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Abstract—The probabilistic neural network (PNN) can detect 
the complex relationships and be used to develop its basis for the 
interpretation of dissolved gas-in-oil data that can identify the 
fault types. An efficient algorithm known as the kernel principle 
component analysis (KPCA) is applied to increase features in 
order to get higher detection accuracy. KPCA reflects the 
nonlinear or high order features that permit to represent and 
classify the varying states. More features can be obtained by the 
nonlinear transformation of KPCA, which can realize the biggest 
between-class margin of the classifiers. In this paper, we apply 
the method of combining KPCA with PNN in transformer fault 
diagnosis. The method has more superior performance than 
traditional PNN alone method. The property of the nonlinear 
extension of original data of KPCA can obtain the higher 
diagnosis accuracy, which can achieve better classification and 
diagnosis. 

Keywords—Transformer Fault Diagnosis, Dissolved Gas 
Analysis, Probabilistic Neural Network, Kernel Principle 
Component Analysis 

I.  INTRODUCTION  
The power transformer is an essential apparatus in power 

systems and its failure may interrupt power supplies and 
diminish profits [1]. Minimizing the risk of power outage needs 
to detect the incipient faults inside power transformers 
immediately. Efficient detecting methods are necessary as the 
importance of the incipient fault diagnosis of power 
transformers. Dissolved gas analysis (DGA) is to obtain the 
amount of dissolved gases in the oil by sampling and testing 
the insulation oil of transformers periodically which can 
indicate the deterioration of the insulating materials inside. 
These gases are hydrogen (H2), methane (CH4), ethylene 
(C2H4), ethane (C2H6), acetylene (C2H2), carbon monoxide 
(CO), and carbon dioxide (CO2) [2-3]. Many approaches are 
applied to the fault diagnosis of power transformers. 
Development in artificial intelligence (AI) technique has 
rapidly improved the transformer fault diagnosis in recent years 
[4]. Experts system derives the decision rules from the previous 
experience while the fuzzy-set represents the decision rules by 
using vague quantities [5-6]. With artificial neural network 
(ANN), the complex problems can be solved by using the 
highly nonlinear mapping nature of neural networks. 

The calculation of these methods is simple, and they tend to 
work well in diagnosing severe faults. Their defects show that 
they could be insensitive to more subtle faults. They are usually 
used as the general guideline. In an actual diagnostic process, 
other information such as the variability of dissolved-gas data 
and the effect of loading and environmental factors on these 
data is usually also taken into consideration. The single original 
approach cannot achieve the expected effect, so that some 
improvement and combination are necessary. Kernel principle 
component analysis (KPCA) is one of the ways which can 
effectively increase characteristics to form new classifiers. 
Combining KPCA with ANN, we can achieve the better effects 
on transformer fault diagnosis. In this paper, we focus on the 
application of kernel principle component analysis combined 
with probabilistic neural network in transformer fault 
diagnosis.  

This paper is organized by 7 sections. In Section II, we 
give a brief of dissolved gas analysis. In Section III, we 
introduce the transformation process of KPCA. And in section 
IV, we review the principle and structure of probabilistic 
neural network. Then in section V, the process of KPCA 
combined with PNN is shown. Example verification of the 
proposed method is in Section VI. Conclusive remarks are in 
Section VII. 

II. DISSOLVED GAS ANALYSIS 
  The DGA is one of the most common techniques used for 

incipient fault diagnosis because the transformer cannot be de-
energized. The DGA requires routine oil sampling and modern 
technologies for on-line gas monitoring. The key step in using 
gas analysis for fault detecting is correctly diagnosing the fault 
that generated the gases. Abnormal electrical or thermal 
stresses cause insulation oil breaking down and releasing small 
quantities of gases. The composition of these gases depends 
on the fault type. The detection of certain level of gases 
generated in oil-filled transformer in service is often the first 
available indication of the transformer failure. Possible 
mechanisms of gas generation include arcing, corona 
discharge, low energy sparking, overheating of insulation due 
to severe overloading, and failure of forced cooling systems. 
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Faults in oil-filled transformers can be identified according to 
the gases generated, the gases that are typical or predominant 
at various temperatures. Each fault type produces gases that 
are generally combustible. An increase in total combustible 
gases (TCG) that correlates with an increase in gas generating 
rates may indicate the existence of any one or a combination 
of thermal, electrical or corona faults.  

The three-ratio method is the most common representation 
in DGA, TABLE I is IEC/IEEE codes for the interpretation of 
DGA method. In this chart the fault classification of the three-
ratio method is showed. The three characteristic values of 
gases dissolved in transformer oil are taken as input feature 
vector of the diagnostic model system. Then the proposed 
diagnosis model has 3 input nodes which represent 3 
characteristic values of CH4/H2, C2H2/C2H4 and C2H4/C2H6. In 
this paper the fault type is 6 based on our real data. 

