
 
 

 

  

Abstract—In this paper, the infrared small target detection in 
video sequence is investigated. A collaborative structured sparse 
coding model which incorporates the L1,2 and L2,1 regularization 
terms is proposed to detect the infrared small target in video 
sequence. Further, online dictionary learning is embedded into 
the model and temporal information is incorporated to 
eliminate the clutters and noises. Finally, four simulation 
datasets are constructed to test the proposed method and the 
experimental validation shows promising results. 

I. INTRODUCTION 
NFRARED small target detection is the key technique to 
Infrared Search and Track System (IRST), in which 
accuracy and robustness are both needed. Infrared imaging 

terminal guidance mainly includes small target detection, 
area target detection and tracking. In the process of terminal 
guidance, the target are from small to large. If the target is 
correctly detected and tracked when it is small and faraway, 
the detection phase can be omitted in the subsequent area 
target tracking process. Meanwhile, modern warfare requires 
the weapon system to be able to accurately detect the target 
under the distance as far as possible in order to get more 
reaction time for more initiative. As a result, infrared small 
target detection under complex background is the important 
precondition for precision guidance. However, the complex 
battlefield, atmosphere radiation, image system, as well as the 
characteristics of infrared small target, e.g., no information 
about shape, size and texture, make the infrared small target 
detection a troublesome problem. 

In general, small target detection methods are divided into 
two classes: the single frame detection methods and the 
sequential detection methods. Ref. [1] proposed an infrared 
patch-image (IPI) model and formulated target detection as 
an optimization problem of recovering low-rank and sparse 
matrices, which can be effectively solved using stable 
principal component analysis. Ref. [2] showed a plausible 
computational model integrating the robust properties of 
human visual system using Laplacian scale space theory and 
optimization method. Ref. [3] developed a kernel-based 
nonparametric regression method for background prediction 
and clutter removal. Ref. [4] formulated the infrared small 
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target detection as salient region detection and presents a 
robust directional saliency-based method. These methods can 
obtain excellent performance, but due to the low 
signal-to-clutter ratio (SCR), the performance of detecting 
small targets in a single image could degrade rapidly. 
Therefore, sequential detection methods are attracting more 
and more attention in recent years.  

From a view of cognitive science, the image information 
can be decomposed into two parts [5]: redundancy and 
saliency. The redundancy denotes the information with high 
regularities, while the saliency represents the novelty part. In 
the field of infrared small target detection, as to the whole 
image, small target can be considered as salient information, 
which has sparse property. While the background is 
approximately linearly, which can be treated as redundant 
information (see Fig. 1 for one example).  
 

 
 
Fig. 1.  Infrared image can be decomposed into two parts: background 
represented as redundancy and small target denoted as saliency. 
 

In this paper, we develop a method called structured sparse 
coding (SSC) for infrared small target detection in video 
sequence.  The sparse coding methods have been investigated 
in extensive fields [6][7]. The main contributions of this 
paper are summarized as follows: (1) A collaborative convex 
SSC model is proposed to address the infrared small target 
detection problem. In this model, a L1,2  penalty term 
represents the locations of the infrared small target and L2,1 
penalty term is used to impose the background. In addition, an 
iterative optimization method is developed to solve this 
model. (2) Online dictionary  learning and temporal 
information is incorporated to eliminate the clutters and 
noises. (3) four simulation datasets are constructed and 
extensive experimental results are reported to show the role of 
online dictionary  learning and temporal information in 
infrared small target detection in video sequence. 

Notations：Let r c×∈M \ . We use superscripts for the 
rows of M , i.e., ( )iM  denotes the i-th row; and subscripts for 
the columns of M , i.e., ( )jM  denotes the j-th column. We 
will use various matrix norms, here are the notations we use: 

F
M  is the Frobenious norm, which is also equal to 

( )TTr M M ; 
2,1

M  is the sum of the L2 norm of the rows of 

Structured Sparse Coding Method for Infrared Small Target 
Detection in Video Sequence 

Chunwei Yang, Huaping Liu, Shouyi Liao, Shicheng Wang 

I

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1179



 
 

 

M : ( )
2,1 1 2

r i
i=

=∑M M ; and
1,2

M  is the sum of the L2 

norm of the columns of M : ( )1,2 1 2

c
jj =

=∑M M . 

