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Kernel-based Semi-supervised Learning for Novelty

Detection
Van Nguyen, Trung Le, Thien Pham, Mi Dinh, and Thai Hoang Le

Abstract—One-class Support Vector Machine (OCSVM) is a
well-known method for novelty detection. However, OCSVM
regards all negative data samples as a common symbol and
thereby not being able to utilize the information carried by
them. Furthermore, OCSVM requires a fully labeled data set
and cannot work efficiently with data set with both labeled and
unlabeled data samples which is very popular nowadays. In this
paper, we first extend the model of OCSVM to enable efficiently
using the negative data samples. We then propose two methods to
integrate the semi-supervised learning paradigm to the extended
model for novelty detection purpose.

Index Terms—Semi-supervised Learning, Novelty Detection,
Kernel Method, One-class Classification.

I. INTRODUCTION

In many applications of machine learning, abundant

amounts of data can be cheaply and automatically collected.

However, manual labeling for the purposes of training learning

algorithms is often a slow, expensive, and error-prone process

[1]. As a result, the collected data sets frequently consist of a

collection of labeled data and a larger collection of unlabeled

data. Semi-supervised learning involves employing the larger

collection of unlabeled data jointly with smaller one of labeled

data for improving generalization performance.

Support Vector Machine (SVM) [2, 3] has become the state-

of-the-art classifier. SVM has its root in Statistical Learning

Theory [4]. It is proven that the optimal hyperplane with

the maximal margin maximizes the generalization ability of

the linear classifier [4, 5]. The original SVM requires the

fully labeling data sets. The idea of applying semi-supervised

learning paradigm to SVM was first introduced by Vapnik and

Sterin in 1977 [6]. However, it really attracted much concern

of the machine-learning community after the work of Joachims

[7]. So far, there have been many studies on semi-supervised

SVM [8, 9, 10, 11, 12, 13, 14, 15].

SVM has been proven very successful for balanced data

sets. However, it may not render the good performances for

imbalanced data sets where one of two classes is under-

sampled, or only data samples of one class are available for

training [16]. To accommodate this issue, One-class Support

Vector Machine (OCSVM) [17] was introduced. OCSVM aims

at constructing an optimal hyperplane that can separate the

origin and the normal data samples such that the margin,
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the distance from the origin to the hyperplane, is maximized.

Although OCSVM offers the good performance for one-class

classification problem, its obvious drawback is that OCSVM

regards the origin as a common symbol for all abnormal

data samples and may not efficiently utilize the information

carried by them. Yet another successful kernel-based one-

class classification method is Support Vector Data Description

(SVDD) [18], which targets building an optimal hypersphere in

the feature space which includes only normal (positive) data

samples and excludes all abnormal (negative) data samples

with tolerances. It appears that if an iso-metric kernel function,

e.g., RBF Kernel, is used, OCSVM and SVDD are equivalent

[17]. Both OCSVM and SVDD require the fully labeling data

sets which rarely occurs in the application domains.

In this paper, we first extend the model of OCSVM to enable

using of the abnormal data samples for classifying data. More

concretely, an optimal hyperplane is constructed such that the

margin, the distance from the closest negative data sample to

the hyperplane rather than that of the origin, is maximized.

Based on the extended model, we then present how to apply

the semi-supervised learning paradigm to OCSVM to utilize

the unlabeled data for increasing its generalization perfor-

mance. Actually, in this paper, we have proposed two semi-

supervised learning methods for novelty detection. The first

proposed method is inspired from the Transductive Support

Vector Machine of Joachims [7] whereas two temporary labels

of two unlabeled data samples are swapped in a row to

really decrease the objective function. This method is proven

to gradually become better and to converge after a finite

number of iterations to its local minima. The second proposed

method associates each unlabeled data sample with a fuzzy

membership which represents the possibility to assign it to the

positive class. The temperature variable T is led to 0 to drive

the objective function to its global minima. The experiment

conducted on 14 benchmark data sets of UCI repository shows

the superiority for the proposed methods.