TABLE I. 
IEC/IEEE CODE FOR THE INTERPRETATION OF DGA METHOD 

Fault code Fault type Ratios of characteristic gases 
  C2H2/ C2H4 CH4/ H2 C2H4/C2H6 

0 no fault <0.1 0.1-1.0 <0.1 

1 <150°C thermal 
fault <0.1 0.1-1.0 1.0-3.0 

2 150°C -300°C 
thermal fault <0.1 >1.0 <0.1 

3 300°C -700°C 
thermal fault <0.1 >1.0 1.0-3.0 

4 2700°C thermal 
fault <0.1 >1.0 >3.0 

5 low energy partial 
discharges <0.1 <0.1 <1.0 

6 high energy 
partial discharges 0.1-3.0 <0.1 <1.0 

7 low energy 
discharges <0.1 0.1-1.0 >1.0 

8 high energy 
discharges 0.1-3.0 0.1-1.0 >3.0 

 

III. KERNEL PRINCIPAL COMPONENT ANALYSIS 

A. Principal Component Analysis  
Principal component analysis (PCA) is a multivariable 

statistical method that can be used for damage detection of 
structures or fault diagnosis in mechanical systems [7]. It is 
known as an efficient method to compress large sets of the 
random variables and to extract interesting features from a 
dynamical system. However, this method is based on the 
assumption of linearity [8]. To some extent, many systems 
show a certain degree of nonlinearity, therefore, the detection 
necessitates methods that are able to study nonlinear systems. 
Kernel principal component analysis (KPCA) is what we need 
to solve the proposed problem mentioned above. 

B. Kenel Principal Component Analysis 
  Kernel principal component analysis (KPCA) is a 

nonlinear extension of PCA built to authorize features with 
nonlinear dependence between variables [9]. The method is 
‘flexible’ in the sense that different kernel functions may be 
used to better fit the testing data.  

  The key idea of KPCA is first to define a nonlinear 

map kx 6 ( )kxφ with kx ∈ nR , (k=1, " , M) which 

represents a high dimensional feature space F , and then to 
apply PCA to the data in space F . 

With the assumption of centered data, i.e. a, the covariance 
matrix in the space F  is given by: 

1

1 ( ) ( )
M

T
i i

i
C x x

M
φ φ

=
= ∑ .                       (1)  

      Principal components may be next extracted by solving the 
eigenvalue equation: 

V CVλ = .                                    (2) 
      By defining the kernel matrix K of dimension M M×  
such that: 

M Kλα α=                                 (3) 
where α  identifies the eigenvector V after normalization. 

The eigenvectors identified in the feature space F can be 
considered as kernel principal components (KPCs) which 
characterize the dynamical system. Note that, since the 
number of eigenvectors (i.e. nonlinear PCs) is the same as the 
number of samples, which is higher than the number of (linear) 
PCs given by PCA. The KPCA method is termed ‘‘nonlinear’’ 
since the feature mapping in space F  is achieved by a 
nonlinear function. Because of this property, the extracted 
KPCs are able to reflect nonlinear or high order features which 
permits representation and classification varied states. KPCA 
has the aptitude to use more nonlinear PCs to collect structural 
features than noise. 

  Regarding the kernel functions, they can be chosen for 
instance as follows: 
•  polynomial kernel, 
    ( , ) ( 1)d

i j i jK x x x x= +i , where d is a positive integer; (4) 

•  radial basis function(RBF), 

    
2 2( , ) exp( 2 )i j i jK x x x x σ= − −              (5) 

      where 22σ =ω  is the width of the Gaussian kernel. 
      It is worth noting that in general, the above kernel 
functions give similar results if appropriate parameters are 
chosen. The radial basis function may present advantages 
owing to its flexibility in choosing the associated parameter. 
For instance, the width of the Gaussian kernel can be very 
small (<1) or quite large. In contrast the polynomial kernel 
requires a positive integer for the exponent. 

IV. ARTIFICIAL NEURAL NETWORK ALGORITHM 
After the text edit has been completed, the paper is ready 

for the template. Duplicate the template file by using the Save 
As command, and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word Formatting 
toolbar. 

This work was supported by National Nature Science Foundation of 
China(U1134205, 51377136). 

