
 
 

 

  

Abstract—This paper presents a novel framework of human 
activity recognition with time series collected from inertial 
sensors. We model each action sequence with a collection of 
Linear Dynamic Systems (LDSs), each LDS describing a small 
patch of the sequence. A codebook is formed by using the 
K-medoids clustering algorithm and a Bag-of-Systems (BoS) is 
developed to represent the time series. A great advantage of this 
method is that the complicated feature design procedure is 
avoided and the LDSs can well capture the dynamics of the time 
series. Our experiment validation on public dataset shows the 
promising results. 

I. INTRODUCTION 
N the last decade, human activity recognition has became 
an important emerging field of research within 
context-aware systems[ 1 ],[ 2 ]. Ref. [ 3 ] presented a 

wearable activity sensor system and a systematic activity 
classification scheme for the classification of human daily 
physical activities. The wearable activity sensor system, 
consisting of two activity sensor modules worn on users’ 
dominant hand wrists and ankles, is used for collecting 
activity acceleration signals. Other similar studies focused on 
how one can use a variety of accelerometers to identify a 
range of user activities.  

Mobile phones or smart phones are rapidly becoming the 
central computer and communication device in people’s lives. 
Importantly, today’s smart phones are programmable and 
come with a growing set of cheap powerful embedded sensors, 
such as accelerometer, digital compass, gyroscope, GPS, 
microphone, and camera, which are enabling the emergence 
of personal, group, and community scale sensing 
applications[4].  For the sake of economy and easy to carry, a 
lot of works fixed attention on the applications that can be 
built on smart phones. These works include identifying a 
user’s activity level and predicting their energy consumption, 
detecting a fall and the movements after the fall, and 
monitoring user activities levels in order to promote health 
and fitness. Here are some typical examples. 

Obesity prevention requires individuals to have healthy 
eating and physical activity awareness in their daily lives. 
Ref. [5] presented a novel health-aware smart phone system 
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(Health Aware) which utilizes the embedded accelerometer 
to monitor daily physical activities. The physical activities 
were categorized into walking steps and running steps 
during the day. Ref. [6] proposed a system for fall detecting 
using an embedded tri-axial accelerometer sensor smart 
phone. If the user falls down, hurts hardly and cannot move 
himself, the system alerts pre-specified guardian with a 
message via SMS. Therefore, fallen man can be cared 
immediately. 

Ref. [7] investigated the current directions of activity 
recognition using inertial sensors, with potential application 
in the healthcare, wellbeing and sports. He summarized five 
main steps involved in the activity recognition: 
preprocessing, segmentation, feature extraction, 
dimensionality reduction and classification. 

The most widely used features to train the classifier can be 
divided into 3 categories: time-domain features, 
frequency-domain features and time-frequency domain 
features. Time-domain features such as mean, variance, root 
mean square and correlation coefficient , and so on , are 
directly derived from a raw data segment .The features are 
basic waveform characteristics and signal statistics. Ref. [8] 
extracted the mean, standard deviation, energy and 
correlation; Ref. [9] selected average absolute difference, 
average resultant acceleration, time between peaks and 
binned distribution value as the representation of the 
preprocessed data. Frequency-domain features include 
discrete FFT coefficient, spectral energy [ 10 ], spectral 
entropy [11]. Time-Frequency domain features are used to 
investigate both time and frequency characteristics of 
complex signals and they generally employ wavelet 
techniques [12].  

On the other hand, Linear Dynamical System (LDS) 
becomes an important tool for modeling time series in 
engineering, controls and economics as well as the physical 
and social sciences. In [ 13 ], the LDS model has been 
successfully used for dynamic texture description. In [14], 
this model was developed for teaching control courses. Very 
recently, Ref. [15] proposed a Bag-of-Systems (BoS) model 
to describe complicated dynamic texture. This method was 
motivated by the popular Bag-of-Words (BoW) model and 
used un-ordered multiple local LDSs to represent a whole 
video sequence. Inspired by such works, we regard human 
activities signal as the output of an intrinsic dynamic system. 
To give a more complete representation for the human 
activity time series, we leverage a method which is similar to 
BoS. We represent time series with a set of LDSs parameters, 
which are called feature descriptors. These feature descriptors 
are used to form a codebook and the distribution of all 
descriptors in this time series over the codebook is used to 
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represent the whole time series. New time series are 
categorized by comparing their distribution to those time 
series in the training set using traditional classifier. 