II. ONE-CLASS SUPPORT VECTOR MACHINE

OCSVM [17] aims at constructing an optimal hyperplane,

such that the margin, the distance from the origin to the

hyperplane, is maximized. Given the training set including

l normal data samples X = {(x1, y1) , ..., (xl, yl)} where

yi = 1, i = 1, ..., l. The optimization problem of OCSVM

is as follows:

min
w,ρ

(

1

2
‖w‖

2
− ρ+

1

νl

l
∑

i=1

ξi

)

(1)
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subject to:

wTφ(xi) ≥ ρ− ξi, i = 1, ..., l
ξi ≥ 0, i = 1, ..., l

(2)

where w is the normal vector of the hyperplane, ρ is the bias,

ν is the trade-off parameter, φ(.) is a transformation from the

input space to the feature space, and ξ = [ξi]i=1,...,l is vector

of slack variables.

III. LARGE MARGIN ONE-CLASS SUPPORT VECTOR

MACHINE (LM-OCSVM)

A. The Idea of Large Margin One-class Support Vector Ma-

chine

Given the training set X =
{(x1, y1) , ..., (xp, yp) , (xp+1, yp+1) , ..., (xp+m, yp+m)}
including both normal and abnormal data samples where

yi = 1, i = 1, ..., p and yi = −1, i = p + 1, ..., l with

l = p +m, to decrease the chance of accepting abnormal as

normal data, it desires to learn an optimal hyperplane that can

separate the positive and negative data samples such that the

margin, the distance from the closest negative data sample to

the hyperplane, is maximized. This optimization problem is

formulated as follows:

max
w,ρ

(

min
yi=−1

(

yi(w
Tφ(xi)− ρ)

‖w‖

))

(3)

subject to

yi(w
Tφ(xi)− ρ) ≥ 0, i = 1, ..., l (4)

It occurs that the margin is invariant if we scale (w, ρ) by

a factor k. Hence, without loss of generality, we can assume

that: min
yi=−1

(yi(w
Tφ(xi)− ρ)) = 1. The above optimization is

rewritten as follows:

min
w,ρ

(
1

2
‖w‖

2
) (5)

subject to

yi(w
Tφ(xi)− ρ) ≥ 0, i = 1, ..., p

yi(w
Tφ(xi)− ρ) ≥ 1, i = p+ 1, ..., l

(6)

We refer the above model as hard model of LM-OCSVM.

To derive the soft model, we extend the optimization problem

in Eq. (5) by using the slack variables as follows:

min
w,ρ

(
1

2
‖w‖

2
+ C

l
∑

ξi
i=1

) (7)

subject to

yi(w
Tφ(xi)− ρ) ≥ −ξi, i = 1, ..., p

yi(w
Tφ(xi)− ρ) ≥ 1− ξi, i = p+ 1, ..., l

ξi ≥ 0, i = 1, ..., l
(8)

B. The Solution

We apply Karush-Kuhn-Tucker (KKT) theorem to derive the

solution of the optimization problem in Eq. (7). The

Lagrange function is of the following form:

L(w, ρ, ξ, α, β) = 1

2
‖w‖

2
+ C

l
∑

i=1

ξi

−
l
∑

i=1

αi(yi(w
Tφ(xi)− ρ)− θi + ξi)−

l
∑

i=1

βiξi

(9)

where θi = (1− yi)/2. Setting the derivatives to 0, we gain:

∂L
∂w

= 0 → w =
l
∑

i=1

yiαiφ(xi)

∂L
∂ρ

= 0 →
l
∑

i=1

yiαi = 0

∂L
∂ξi

= 0 → αi + βi = C, i = 1, ..., l

(10)

Substituting Eq. (10) to the Lagrange function, we obtain the

following optimization problem:

min
α





1

2

l
∑

i=1

l
∑

j=1

yiyjK(xi, xj)αiαj −
l
∑

i=1

αiθi



 (11)

subject to

l
∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C, i = 1, ..., l (12)

To calculate ρ, let us denote I = {i : 0 < αi < C}. For

every i ∈ I , according to KKT condition, we have:

yi(w
Tφ(xi)− ρ)− θi = 0 ↔ ρ =

l
∑

j=1

yjαjK(xi, xj)− yiθi

(13)

In practice, to avoid favoring any data sample, we take

average of all right hand sides of Eq. (13) for calculating ρ.