1315



A. Artificial Neural Network 
  ANN knowledge is discreetly distributed all over the 

network, based on the sample learning, and not stored in a 
knowledge base. Obviously, ANN has a great capacity for 
obtaining knowledge. Very complex systems can be 
characterized with very little explicit knowledge using ANNs. 
The relationship between gas composition and incipient-fault 
condition is learned by the ANN from actual experience 
(through training samples) [10]. Obvious and not so obvious 
(hidden) relationships are detected by the ANN and used to 
develop its basis for interpretation of dissolved gas-in-oil data. 
Through training process, ANN can reveal complex 
mechanism that may be unknown to experts. Theoretically, a 
neural network could represent any observable phenomenon. 

  An ANN design includes selection of input, output, 
network topology (structure, or arrangement of nodes), and 
weighted connections of the nodes. Input feature (information) 
selection constitutes an essential first step. The feature space 
needs to be chosen very carefully to ensure that the input 
features will correctly reflect the characteristics of the problem. 
Another major task of the ANN design is to choose network 
topology. This can be done experimentally through a repeated 
process to optimize the number of hidden layers. Figure 1 
illustrates an overall ANN design process with step by step 
adjustments to achieve desired structure and feature space. 
The corresponding connection weights are also determined in 
the process. Once the process is done, all weights will be 
retained and the ANN is now "trained" and ready for use. New 
samples will be fed into the trained ANN and predicted values 
can be readily obtained as shown in Figure 1. 

 
Fig.1. ANN Design and Training Flow Chart 

B. Probabilistic Neural Network 
  The PNN is a type of radial basis network originally 

developed for radar classification. It was first proposed by 
Specht in 1989 [11-12]. Based on the statistical theory it 

equals to the well-known Bayesian strategy in classification. 
The essence of PNN is a parallel algorithm developed from 
the Bayesian minimum risk criteria. Compared with traditional 
BP neural network, PNN does not need to set the number of 
hidden layer neurons, takes less time in training and does not 
need to train again when more training data are added or 
reduced. Moreover, it can always obtain the optimal solution 
in Bayesian criterion when the training data are sufficient, 
regardless of the complexity of the classification problem [13]. 
The PNN network is simply a parallel 4-layer structure: input 
layer, pattern layer, summation layer and output layer.  

  The input layer receives and normalizes input vector, its 
input neurons equal with dimension of the sample vector. 
Each unit in pattern layer calculates the input feature vector 
and training focused on the match between the models. The 
pattern layer neurons are equal to the sum of each category 
training samples. The transfer function of the pattern layer is 
Gaussian function, and then the output of every pattern layer 
can be expressed as: 

2

( ) ( )( , ) exp[ ]
2

T
i i

i
X W X Wf X W

δ
− −= −                (6) 

Where iW  is the connection weight of the input layer and 

model layer, and δ  is the smoothing parameter.  
  Summation layer computes the summation of each pattern 

and multiplies the loss factor. Each neuron of the output layer 
respectively corresponds to a data type which is failure mode. 
The output layer calculate the probability of each mode 
appearing, the largest output of probability density function of 
the neuron which correspond to the kind of recognition model 
of sample category is 1, all other neurons output is 0. 

V. METHOD BASED ON KPCA AND PNN 
  Dissolved gas analysis (DGA) can only extract five 

characteristics that can’t satisfy forming enough classifiers to 
diagnose transformer faults accurately. In addition, the 
property of classifier and the difference between classifiers is 
the dominant factor for classifier to recognize fault which also 
needs more character. Suppose there are X  training sample 

set divided into L  fault classes, each fault class iX  has iM  

samples, the total number of samples is 1

L

i
i

M M
=

= ∑
. Using 

KPCA to analyze X , we can get increased features by the 
nonlinear transformation. Considering the different property of 
different fault classes, use KPCA to analyze different fault 
classes respectively, then we can get transformation matrix 

iT , 1, 2, ,i L= … . The number of analyzed Kernel features is 
equal to the number of samples in theory. If we select two 
features from each class to construct a classifier randomly, 

different combinations of 2

1
i

L

M
i

C
=

∏  features can be obtained. 
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In this diagnosis model, we use PNN to train and analyze 
formed classifier group, then we can get the final result of 
diagnosis in the form of probability. Calculation steps are as 
follows, shown in Fig.2: 

  Step 1: obtain the dissolved gases in the oil and adopt 
DGA to the classification of fault diagnosis. 

  Step 2: Normalization processing for the dissolved gases 
data. 

  Step 3: adopt KPCA to achieve nonlinear transform to get 
more kernel features which is in high order. 

  Step 4: For each state of operation of the transformer, we 
built 5 classifiers. Each classifier is trained randomly using 2 
features of those generated after KPCA. 

  Step 5: adopt PNN to train and analyze the data which is 
the outputs of the classifier group above. 