The main contribution of this paper is that BoS is 
developed to depict the characteristics of the time-series 
collected with the smart phone sensor. To the best knowledge 
of the authors, this is the first time for such a method to be 
used for human activity recognition.  Please note that in [16] 
the human activity recognition was addressed by k-nearest 
neighbor method. However, such a method depends on very 
complicated features, which should be designed by human. In 
this paper, such a tedious procedure is avoided and we just 
use the LDSs to represent the whole dynamics of the 
time-series. In this regard, the proposed method is more 
principle and requires less feature design. The experiment 
results show that the proposed method can obtain comparable 
results with [16]. 

The rest of this paper is organized as follows. In Section II 
the overall architecture is illustrated. Section III reviews LDS 
and the metric for LDSs. In Section IV we categorize time 
series using the approach of BoS. Section V provides some 
experimental results. Finally, the conclusion is given in 
section VI.   

II. ARCHITECTURE 
The framework of human activity recognition is inspired 

by two aspects. The first is the BoF approach to classify time 
series [17] and the second is the bag of dynamical systems [15] 
in categorizing dynamic textures. The steps in our framework 
are as follows: 
1.    Extract features and corresponding LDS descriptors from 

the training set. 
2.  Form codebook using K-medoids clustering algorithm. 

3.    Represent time series using the formed codebook. 
4.  Train a classifier using the representation vector and 

corresponding labels. 
5.  Given a new time series, infer which class it belongs to      
using the trained classifier. 
 Our framework can be illustrated in Fig.1 Note that, in 
order to illustrate clearly, the time series drawn in Fig.1 are 
single-dimensional. In fact, they are 9-dimensional in our 
work. In the training set, subsequences (red rectangle) are 
sampled from each time series and features are extracted from 
the intervals (green rectangles). Features are then grouped 
into K groups and the centers of all groups are selected to 
form codebook (middle). Once the codebook is formed, all of 
the actions can be represented by the codebook (right). A 
SVM classifier is then trained by the representation vectors 
and corresponding labels. After the classifier is trained, the 
recognition can be performed. Given a new action time series, 
the features are extracted by the same method in the training 
produce, and represent the time series with the formed 
codebook. Finally, we can infer which action the time series 
belongs to using the trained classifier (bottom).  

III. BRIEF REVIEW ABOUT LDS 

A. LDS Representation for Time Series  
 Assume that a time series 1...{ (t)} , ( ) m

ty y tτ= ∈ ℜ  is a 
realization of a second-order stationary stochastic process 
[13]. This means that the joint statistics between two time 
instances is shift-invariant. 

In our paper, we assume that there exists symmetric 
positive-definite matrices n nQ ×∈ℜ  and m mR ×∈ℜ  such that 

 

 

 
Fig.1.  Architecture of our framework 
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          (1)       
 
where ( ) mx t ∈ℜ is the hidden state at time t with initial 
condition 0(0)x x= , n nA ×∈ℜ models the dynamics of the 
hidden state, m nC ×∈ℜ  maps the hidden state to the output of 
the system , ( )v t and ( )tω are driven by Gaussian white 
noise. 
 It is well known that the choices of matrices of A , C , Q  
is not unique, but we can find a canonical model realization to 
represent each equivalence class[18]. 
 Subspace methods calculate LDS parameters by first 
decomposing a matrix of observations to generate an estimate 
of the underlying state sequences. The most straightforward 
technique is singular value decomposition (SVD).   

1...{ (t)}tY y τ==  denotes the matrix of observations which is 
the input to SVD. SVD yields TY U V≈ Σ  where m nU ×∈ℜ  
and nV τ ×∈ℜ have orthonormal columns { }iu  and { }iv , and 

1{ ,..., }ndiag σ σΣ =  contains the singular values. So we get 
the estimates of C  and X  where  
 

C U=             TX V= Σ                         (2) 
 

The least squares estimate of A is: 
 

†
1: 0: 1A X Xτ τ −=                                          (3) 

 
where， †  denotes the Moore-Penrose inverse. 

Stability is a desirable characteristic for linear dynamical 
systems, but in the above estimation procedure, the algorithm 
does not enforce stability.  In [19], the author proposed a 
novel method for learning stable dynamical systems, the 
authors formulate an approximation of the problem as a 
convex program, start with a solution to a relaxed version of 
the program, and incrementally add constraints to improve 
stability. Rather than continuing to generate constraints until 
reach a feasible solution, the authors test stability at each step, 
because the convex program is only an approximation of 
desired problem, this early stopping rule can yield a 
higher-quality solution.  Readers can refer [19] for more 
details. 