C. Visual Explanation for LM-OCSVM

To visually demonstrate the performance of LM-OCSVM,

we designed the experiments on two synthesized toy data sets.

In the first experiment, we show that LM-OCSVM can take

advantage from the negative data samples. The 2D toy data

set was generated as in Figure 1 and the linear kernel was

used. As seen in Figure 1, the margin, which is the distance

from the closest negative data sample to the hyperplane, is

maximized. This maximization really implies the maximal

reducing of accepting abnormal as normal. In the second

experiment, we generated a data set being the mixture of three

Gaussian distributions of 200 data samples together with some

negative data samples as shown in Figure 2 and RBF Kernel

was employed. It is observed from Figure 2 that LM-OCSVM

can perfectly recognize three Gaussian distributions and this

shows the generalization ability of LM-OCSVM.
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Fig. 1. LM-OCSVM can take advantage from the negative data samples.

Fig. 2. LM-OCSVM can recognize three Gaussian distributions.

IV. SEMI-SUPERVISED LARGE MARGIN ONE-CLASS

SUPPORT VECTOR MACHINE (S2LM-OCSVM)

A. The Problem Statement

Given a training set X = Xl ∪ Xu where Xl =
{(x1, y1) , (x2, y2) , ..., (xl, yl)} and Xu = {xl+1, ..., xn}
where n = l + u are the labeled and unlabeled training set,

respectively. It requires to use the unlabeled training set to

enhance the generalization performance of classifier. We need

to not only find out the optimal hyperplane but also assign the

labels to the data samples of Xu . Therefore, it requires to

solve the following optimization problem:

min
w,ρ,Yu

(

1

2
‖w‖

2
+ C

l
∑

i=1

ξi + C
′

n
∑

i=l+1

ξ
′

i

)

(14)

subject to

yi(w
Tφ(xi)− ρ) ≥ θi − ξi, i = 1, ..., l

yi(w
Tφ(xi)− ρ) ≥ θi − ξ

′

i , i = l + 1, ..., n
(15)

where Yu = {yl+1, ..., yn} is a labeling assignment and

θi = (1− yi)/2, i = l + 1, ..., n.

B. The Algorithm for S2LM-OCSVM

To make LM-OCSVM and S2LM-OCSVM efficient for deal-

ing with the imbalanced data sets, we use the different trade-

off parameters for the negative and positive unlabeled data

samples. The objective function of the optimization problem

in Eq. (14) becomes the one in Eq. (16) while the constrains

are still the same.

min
w,ρ,YU

(

1

2
‖w‖

2
+ C

l
∑

i=1

ξi + C
′

+

∑

yi=1

ξ
′

i + C
′

−

∑

yi=−1

ξ
′

i

)

(16)

We now propose Algorithm 1 for S2LM-OCSVM.

Algorithm 1 Algorithm for S2LM-OCSVM

Input:

X = Xl ∪Xu

Parameters:

The trade-off parameters C,C
′

num+: number of unlabeled data samples assigned to the

positive class

Output:

The predicted labels {yl+1, ..., yn} for {xl+1, ..., xn}
Algorithm:

(w, ρ, ξ) = solve−lmocsvm(Xl, C, 0, 0)
Calculate the output values oi = wTφ(xi)−ρ, i = l+1, ..., n

regarding the current hyperplane.

The num+ unlabeled data samples with the highest output

values are assigned to the positive class.