The remainder of this paper is organized in the following 
way: In Section II, we overview the SSC method for infrared 
small target detection in video sequence. In Section III, we 
present the role of SSC strategy in infrared small target 
detection. In Section IV, we show the optimization 
algorithms. In Section V, we give the experimental results 
and conclusions and perspectives are given in Section VI. 

II. OVERVIEW OF THE PROPOSED METHOD 
Fig. 2 shows the overview of our proposed SSC method for 

infrared small target detection in video sequence. Firstly, 
each image I of the video sequence is partitioned into N 
blocks of size a×b, producing a set of matrices D(1), D(2), ..., 
D(N) p N×∈\ ,  where p = a×b. Secondly, we proceed D=[D(1), 
D(2), ..., D(N)] using SSC strategy, after which we can obtain 
saliency which denotes the information of the target and 
noises plus the exemplars which represent the background. 
Thirdly, we introduce online dictionary learning which means 
that the main exemplars selected from the exemplars obtained 
from the t-th frame are embedded into the exemplars of the 
(t+1)-th frame. By this way, the dictionary is updated online 
in the whole video sequence. To this end, in order to eliminate 
noises, we use the temporal information which is inspired by 
the fact that the target always has a relatively standard 
trajectory, while the noises are random (illustrated in Fig. 3). 
Finally, we can obtain the infrared small target from the video 
sequence. 

 

 
 
Fig. 2.  The overview of the proposed method in this paper. The infrared 
video sequence is firstly transformed into blocks which are vectorized as a 
dictionary. Then we obtain exemplars representing background and saliency 
denoting the target and noises by SSC. After that, selected exemplars are 
embedded into the next dictionary to achieve the online learning. Meanwhile 
temporal information is incorporated to eliminate the noise and the location 
of the real infrared target can be obtained. 

  

 
 
Fig. 3.  The illustration of the temporal information embedded in the infrared 
video sequence. From the t-th frame we can obtain the weight value, which is 
small in the region of the target and large in other locations. Through the 
temporal information, the noise can be eliminated and the location of the real 
target can be obtained. 

III. TARGET DETECTION USING SPARSE CODING 
Sparse coding strategy [8]-[11], which is a hotspot  in recent 
years, has been widely used in image denoising, image 
feature extraction and pattern recognition, etc. As to the 
infrared small target detection in video sequence, the 
background can be regarded as a set consists of a collection of  
representatives extracted from the dictionary, while the target  
and noises are treated as saliency. Therefore, this problem is 
equivalent to how to find the saliency denoting the target and 
select an optimal subset from the dictionary to represent the 
background under certain constraints. 

Consider a matrix (1) (2) ( ), , , N p N
t t t tD D D ×⎡ ⎤= ∈⎣ ⎦D " \  which 

is obtained through partitioning the t-th frame of the video 
sequence, where each column vector denotes a vectorized 
block. If the infrared small target is in the i-th block, more 
formally, in column ( )i

tD , then the corresponding coefficient 
is sparse. While if the block does not contain the small target, 
which means it is background, the coefficient will be small 
and uniform. 

Ref. [1] shows that the infrared image contains the small 
target T, the background X and the i.i.d random noise N, and 
noise is thought to be uniform and small. The infrared small 
target can be obtained by solving the following optimization 
problem: 

2

1,

1min
2 F

λ
μ∗

+ + − −
X T

X T D X T      (1) 

where  
∗
i  is the nuclear norm of a matrix (i.e. the sum of 

singular values), 
1
i  is the L1 norm, λ  and μ  are weight 

parameters. However, this model fails when the noise is 
strong, especially when the noise is similar to the target. 
What’s more, it can be used for single image only. 

A. Saliency Detection 
In this paper, we consider the noise as sparse and can be 

treated as saliency. Therefore the task is to find the saliency 
and then obtain the infrared small target from the saliency. 
Therefore, a straightforward approach is to minimize the 
following objective function, 

2,1 1,2,
min , . .

t t
t t t t t ts tλ+ − =

X E
X E D D X E     (2) 

where N N
t

×∈X \  is the coefficient matrix of the t-th frame 
and the term Et is used to evaluate the saliency of the t-th 
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frame. The parameter λ  is used to balance different penalty 
terms.  