Finally, the noise convariance Q  can be estimated from 
 

1

t 1

1( ) ( ) ( )
1

t T
Q v t v tτ

τ

−

=

=
− ∑                       (4)                                                       where ( ) ( 1) ( )v t x t Ax t= + − . So far, we have got the LDSs parameters.                                             

B. Martin Distance 
To compare two different LDSs, an appropriate distance 

should be defined. One family of distances between two 
LDSs is based on the subspace angles between the two 

systems. The subspace angles are defined as the principal 
angles between the observability subspaces associated with 
the two model parameters. In the following we give a brief 
review about the Martin distance, of which detail can be 
found in [20] and [21].  

Given two LDSs 1 1 1( , )M A C=  and 2 2 2( , )M A C= , we 
define 

1 2 2

2

0
0

n nA
A

A
×⎛ ⎞

= ∈ ℜ⎜ ⎟
⎝ ⎠

                                 (5) 
and 

[ ] 2 2
1 2, n nC C C ×= ∈ℜ                                      (6) 

The observability subspace is the range-space of the 
extended observability matrix of the LDS defined by   

2( ) [ , ( ) , ( ) ,...]T T T TM C CA CA∞Ο =              (7) 
The calculation of the subspace angles between the two 
models is performed by first solving for Q  from the 
Lyapunov equation T TA QA Q C C− = −  ，where  

11 12 2 2

21 22

n nQ Q
Q

Q Q
×⎛ ⎞

= ∈ℜ⎜ ⎟
⎝ ⎠

                               (8) 
The cosine of the subspace angles{ }i 1

n

i
θ

=
is calculated as   2 1 1

11 12 22 21cos ( )i eigenvalue Q Q Q Qθ − −=                (9) 
Using the subspace angles, the Martin distance between 

1M and 2M is defined as 
                     2 2

1 2
1

( , ) log cos
n

i
i

d M M θ
=

= − ∏                     (10) 
 
A more detailed explanation about how to calculate the 
squared cosines of the angles and a more complete 
mathematical derivation can be found in [20] ,[21]. 

IV. CATEGORIZING TIMER SERIES USING A BAG OF 
DYNAMICAL SYSTEMS 

 The LDS introduced in the above section can be used to 
characterize the dynamics of the time series. However, its’ 
representative capability is weak since it is a simple linear 
model, while practical time series always contain complicated 
dynamics. To tackle this problem, we extract multiple 
subsequences from the time series and use the BoS method to 
contract features for classification. In this section we first 
introduce the feature extraction, then the codebook design 
and the time series representation. Finally we give the 
classification method. 

A. Features Extraction 
Features are extracted from the raw time series using 

windows with size of L. Feature extraction on windows with 
50% overlap has demonstrated success in previous work 
[6].The size of L is decided by the length of time series. In our 
experiment, there are 500 sample points, our results show that 

100L = works well (described in section V).  For each 
subsequence, we divide it into d intervals. So for the training 
set, totally, N features are extracted.  As described above, the 
features are a set of LDSs parameters.  
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B. Codebook Formation  
In the traditional BoF framework, once the features and the 

corresponding descriptors are extracted, the descriptors are 
clustered into k groups using clustering algorithm such as 
K-Means or K-medoids. The centers of the groups are 
selected to form the codebook. Unfortunately, in our paper, 
the descriptors are the LDSs parameters, which lie in the 
non-Euclidean manifold. In order to solve this problem, we 
used a metric between two LDSs parameters, that is, Martin 
distance. In section A, we extract N features 1{ , }N

i i iF A C == in 
the training set. Consequently, the distance matrix N ND ×∈ℜ  
can be calculated by Martin’s approach. Similar to the 
K-Means algorithm, the K-medoids algorithm starts by 
selecting a subset of data points as cluster centers. The 
remaining points are then grouped based on their distances to 
these chosen cluster centers. Given the clustering, the cluster 
centers are updated as the medoid of the data points within 
each group. A medoid of a set of data points is the data point 
that minimizes the sum of squared distances to all other data 
points. Therefore, the medoid is similar to the centroid of the 
data points, except that it is restricted to be one of the data 
points. Consequently, after running the K-medoids algorithm 
on the distance matrix D, we can directly obtain a 
codebook 1 2{ , ,... }KW W W W F= ⊂  

C. Timer Series Representation  
  Each time series can be represented by the codebook. The 
simplest representation is called Term Frequency (TF) [15] 
and is defined as: 

1

i
i k

i
i

c
h

c
=

=
∑

   1,2,...i k=                                                (11)

              
where ic  is the times that codeword iW  “occurs” in a time 
series. Note that, we select the nearest codeword away from 
the feature descriptor as the “occurs” codeword. Obviously, 

ic∑ equals the number of features extracted from the series.  
After the representation procedure, for each time series we 
can get a probability histogram and a label. Fig.2 shows the 
process of BoS representation of a time series. 
 