The remaining unlabeled data samples are assigned to the

negative class.

C
′

−
= 10−5; C

′

+ = 10−5 × num+

u−num+

while
((

C
′

+ < C
′

)

‖
(

C
′

−
< C

′

))

{

(w, ρ, ξ, ξ
′

) = solve−lmocsvm(X,Yu, C, C
′

+, C
′

−
);

while





∃r, s > l : (yr × ys = −1)&
(

ξ
′

r > 0
)

&
(

ξ
′

s > 0
)

&
(

ξ
′

r + ξ
′

s > 1
)





{

yr = −yr; ys = −ys;
(w, ρ, ξ, ξ

′

) = solve−lmocsvm(X,Yu, C, C
′

+, C
′

−
);

}

C
′

+ = min(2× C
′

+, C
′

);

C
′

−
= min(2× C

′

−
, C

′

);
}

C. The Rationale of S2LM-OCSVM

To persuasively show the rationale of S2LM-OCSVM, in

Theorem 1 we prove that gradually the hyperplane and the

labeling assignment become better and finally converges to
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a stable configuration. We also prove in this section that

Algorithm 1 must terminate after a finite number of iterations.

Theorem 1. Let (w, ρ, Yu, ξ, ξ
′

) and (w, ρ, Yu, ξ, ξ
′) be two

consecutive optimal solutions in the loop 2 of Algorithm 1,

we have:

1

2
‖w‖

2
+ C

l
∑

i=1

ξi + C
′

+

∑

yi=1

ξ
′

i + C
′

−

∑

yi=−1

ξ
′

i

> 1

2
‖w‖

2
+ C

l
∑

i=1

ξi + C
′

+

∑

yi=1

ξi + C
′

−

∑

yi=−1

ξ
′

i

(17)

Proof: We first prove that after finding two unlabeled

samples, e.g., xr, xs, for swapping their labels, the new

configuration with the new labels for xr, xs and ξ∗
′

r =

max
{

0, 1− ξ
′

r

}

, ξ∗
′

s = max
{

0, 1− ξ
′

s

}

while the rest is

kept the same is still a feasible solution of the optimization

problem in Eq. (16).

Without loss of generality, we can assume that yr = 1 and

ys = −1. We need to verify the constrains regarding xr, xs

with the new labeling assignment. We have:

yr(w
Tφ(xr)− ρ) = −ξ

′

r

→ −yr(w
Tφ(xr)− ρ) = ξ

′

r ≥ 1− ξ∗
′

r

ys(w
Tφ(xs)− ρ) = 1− ξs

→ −ys(w
Tφ(xs)− ρ) = ξ

′

s − 1 ≥ −ξ∗
′

s

(18)

Finally, we gain the conclusion as follows:

1

2
‖w‖

2
+ C

l
∑

i=1

ξi + ...+ C
′

+ξ
′

r + C
′

−
ξ
′

s + ...

> 1

2
‖w‖

2
+ C

l
∑

i=1

ξi + ...+ C
′

+max
{

0, 1− ξ
′

s

}

+C
′

−
max

{

0, 1− ξ
′

r

}

+ ...

= 1

2
‖w‖

2
+ C

l
∑

i=1

ξi + ...+ C
′

+ξ
∗
′

s + C
′

−
ξ∗

′

r + ...

> 1

2
‖w‖

2
+ C

l
∑

i=1

ξi + C
′

+

∑

yi=1

ξ
′

i + C
′

−

∑

yi=−1

ξ
′

i

(19)

Theorem 2. Algorithm 1 terminates after a finite numbers of

iterations.

Proof: The number of labeling assignments Yu is finite.

According to Theorem 1, the objective function is decreased

across the iterations. It concludes this proof.