The above optimization problem can be efficiently solved 
[12][13]. After obtaining the value of  Et, the L2 norm of the 
j-th column for Et, which is denoted as || ( )t jE ||2, is used to 
evaluate the possibility of the j-th sample to be the saliency of 
the t-th frame. 

In addition, we can also obtain the value of Xt, which is 
used to evaluate the the possibility of the i-th sample to be the 
exemplars of the t-th frame.  

In such a collaborative structured sparse coding model, as 
to the t-th frame, the column sparsity is imposed on the matrix 
Et to isolate the saliency and the row sparsity is imposed on Xt 
to detect the exemplars. By this way, the saliency is obviously 
obtained and the extracted exemplars focus on reconstructing 
the background.  

B. Dictionary Update 
In order to eliminate the clutters, the dictionary is updated 

during the detection process. Here, we let 1 1[ , ]t t t+ +=D S D , 
where St is k representative exemplars selected from the 
exemplars of the t-th frame in video sequence. Now, we use 

1t+D instead of Dt+1. In this way, the dictionary can be updated 
online in the whole process. 

Therefore, model (2) can be modified as: 

1 1
1 1 1 1 1 12,1 1,2,

min , . .
t t

t t t t t ts tλ
+ +

+ + + + + ++ − =
X E

X E D D X E  (3) 

C. Temporal Weighing 
Through processing a number of frames, we can obtain the 

general information of the trajectory, according to which we 
design weight value matrices whose entries ,i jω =exp(-β|ei,j|), 
where ei,j is the reciprocal of the distance to the target and β 
controls the decaying speed. In this paper, the value of β is 
empirically set as 0.5. 

To embed the temporal information into the model, we 
extend Eq. (3) as the following: 

1 1
1 1 1 1 1 1 12,1 1,2,

min , . .
t t

t t t t t t ts tλ
+ +

+ + + + + + ++ − =
X E

X W E D D X E  (4) 

where Wt+1 is a diagonal matrix of the (t+1)-frame, whose 
diagonal element is ,i jω . The weight ,i jω  reflects the 
temporal characteristic of the video sequence. In this work we 
use this strategy to effectively eliminate the strong clutters 
and noises. Then the real small target can be obtained. 

Remark: In general, the main difference between IPI 
model and our proposed SSC model is the definition of the 
noise. As to IPI model, the noise is thought to be small and 
uniform, and is treated as inlier. However, in SSC model, the 
noise is considered as saliency due to the strong disturbance 
in the real world. In addition, online dictionary learning and 
temporal information is incorporated to our SSC model, 
making it robust to large noises, especially when the noise is 
similar to the infrared small target. 

IV. OPTIMIZATION ALGORITHM 
The optimization problem in (4) is intrinsically convex and 

therefore we adopt the Alternating Directional Method of 

Multiplier (ADMM) [12] to solve Eq. (4). To this end, we 
transform the above optimization problem as  

1 1 1
1 1 1 1 12,1 1,2, ,

1 1 1 1

min , . .
t t t

t t t t t

t t t t

s tλ
+ + +

+ + + + +

+ + + +

+ =

− =
G X E

G W E X G

D D X E

，
   (5) 

For convenience, we drop the subscripts, and the above 
equation can be written as 

2,1 1,2, ,
min , . . ,s tλ+ = − =
G X E

G WE X G D DX E   (6) 

 The augmented Lagrangian associated with the above 
optimization problem is given by 

1 2 2,1 1,2

2
1

2
2

( , , , , )

( ( ))
2

( ( ))
2

T
F

T
F

L

Tr

Tr

λ

μ

μ

= +

+ − − + − −

+ − + −

G X E Y Y G WE

Y D DX E D DX E

Y X G X G

    (7) 

where Y1 and Y2 are dual variables (i.e., the Lagrangian 
multipliers), μ  is a positive scalar. In order to find a 
minimizer of the constrained problem (6), the ADMM 
algorithm uses a sequential of iterations 

(k 1) ( ) ( ) ( ) ( )
1 2

(k 1) (k 1) ( ) ( ) ( )
1 2

(k 1) (k 1) (k 1) ( ) ( )
1 2

( 1) ( ) ( 1) ( 1)
1 1
( 1) ( ) ( 1) ( 1)
2 2

arg min ( , , , , )

arg min ( , , , , )

arg min ( , , , , )

