algorithm 

Accuracy 

ELM ELM-C OSELM COSELM 

7th 

Increment 

89.80% 91.58% 87.76% 90.31% 

11st 

Increment 

91.29% 92.13% 88.20% 93.26% 

15th 

Increment 

90.98% 92.23% 88.97% 92.98% 

19th 

Increment 

90.23% 90.73% 83.96% 90.73% 

43rd 

Increment 

82.75% 81.75% 67.25% 83.00% 

53rd 

Increment 

84.89% 84.89% 74.31% 86.40% 

 

From the figures, it is obvious when the incremental number is 
small (which means the model was learnt long time ago and 
not fitted for current environment), the localization accuracy is 
unacceptably low like 10%-50%, which testifies that the 
fluctuation of RSS with time passing by makes the old model 
function badly for newly collected data. From these six figures, 
the accuracy of the last incremental number (the newest model) 
is the performance of current localization model, which is 
90.31%, 93.26%, 92.98%, 90.73%, 83.00%, and 86.40% 
respectively; most of the accuracies stay in the range 85%-90%. 
Therefore, during the two months period, the system can 
perform robustly with desired accuracy, which makes a 
lifelong and high accuracy system viable.  

After validating the localization accuracy of COSELM, we 
compare its performance with other three algorithms, which is 
shown in Table II. The parameters are as follows: the number 
of hidden neurons for ELM-C, OSELM, COSELM and ELM 
in the last two rows is 1000, the number of hidden neurons for 
ELM in the front four rows is 500; the constraint parameter for 
ELM-C and COSELM is 2000. From Table II, COSELM has 
similar performance to ELM-C, and better accuracy than 
OSELM. The effectiveness of the constraint parameter of 
COSELM is obvious when the incremental number is 53 that 
COSELM improves the accuracy by 11% than OSELM.  

Table III shows the time consumption for all these 
algorithms. For each algorithm, it has two columns of time 
consumption, the first column is training time cost, and the 
second column is testing time consumption. Compared the time 
cost of OSELM and COSELM, apparently they are similar, 
which means the proposed method does not increase the 
calculation burden. In contrast to batch learning ELM, the 
advantage of online incremental learning is obvious; when the 
incremental number is 53, COSELM only costs 0.56s to update 
the model, while ELM needs 29.25s to retrain the model with 
all the training data. ELM costs more time than ELM-C when 
they have the same number of hidden neurons and input data, 
because the matrix inversion procedure of ELM is time-
consuming. 

For incremental learning, the numbers of initial data and 
incremental data are the variables that may affect the 
performance of algorithm. Therefore, these two variables’ 
effects are studied. The impact brought by the number of 
incremental data is illustrated in Fig.6. The experiment is 
implemented on the dataset with 800 training data and 395 

testing data. Here the number of initial data is 200; the rest 
training data are incremental data. From Fig.6(a) to Fig.6 (d), 
the incremental number changes as: 3->19->49->99. 

From the four figures, the initial localization accuracy 
(when increment number is 0) of each situation is similar, for 
they have the same initial data. And it is also obvious that no 
matter what the incremental number is, the final localization 
accuracy is still similar. These figures illustrate that, when the 
initial data are fixed, and the total incremental data are the 
same, the incremental way will not affect the final result. 

The influence of initial data is also validated on the same 
dataset as above. The number of initial data changes as: 100-
>200->300->500, the rest training data are incremental data for 
four times, and the result is shown in Fig.7. With the number of 
initial data increase, the initial localization accuracy becomes 
better, which is 69.62%->85.32%->90.88%->92.91%. It is 
understandable for larger dataset leads to better result. 
However, the final localization accuracy for these four 
circumstances is almost the same considering that the total 
number of training data is the same.  

TABLE III. TIME CONSUMPTION 

  Algorithm 
 

Time Cost(s) 
ELM ELM-C OSELM COSELM 

7th 

Increment 
2.19 0.03 1.15 0.06 0.57 0.06 0.57 0.06 

11st 

Increment 
2.52 0.03 1.61 0.06 0.57 0.06 0.57 0.06 

15th 

Increment 
2.80 0.03 2.35 0.07 0.56 0.06 0.57 0.06 

19th 

Increment 
3.52 0.03 2.58 0.06 0.57 0.06 0.57 0.06 

43rd 
Increment 

27.17 0.09 5.55 0.06 0.57 0.06 0.56 0.06 

53rd 

Increment 
29.25 0.09 6.50 0.06 0.56 0.06 0.56 0.06 
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(a) Incremental number=3               (b) Incremental number=19 
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(c) Incremental number=49               (d) Incremental number=99 

Fig.6.  Localization accuracy with different incremental number 
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Fig. 7.  Localization accuracy with different number of initial data 

Combining the conclusions of initial data number’s effect 
and incremental number’s effect, we find that as long as the 
total training dataset is fixed, the number of initial data and the 
incremental number will not greatly affect the final 
performance. However, the larger the initial dataset is, the 
better the initial performance is. If the number of training data 
is not fixed, the more the initial data and incremental data are, 
the better performance will be.   

V. CONCLUSION 

Indoor localization system faces the lifelong running 
problem, because highly dynamic indoor environment makes 
Wi-Fi signal fluctuate severely. In order to solve this problem, 
COSELM wireless localization method is proposed, utilizing 
online incremental data to update the out-of-date model. The 
performance of COSELM is validated in real indoor wireless 
environment; compared with batch learning, it has similar or 
better localization performance, but saves much more time. 
Because COSELM just adopts incremental data to update 
model instead of retraining new model with all the training data; 
in contrast with original OSELM, COSELM has better 
performance because the L2 regularization guarantees the 
generalization ability and enlarges the value space of C  to 

achieve best performance. The two months’ experimental result 
shows that COSELM can maintain the localization accuracy in 
the range of [80%, 95%] with less time consumption, which 
makes a longtime running localization system viable. 
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