 
D. Classification 

 The final stage is to design a classifier for recognition. Here 
the well-known SVM is used to predict the label of time series 
[22], [23]. Of course some other multi-class methods can also 

be adopted such as KNN and decision tree. In the case of 
multiple classes, the training data are labeled 1{ , }N

i i ih l = , where 

ih  is the feature vector, il  is the label and N is the number of 
the training samples. 

 The linear SVM aims to learn L  linear 
functions{ }|T

c h cω ψ∈ , where cω  is the weight vector. We 
use a one-versus-all strategy to train L  binary linear SVMs, 
each solving the following unconstrained convex 
optimization problem 

2

2
1

min ( ) ( ; , )
c

n
c

c c c i i
i

J C l h
ω

ω ω ω
=

⎧ ⎫= +⎨ ⎬
⎩ ⎭

∑                (12) 

where C  is a parameter which is determined by the 
cross-validation. A larger C  corresponds to the assignment 
of higher penalties to errors. The SVM constructs a 
hyperplane to classify the data and the weight vector cω  
serves as the normal vector to the hyperplane. 

For multi-class classification, we set 1c
il =  if il c= , 

otherwise, 1c
il = − , while ( ; , )c

c i il hω  is a hinge loss function 
which is defined as: 

2
( ; , ) max(0, 1)c T c

c i i c il h h lω ω⎡ ⎤= ⋅ −⎣ ⎦                    (13) 

For a test sample feature vector newh , its class label is 
predicted by 

max T
new c newc

l h
ψ

ω
∈

=                              (14) 

However, many problems are not linearly separable. For 
these problems, kernel-based SVMs are often used. In this 
work the Radial-Basis-Function (RBF) kernel defined 
as 1 2( , )

1 2( , ) d H HH H eγκ ×=  is adopted, where γ is a free 
parameter and 1 2( , )d H H  is the distance on the space of 
histogram. The parameters in the RBF SVM classifier are 
determined by cross-validation. 

V. EXPERIMENTS AND RESULTS 

A. Dataset 
 We utilize a dataset called UCF-iPhone Data set which is 
provided by the University of Central Florida [16]. There are 
9 subjects who were called to bind the phone to their belts on 
the right hand side. Nine actions (Bike, Climbing, Descending, 
Gymbike, Jumping, Running, Standing, Treadmill, and 
Walking) are performed and each action is recorded for 5 
times using the single 60Hz IMU built in the phone. Each 
action sequence was trimmed to 8.33 seconds (500 sample 
points). 
 Figs.3 shows several typical time series in the data set. 
Three inertial sensors are used to collect data: accelerometer, 
gyroscope and magnetometer. In Figs.3 (a) and (b), the sensor 
signals change acutely and periodically. However, the signal 
of Standing is unchanged except for some noise. 
       Intuitively, Jumping and Running are easy to be confused; 
Standing is easy to be distinguished from Jumping and 
Running. 

B. Experimental Results 

t

 
Fig.2  Time Series Representation 

1188



 
 

 

 As described above, the smart phone is bound on the belt of 
the volunteer. Intuitively, the smart phone should have same 
movements with the body. In fact, the data collected from the 
smart phone can not reflect the action completely, especially 
the strenuous activities such as Running and Jumping. These 
uncertainties will increase difficulties for activity recognition. 
 In our experiment, all of the descriptors in the database are 
used to form the codebook. In section IV, we have discussed 

that the size of L is important, so we have to select it carefully. 
For our data, 100L =  works well. We also use the 
leave-one-subject-out validation test to evaluate the 
classifiers’ ability to recognize unacquainted actions. 
Classifiers are trained on representation vectors and 
corresponding labels expect the subject left out of the training 
data set to test the classifier. The recognition result is given in 
Fig.4. 