( )

( )

k k k k

k k k

k k

k k k k

k k k k

L

L

L

μ
μ

+

+ +

+ + +

+ + +

+ + +

⎧ =
⎪

=⎪
⎪ =⎨
⎪ = + − −⎪
⎪ = + −⎩

G G X E Y Y

X G X E Y Y

E G X E Y Y

Y Y D DX E

Y Y X G

  (8) 

until ( 1) ( 1)k k

F
ε+ +− − ≤D DX E  and ( 1) ( 1)k k

F
ε+ +− ≤X G , 

where ε  is the tolerance error. In the following we explain 
how to solve the optimization problems in (8). 

First, the optimization over G is equivalent to 
2

2,1

2min ( )
F

L
μ

= + −
G

G G G V       (9) 

where ( ) ( )
2

1 k k

μ
= +V Y X . According to [13], the i-th row of 

the optimal solution G can be analytically obtained as 
( ) ( )

( ) 2( )
2

1 1(1 )

0

i i
ii

otherwise

μμ
⎧ − >⎪= ⎨
⎪
⎩

V V
VG  (10) 

Secondly, the optimization over X is equivalent to 
minimize 

2( ) ( ) ( )
1

2( ) ( 1) ( 1)
2

( ( ))
2

( ( ))
2

k T k k

F

k T k k

F

Tr

Tr

μ

μ+ +

− − + − −

+ − + −

Y D DX E D DX E

Y X G X G
  (11)  

The solution of X can be obtained as  
1 ( ) ( 1)

( ) ( )
1 2

( ) (
1 1 )

T T T k k

T k T k

μ μ

− ++ − +

+ −

I D D D D D E G

D Y D Y
     (12) 

Finally, the optimization over E is equivalent to 
2

1,2

2min ( )
F

L λ
μ

= + −
E

E WE E U ,    (13) 
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where  ( ) ( 1)
1

1 k k

μ
+= + −U Y D DX . Similar to the solution of G, 

the j-th column of the optimal solution E can be analytically 
obtained as 

( ) ( ) 2
( )( ) 2

1(1 )

0

j j
jj jj

otherwise

λ
μωμω

⎧ − >⎪= ⎨
⎪
⎩

U U
UE  (14) 

V. EXPERIMENTAL RESULTS 
To evaluate our proposed method, we use the following 

four baseline methods for comparison: (I) Tophat filtering 
method [14]. (II) MaxMedian filtering method [15]. (III) 
MaxMean filtering method [15]. (IV) IPI model [1]. By such 
a comparison we can clearly show the superior performance 
of our proposed SSC.   

A. Datasets 
In order to verify the proposed approach in this paper, four 

simulation datasets are constructed by using 50 real infrared 
background images and 1 target and 1 large noise generated 
artificially. The background images are chosen from a real 
infrared video sequence. The video sequence in each dataset 
includes 50 infrared images. The targets in dataset 1 and 
dataset 2 are in sky and sea, respectively. However, except for 
adding large noise generated in random location, dataset 3 
and dataset 4 are the same as dataset 1 and 2, respectively. 

A synthesized image I with target and noise can be 
achieved by embedding a target image T and a large noise 
image N with size of m×n and p×q respectively into a 
background image B. While the image with target only is 
constructed in the same way, only to delete the noise 
synthesized process. Take the former for example. The detail 
is as follows: 

0 0

0 0

0 0

max( ( , ), ( , ))
(1 , ),
(1 , )

( , ) max( ( ', '), ( , ))
(1 ', '),
(1 ', ')

( , )

x x y y x y
x x m x
y y n y

x y x x y y x y
x x p x
y y q y

x y otherwise

− −⎧
⎪ ∈ + +⎪
⎪ ∈ + +
⎪

= − −⎨
⎪ ∈ + +⎪

∈ + +⎪
⎪
⎩

T B

I N B

B

  (15) 

where 0 0( , )x y  and ( ', ')x y  is the trajectory of the target and a 
randomly produced pixel location of the noise, respectively, 
which the left upper corner of the image I corresponds to in 
the image B and N. Then we blur the synthesized image using 
Gaussian filter to make it close to a real one. Finally, we 
obtain dataset 1, 2 without large noises and dataset 3, 4 with 
large noises. Fig. 4 shows the examples of the synthesized 
images. 