V. FUZZY ENTROPY SEMI-SUPERVISED LARGE MARGIN

ONE-CLASS SUPPORT VECTOR MACHINE

(FES2LM-OCSVM)

A. Optimization Problem

We need to deal with the following optimization problem:

min
w,ρ,Y u

(

1

2
‖w‖

2
+ C

l
∑

i=1

V (oi, yi) + C
′

n
∑

i=l+1

V (oi, yi)

)

(20)

where YU = {yl+1, ..., yn} is a labeling assignment, oi =
wTφ (xi) − ρ, the loss function is defined as V (oi, yi) =
max {0, θi − yioi}, and C, C

′

are two parameters which stand

TABLE I
THE EXPRESSIONS OF THE AVERAGE LOSS AND THE FUZZY ENTROPY

ACCORDING TO THE FUZZY MEMBERSHIP ui

xi ∈ normal class or yi = 1 yi = −1

Fuzzy membership ui 1− ui

Average loss AV (oi, ui) = uiV (oi, 1) + (1− ui)V (oi,−1)
Fuzzy entropy S(ui) = −uilnui − (1− ui)ln(1− ui)

for the trade-offs between the empirical losses of the labeled

and unlabeled data and the general loss.

The above optimization problem means that we need to find

out the optimal labeling assignment YU such that the margin

for the whole data set, i.e. X = Xl ∪Xu, is maximized.

B. Solution

For each unlabeled sample xi (l+1 ≤ i ≤ n), we introduce

fuzzy membership ui which stands for the possibility of that

xi belongs to the normal class or yi = 1.

Given temperature T > 0, regarding sample xi, we need to

minimize the following extended loss function:

EV (oi, ui) = AV (oi, ui)− T × S(ui) (21)

In the above extended loss function, we employ the entropy

to encourage the purity of fuzzy partition. The reason is

that to minimize EV (oi, ui) when T becomes smaller, i.e.

T → 0, S(ui) is encouraged to be smaller which also means

purer fuzzy partition. The temperature variable T is regarded

as trade-off parameter which controls the trade-off between

the average loss value and the purity of fuzzy partition. In

experiment, the temperature T is led to approach 0.

The extended optimization problem is of the following form

(referred to Table I):

min
w,ρ,U

















1

2
‖w‖

2
+ C

l
∑

i=1

V (oi, yi)

+C
′

n
∑

(ui
i=l+1

V (oi, 1) + (1− ui)V (oi,−1))+

+C
′

n
∑

i=l+1

(Tuilnui + T (1− ui)ln(1− ui))

















(22)

The constraint regarding the ratio of normal data in Xu is that

in Xl can be interpreted as:

1

u

n
∑

i=l+1

ui =
1

l

l
∑

i=1

max {0, yi} = r (23)

We apply the alternative method to solve out the above

optimization problem. The fuzzy membership array U and

the optimal hypersphere are alternatively kept fixed. The

temperature variable T is driven to approach 0.

1) Keep U fixed: : We come up with the following opti-

mization problem:

min
w,ρ









1

2
‖w‖

2
+ C

l
∑

i=1

V (oi, yi)

+C
′

n
∑

(ui
i=l+1

V (oi, 1) + (1− ui)V (oi,−1))









(24)



5

The above optimization problem is that of the standard LM-

OCSVM. Actually, we can transform it to another equivalent

optimization problem as follows:

min
w,ρ









1

2
‖w‖

2
+ C

l
∑

i=1

ξi

+C
′

n
∑

i=l+1

uiξi + C
′

n
∑

i=l+1

(1− ui)ξ
′

i









(25)

subject to:

yi(w
Tφ(xi)− ρ)− θi + ξi ≥ 0, ξi ≥ 0, i = 1, ..., l

wTφ(xi)− ρ ≥ −ξi, ξi ≥ 0, i = l + 1, ..., n

wTφ(xi)− ρ ≤ −1 + ξ
′

i , ξ
′

i ≥ 0, i = l + 1, ..., n
(26)

The Lagrange function is of:

L(w, ρ, ξi, ξ
′

i , αi, α
′

i, βi, β
′

i)