Fig.4 shows the performance when K= 18, 90, 128, 256, 
270, 405, 512, 1024 and 2048, respectively. The experimental 
results indicate that an appropriate K leads to good 
performance. As K is more than 256, the performance 
decreases. The reason is that a large K results too many 
codebook elements and two similar LDS descriptors may be 
separated into different clusters, although they are both very 
close to the boundary. When 256K = , our method performs 
the best. The highest accuracy using the proposed method is 
about 71%, which is a littler higher than the results (68%) in 
[16]. Although the performance improvement is not very 
significant, an important advantage lies in the fact that in the 
proposed method, no extra feature selection procedure is 
needed and the LDS naturally characterizes the intrinsic 
dynamics of the time series, on the contrary in [16], 13 ad-hoc 
features are designed by the human. In this sense, the 
proposed method gives a more principle solution to tackle this 
problem.  

In order to find which activities are harder to be recognized 
relatively, we analyzed the confusion matrix. Fig.5 shows the 
aggregate confusion matrix for the best overall recognition 
result (70.62%). The confusion matrix gives information 
about the actual and predicted classifications done by the 
SVM (RBF kernel) classifier. The labels of abscissa and 
ordinate are the names of nine actions described in section A. 
The elements on primary diagonal represent the recognition 
accuracies to different actions, and other elements in row x 
and column y show the percentage of action x recognized as 
action y. We can see that different actions obtain different 
recognition accuracies. For example, Biking and Gym bike 
obtains higher accuracy (82% and 80%) respectively, but 
Walking obtains the lowest accuracy (51%). It is often 
recognized as Bike, Climbing and Descending. Jumping and 
Running are usually confused with each other. This result is 
reasonable, because the raw signals for Jumping and Running 
are indeed similar in Figs.3. In [16], Climbing and 
Descending are always confused even used the hierarchical 

 
(a) Jumping 

 
(b) Running 

 

 
 

(c) Standing 
 

Figs.3.  Several typical time series of different actions 

Fig.5.  Confusion matrix for best recognition result 

 
 

Fig.4.  The impact of the number of K on the classification performance. 
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classifier, but using our method these two actions can be 
recognized accurately. 
 To show the advantage of BoS which adopt multiple LDSs 
to depict a whole time series, we design a baseline approach 
which adopts one single LDS model to depict the time series.  
The modeling procedure is same as the description in section 
III, except that the considered data comes from the whole 
time series. In this case, SVM classifier cannot be adopted 
and we use the naïve k-nearest neighbor classifier which 
utilizes the Martin distance. TableⅠshows the recognition 
results for k=1, 3, 5, 7, 9 respectively. It is obvious that all of 
the results are inferior to the BoS method. The main reason is 
that BoS adopt multiple LDSs and therefore the dynamics of 
the time series can be well characterized. 

 
 
 
 
 

VI. CONCLUSION AND OUTLOOK 
 This paper proposes a novel framework of human activity 
recognition. The main difference between our method and 
previous work is that LDSs parameters are selected as 
features to represent time series. To describe time series more 
accurately, a codebook is formed by a set of LDSs parameters.  
Finally, we get a set of distribution vectors. In our paper, we 
used the instances and labels to train SVM classifier. The 
average recognition results for 9 different human activities in 
the UCF-iPhone Data set using the proposed framework can 
be achieved to about 71%. A great advantage of this method 
is that the complicated feature design procedure is avoided 
and the LDSs can well capture the dynamics of the time series. 
To achieve better recognition results, in future studies, the 
approach to extract features can be changed to grab more 
essential features of time series and other faster classifier 
algorithm such as ELM can be used[24].  

 REFERENCES 
 
[1] H. Cheng, Z. Liu, Y. Zhao, G. Ye, X. Sun, “Real world activity summary 

for senior home monitoring,” Multimedia Tools and Applications, July 
2011, pp.1–4. 

[2] H. Cheng, Z. Liu, L. Hou, J. Yang, “Sparsity induced similarity measure 
and its applications,” IEEE Trans. Circuits and Systems for Video 
Technology, in press. 

[3] F. C. Chuang, Y. T. Yang, and T. P. Kao, “A wearable activity sensor 
system and its physical activity classification scheme,” in Proc. Int. 
Joint Conf. Neural Networks (IJCNN), Jun. 2012. pp. 1–6.   

[4] N. D. Lane, E. Miluzzo, L. Hong, D. Peebles, T. Choudhury, and A. T. 
Campbell, “A survey of mobile phone sensing,” IEEE Trans. 
Communications Magazine, vol. 48, pp. 140–150, Sept. 2010.  