B. Quantitative Evaluation 
SCR can be used to describe the difficulty of infrared small 

target detection. The SCR is defined as follows [16][17]: 

 
Fig. 4  The selected frames (#9, #19, #29, #39) from dataset 1, dataset 2, 
dataset 3,  dataset 4, respectively. The  targets are labeled with red text arrow 
and the noises are marked with yellow text arrow. 
 

t b

b

SCR
μ μ

σ
−

=           (16) 

where tμ  is the average value of the target, bμ  and bσ  are 
the average value and the standard deviation of the pixels of 
the background, respectively. Base on this, we define the 
average SCR value of the video sequence as follows: 

1

1 N

t
t

SCR SCR
N =

= ∑           (17) 

where N is the number of infrared images in video sequence, 
and SCRt is the SCR of the t-th infrared image. Also, we 
define the SCR Gain (SCRG) as: 

( )
( )

out

in

SCR
SCRG

SCR
=           (18) 

where ( )inSCR  and ( )outSCR  is the SCR  of the original and 
processed infrared images, respectively. In general, the higher 
the SCRG is, the easier the infrared small target can be 
detected, which means that the processed method is better.  

Table I gives the quantitative evaluation results of the the 
four baseline methods and our proposed SSC method. 

From Table I, we can obviously see that our proposed SSC 
method is better than the compared ones, and IPI model is 
better than the other three baseline methods. 

C. Qualitative Evaluation 
In this section, we list the infrared small target detection 

results in video sequence of dataset 1 and 2. We show three 
frames of each processed video sequence in Fig. 5.  

From Fig. 5, we can see that the frames processed by IPI 
model and our SSC method have less clutters compared with 
others, which means that the infrared small targets of IPI and 
SSC processed frames are easier to be detected. 

D. Robustness to The Large Noise 
It is known to us many detection methods in a single image 

fail when facing  noise especially when the noise is large or is 
similar to the target. In this section, we use dataset 3 and 
dataset 4 to test the robustness of baseline methods and our 
proposed SSC. Fig. 6 illustrates the performance of the above  
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Methods Average_SCRin 
Average_SCRout of 

dataset 1 
SCRG 

dataset 1 
Average_SCRout 

of dataset 2 
SCRG 

dataset  2 

Top-hat 0.3625 17.2569 47.6052 10.2849 28.3721 

MaxMedian 0.3625 35.7415 98.5972 21.3585 58.9200 

MaxMean 0.3625 10.9630 30.2428 4.8470 13.3710 

IPI 0.3625 45.3034 127.9749 23.3346 64.3713 

SSC 0.3625 46.9213 129.4380 26.6611 73.5479 

 
 

 
 
 
 

 
methods. We can see that the baseline methods is sensitive to 
the large noise, including the IPI, but our SSC method is very 
robust to noise. 

VI. CONCLUSIONS 
In this paper, a collaborative SSC method incorporating 

the L1,2 and L2,1 regularization terms is proposed to detect the 
infrared small target in video sequence. In addition, online 

dictionary learning and temporal information are embedded 
into our proposed method to achieve robust capacity. Finally, 
four datasets are constructed to test the SSC method and the 
experiments show  that the SSC method outperforms those 
baseline methods, e.g., Tophat, MaxMedian, MaxMean 
filtering methods and IPI model. 

However, there also exists a limitation. As to the proposed  
SSC model, when the noise near to the target, the robustness  

TABLE I 
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS OF DATASET 1 AND 2 ( THE FILTER SIZE OF TOPHAT, 

MAXMEDIAN AND MAXMEAN IS 31×31, AND THE PARAMETERS OF IPI MODEL ARE SET AS IN [1]) 

Fig. 5  Frames (#9, #29, #49) of dataset 1 and 2. The first column is frames from datasets and the other five columns are corresponding 
results proceeded by Tophat, MaxMedian, MaxMean, IPI, and our proposed SSC, respectively.
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will get worse. How to solve this problem remains our future 
work. 
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