= 1

2
‖w‖

2
+ C

l
∑

i=1

ξi + C
′

n
∑

i=l+1

uiξi + C
′

n
∑

i=l+1

(1− ui)ξ
′

i

−
l
∑

i=1

αi

[

yi(w
Tφ(xi)− ρ)− θi + ξi

]

−
n
∑

i=l+1

αi

[

wTφ(xi)− ρ+ ξi
]

−
n
∑

i=1

βiξi

+
n
∑

i=l+1

α
′

i

[

wTφ(xi)− ρ+ 1− ξ
′

i

]

−
n
∑

i=1

β
′

iξ
′

i

(27)

Setting the partial derivatives to 0, we gain:

∂L
∂w

= 0 → w =
l
∑

i=1

αiyiφ(xi) +
n
∑

i=l+1

αiφ(xi)−
l
∑

i=l+1

α
′

iφ(xi)

∂L
∂ρ

= 0 →
l
∑

i=1

αiyi +
n
∑

i=l+1

αi −
l
∑

i=l+1

α
′

i = 0

∂L
∂ξi

= 0 → αi + βi = C, i = 1, ..., l
∂L
∂ξi

= 0 → αi + βi = C
′

ui, i = l + 1, ..., n
∂L

∂ξ
′

i

= 0 → α
′

i + β
′

i = C
′

(1− ui), i = l + 1, ..., n

(28)

Substituting the above equations to the Lagrange function, we

have:

L(w, ρ, ξi, ξ
′

i , αi, α
′

i, βi, β
′

i)

= − 1

2
‖w‖

2
+

l
∑

i=1

αiθi +
n
∑

i=l+1

α
′

i

= − 1

2

l+2u
∑

i=1

l+2u
∑

j=1

yiyjK(xi, xj)αiαj +
l+2u
∑

i=1

αiθi

(29)

where θi = 0, ∀i : yi = 1, θi = 1, ∀i : yi = −1. and

yi = 1, i = l+1, ..., l+ u, yi = −1, i = l+ u+1, ..., l+2u,
and xi = xi−u, i = l + u+ 1, ..., l + 2u.

We come up with the following optimization problem:

min
α





1

2

l+2u
∑

i=1

l+2u
∑

j=1

yiyjK(xi, xj)αiαj −

l+2u
∑

i=1

αiθi



 (30)

subject to

l+2u
∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., l

0 ≤ αi ≤ C
′

ui, i = l + 1, ..., l + u

0 ≤ αi ≤ C
′

(1− ui), i = l + u+ 1, ..., l + 2u

(31)

2) Keep w, ρ fixed: : By removing the constants, we

achieve the following optimization problem:

min
U

(

n
∑

i=l+1

(

uiVi + (1− ui)V
′

i

+Tuilnui + T (1− ui)ln(1− ui)

)

)

(32)

where
n
∑

i=l+1

ui = ur and Vi = V (oi, 1), V
′

i = V (oi,−1).

The Lagrange function is of the following form:

L(u, λ)

=
n
∑

i=l+1

(

uiVi + (1− ui)V
′

i + Tuilnui + T (1− ui)ln(1− ui)
)

−λ

(

n
∑

i=l+1

ui − ur

)

(33)

Setting the partial derivatives to 0, we obtain:

∂L
∂ui

= 0

⇒ Vi − V
′

i + T (1 + lnui) + T (−1− ln(1− ui))− λ = 0

⇒ ln 1−ui

ui
=

Vi−V
′

i
−λ

T

⇒ ui =
1

e
Vi−V

′

i
−λ

T +1

(34)

Furthermore, we can evaluate Vi − V
′

i as follows:

Vi − V
′

i = V (oi, 1)− V (oi,−1) = max{0,−oi} −max{0, 1 + oi}
(35)

Let us define τi = max{0,−oi}−max{0, 1+ oi}. We have:

τi = −oi, oi < −1
τi = −1− 2oi, 0 ≤ oi ≤ −1
τi = −1− oi, oi > 0

(36)