  Step 6: obtain the final result of diagnosis. 

obtain the dissolved gases in the oil 

adopt DGA to the classification of 
fault diagnosis

adopt KPCA to get more 
kernel features

construct  classifiers randomly

adopt PNN to train and analyze 
classifier group

obtain the final result of diagnosis

normalization processing for
the dissolved gases data

start

end  
Fig.2. Method of KPCA and PNN Flow Chart 

VI. EXAMPLE VERIFICATION 

A. Modeling 
  Failure types can be divided into 6 categories including 

normal state, hyperthermia, high energy, hypothermia, low 
energy and mid-temperature, represented by F1, F2,…,F6. 
The samples used for training are shown in TABLE II. 

  Select ( , ) ( 1)dh x y x y= +i as a kernel function in kernel 
principal component analysis, d  is the default function 
parameters. Taking all aspects into account, the value of d  is 
3. The training sample set after the high dimensional 
transformation is also in TABLE II. Comparing the dimension 
of characteristics before and after the transformation we can 
see the effect of dimension extension is obvious. Select two 
kernel features randomly from each fault class subset to 
construct a PNN classifier, adding up to 5 classifiers. The 
amount of kernel features we can choose is larger than 
classifiers that can ensure every classifier constructed by 
different kernel features.  

 

TABLE II. Training Sample Set 
Failure type F1 F2 F3 F4 F5 F6 

Number of the 
samples 58 111 71 21 61 29 

The dimension of 
original characteristics  

 
5 5 5 5 5 5 

The dimension of l 
characteristics after 

KPCA 
9 9 9 7 7 9 

 

B. Simulation 
  The number of total samples is 351. We choose 300 

samples as the training sample, and the rest is as the test 
sample. The blue circle in the figure represents the original 
real samples and the red plus sign represents the prediction 
samples after training. Training, test and error resultsobtained 
by using PNN alone are shown in Figure 3. Combining KPCA 
with PNN, better results can be obtained correspondingly in 
Figure.4. In Figure 3(a), the meaning of the horizontal axis is 
training sample code and the meaning of the vertical axis is 
classification result of fault. In Figure 3(b), the meaning of the 
horizontal axis is training sample code and the meaning of the 
vertical axis is the prediction error. The meaning of zero of the 
vertical axis represents the accurate diagnosis and one 
represents the false diagnosis in Figure 3(b, d). Figure 3(a, b) 
show the training property while Figure 3(c, d) shows the 
testing property. Figure 4 is as the same. 
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(d) PNN prediction error 

Fig.3. PNN training and test in transformer fault diagnosis 

      Figure 3 and Figure 4 show that the two methods can 
achieve transformer fault diagnosis. Their training effect and 
the training accuracy are well. However, the prediction 
accuracy of KPCA combined with PNN is higher than PNN 
alone method shown in TABLE III. The higher diagnosis 
accuracy is obtained since KPCA has exacted more features 
that can form more classifiers. Based on the above comparison 
the result can be obtained that the PNN combined KPCA 
method is more effective in transformer fault diagnosis. 
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(d) PNN prediction error after KPCA 

Fig.4. PNN training and test after KPCA in transformer fault diagnosis 

TABLE III. DIAGNOSIS PREDICTION ACCURACY 

Method KPCA combined 
with PNN PNN 

Accuracy 0.7692 0.6538 

C. Verification 
  The gas relay of a transformer (OD-12600/56) actuated in 

service and the circuit breaker switched off and caused a 
supply interruption. The DGA data after this fault is shown in 
TABLE IV. 
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TABLE IV. COMPONENTS OF DISSOLVED GAS IN A TRANSFORMER 

Gas type H2 CH4 C2H6 C2H4 C2H2 

Value 833 3167 390 5793 1697 

  What can we obtain by the chart above is that the fault type 
of this transformer is F2 with the method KPCA combining 
with PNN. It means that the temperature of the transformer is 
too high. The result is the same with the inspection result of 
hanging core. KPCA combing with PNN really work well in 
transformer fault diagnosis by the example of verification. 

VII. Conclusion 
  KPCA is a nonlinear extension of original data that maps 

data into high-dimensional space. Any dimension can be 
obtained by a nonlinear function. KPCA can help to get more 
characteristics to form enough classifiers to increase the fault 
diagnosis accuracy of PNN, and is valuable for the practical 
application under current requirement. Through the simulation 
results above, the conclusion is easy to obtain. The prediction 
accuracy of KPCA combined with PNN is higher than using 
PNN alone. This method is really suitable for transformer fault 
diagnosis. However, studies need to be done for further 
development and improvement, in order to get better results. 
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