Substituting the above equation to Equation (34), we can

evaluate ui as follows:

ui =
1

e
Vi−V

′

i
−λ

T + 1

=
1

e
τi−λ

T + 1
(37)

To determine λ, we use the constraint:

n
∑

i=l+1

ui =
n
∑

i=l+1

1

e
τi−λ

T + 1
= ur (38)

We define and investigate the following function:

f(λ) =

n
∑

i=l+1

1

e
τi−λ

T + 1
(39)

The derivative of the above function is as follows:

f ′(λ) =
1

T

n
∑

i=l+1

e
τi−λ

T

(

e
τi−λ

T + 1
)2

> 0 (40)

It follows that the function f(λ) is strictly increased. More-

over, we have:

lim
λ→∞

f(λ) = lim
λ→∞

n
∑

i=l+1

1

e
τi−λ

T +1

= u

lim
λ→−∞

f(λ) = lim
λ→−∞

n
∑

i=l+1

1

e
τi−λ

T +1

= 0
(41)
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It means that the equation in Eq. (38) has the unique solution

λ0 . To find λ0, we employ the Newton-Raphson method. The

rule for updating the fuzzy membership ui becomes:

ui =
1

e
τi−λ0

T + 1
, i = l + 1, ..., n (42)

C. The Overall Algorithm

We start with T = 10. For each T , we attempt to solve out

the optimization problem in Eq. (22) by alternately keeping

w, ρ and U fixed. The KL-divergence is used as stopping

criterion for each iteration. To direct the local minimizer

attained for each T to the global minimizer, T is led to

approach 0. The detail of this algorithm is displayed as

follows:

Algorithm 2 Algorithms for FES2LM-OCSVM

Initialize

T = 10, ε = 0.0001, U = (r, r, ..., r)
Execute

while (T > ε){
do{

Keep U fixed

Calculate w, ρ, and oi = wTφ(xi)− ρ
Keep w, ρ fixed

V = U
Update the fuzzy partition array U

}while (DKL(U, V ) > ε)
T = T

1.5

}

where DKL(U, V ) =
n
∑

i=l+1

uiln
(

ui

vi

)

.

VI. EXPERIMENT

A. The Experimental Data Sets

We conducted the experiment on 14 benchmark data sets

of UCI repository. For novelty detection task, we made unbal-

anced the data sets by first appointing a class as the normal

class and then recommending the rest as the abnormal class.

In addition, the ratio of data in the normal class and abnormal

class was kept by 10 : 1. To enable the semi-supervised

learning, with the current data set, we randomly hid the labels

of 30% of data. The details of the data sets are given in Table

II.

B. The Parameter Settings

To show the superiority of the proposed methods in the con-

text of semi-supervised learning, we compared our proposed

methods LM-OCSVM, S2LM-OCSVM, and FES2LM-OCSVM

with other methods including SVM, SVDD, OCSVM, TSVM

proposed in [7], and two self-training methods for 1-NN and

SVM.

For all kernel-based methods, RBF kernel given by

K (x, x′) = e−γ‖x−x′‖
2

was used. The width of kernel γ was

varied in the grid
{

2−15, 2−13, . . . , 23, 25
}

. The trade-off pa-

rameter C was searched in the grid
{

2−15, 2−13, . . . , 23, 25
}

.

TABLE II
THE DETAILS OF THE DATA SETS.

Data Set #Positive #Negative #Dimension

Pima Indians Diabetes 500 50 8

Australian 307 30 14

Breast-cancer 239 23 10

Glass 76 7 9

Ionosphere 225 22 34

Liver Disorder 200 20 6

Sonar 97 9 60

Splice 517 51 60

Letter 543 54 16

Heart 120 12 13

SvmGuide 3 296 29 22

SvmGuide 1 2000 200 4

a7a 3918 391 122

Mushrooms 4208 420 112

The accuracy was measured by acc = acc++acc−

2
where

acc+ = %TP and acc− = %TN are the accuracies on

the positive and negative classes, respectively. This measure

is correspondent to one-class classification problem since it

inspires the high accuracies for both positive and negative

classes to ensure the high accuracy for the entire data set.

The cross-validation with five folds was used. Indeed, for each

trial, we trained the methods on the four labeled portions of

the four current folds and tested the trained models on the four

unlabeled portions and the remaining fold. For each data set,

we run the experiment five times and took average of the five

accuracies.

C. The Experimental Results

The experimental results are shown in Tables III, IV and

Figures 3, 4 . For each data set, to increase the readability of

the tables, we emphasized in bold the methods that result in

the highest accuracy and emphasized in double underline the

runner-up methods.

As observed from the tables, in case only making compari-

son the supervised-based methods like SVM, SVDD, OCSVM,

and LM-OCSVM, our proposed LM-OCSVM offers the highest

accuracies for all experimental data sets except for the data

set SvmGuide 1. It is reasonable because LM-OCSVM can

efficiently take advantage from the negative data samples and

its decision hyperplane is pushed as close as possible to the

positive region in order to maximally reduce the chance of

accepting the abnormal as normal data sample.

In comparison all methods, our proposed FES2LM-OCSVM

is always the best except for the data set Mushrooms. More-

over, our proposed S2LM-OCSVM is the best in two cases and

is the runner-up for 7 data sets. In our opinion, the fact that

FES2LM-OCSVM produces the higher accuracies as compared

to S2LM-OCSVM comes from the fact that the solution of

FES2LM-OCSVM may be driven to the global minima when

the temperature variable T is driven to 0 whereas that of

S2LM-OCSVM suffers the local minima.

VII. CONCLUSION

In this paper, we first extend the model of OCSVM to

enable the use of the negative data samples for classifying
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TABLE III
THE EXPERIMENTAL RESULTS ON THE DATA SETS.

Data Set SVM SVDD OCSVM LM-OCSVM

Pima Indians Diabetes 59% 57% 68% 70%

Australian 80% 67% 83% 83%

Breast-cancer 98% 94% 93% 99%

Glass 79% 77% 75% 85%

Ionosphere 87% 86% 85% 91%

Liver Disorder 63% 57% 64% 66%

Sonar 72% 66% 65% 75%

Splice 70% 61% 60% 73%

Letter 95% 93% 91% 98%

Heart 88% 79% 71% 90%

SvmGuide 3 67% 59% 61% 70%

SvmGuide 1 95% 74% 77% 94%

a7a 79% 63% 71% 85%

Mushrooms 100% 100% 95% 100%

TABLE IV
THE EXPERIMENTAL RESULTS ON THE DATA SETS.

Data Set TSVM S2LM FESS2LM ST 1-NN ST SVM

PMD 71% 69% 71% 61% 68%

Australian 82% 85% 87% 75% 84%

Breast-cancer 97% 96% 99% 98% 98%

Glass 85% 87% 89% 72% 75%

Ionosphere 93% 93% 93% 77% 82%

Liver Disorder 64% 68% 71% 65% 62%

Sonar 73% 77% 83% 72% 76%

Splice 71% 76% 79% 64% 71%

Letter 97% 98% 98% 84% 90%

Heart 86% 88% 91% 82% 87%

SvmGuide 3 68% 72% 75% 63% 60%

SvmGuide 1 92% 92% 95% 76% 82%

a7a 83% 86% 89% 69% 72%

Mushrooms 96% 95% 98% 91% 87%

the one-class data sets. To handle the data sets with the

labeled portion jointly with the unlabeled portion which is very

popular nowadays, we propose two semi-supervised learning

methods. The experiment conducted on 14 data sets of UCI

repository shows the superiority of the proposed methods as

compared to the other methods.

Fig. 3. Experimental results on the data sets for supervised methods.

Fig. 4. Experimental results on the data sets for semi-supervised methods.
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