[5] C. Gao, F. Kong, and J. Tan, “Health aware: Tackling obesity with 
health aware smart phone systems,” in Proc. IEEE Int. Conf. Robotics 
and Biomimetics (ROBIO), Dec. 2009, pp.1549 –1554. 

[6] Z. T. Zhao, Y.Q. Chen, and J.F. Liu “Fall detecting and alarming based 
on mobile phone,” in Proc. 7th Int. Conf. Ubiquitous Intelligence & 
Computing  and 7th Int. Conf. Autonomic & Trusted 
Computing(UIC/ATC),  Oct. 2010, pp.494–497.  

[7] A. Akin, B. Stephan, M. Mihai, M. Raluca, and H.Paul, “Activity 
recognition using inertial sensing for healthcare, wellbeing and sports 

 
applications: A survey,” in Proc. 23rd Int. Conf. Architecture of 
Computing Systems (ARCS), Feb. 2010, pp. 1–10. 

[8] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity 
recognition from accelerometer data,” in Proc. 17th National Conf. 
Artificial Intelligence, vol. 20, 2005, pp. 1541–1546. 

[9] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition 
using cell phone accelerometers,”  in Proc. 4th International Workshop 
on Knowledge Discovery from Sensor Data, vol. 12, no. 2, Dec. 2010, 
pp. 74–82. 

[10] T.Huynh, and B.Schiele, “Analyzing features for activity recognition,” 
in Proc. Joint Conf. Smart Objects and Ambient Intelligence: Innovative 
Context-aware Services: Usages and Technologies, 2005, pp. 159–163. 

[11] S. Wang, J. Yang, N. Chen, X. Chen, and Q, Zhang, “Human activity 
recognition with user-free accelerometers in the sensor networks,” in 
Proc. IEEE Int. Conf. Neural Networks and Brain, vol.2, 2005, pp. 
1212–1217. 

[12] J. Mantyjarvi, J. Himberg, and T. Seppanen, “Recognizing human 
motion with multiple acceleration sensors,” in Proc. IEEE Int. Conf. 
Systems, Man, and Cybernetics, vol. 2, Oct. 2001, pp. 747–752. 

[13] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto, “Dynamic textures,” 
International Journal of Computer Vision, vol. 51, no. 2,  pp. 91–109, 
Feb. 2003. 

[14] H. Liu, W. Xiao, H. Zhao, F. Sun, “Learning and understanding system 
stability using illustrative dynamic texture examples,” IEEE Trans. 
Education, vol.57, no.1, pp.4–11, Feb. 2014. 

[15] R. Vidal, R. Chaudhry, and R. Vidal, “Categorizing dynamic textures 
using a bag of dynamical systems,” IEEE Trans. Pattern Analysis and 
Machine Intelligence, vol. 35, no. 2, pp. 342–353, Feb. 2013. 

[16] C. McCall, K. Reddy and M. Shah,“ Macro-class selection for 
hierarchical K-NN classification of inertial sensor data,” in Proc. 2nd 
Int. Conf. Pervasive and Embedded Computing and Communication 
Systems, PECCS 2012,  Feb. 2012, pp. 106–114. 

[17] M. G. Baydogan, G. Runger, E. Tuv, “A bag-of-features framework to 
classify time series,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 35, no. 11, pp. 2796–2802, Nov.  2013. 

[18]  P. Saisan, G. Doretto, Y. Wu, S. Soatto, “Dynamic texture recognition,”  
in Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR), 
vol.2, 2001, pp. 58–63. 

[19] S. M. Siddiqi, B. Boots, and G. J. Gordon, “A constraint generation 
approach to learning stable linear dynamical systems,” in Proc. Int. 
Conf. Neural Information Processing Systems, Dec. 2007, pp. 
1329–1336. 

[20] K. D. Cock, and B. D. Moor, “Subspace angles between ARMA 
models,” Systems & Control Letters, vol. 46, no. 4, pp. 265–270, Jul. 
2002. 

[21] R. J. Martin. “A metric for ARMA processes,” IEEE Trans. Signal 
Processing, vol. 48, no. 4, pp. 1164–1170, Apr. 2000. 

[22] J. Yang, K. Yu, Y. Gong, T. Huang, “Linear spatial pyramid matching 
using sparse coding for image classification,”  in Proc. IEEE Int. Conf. 
Computer Vision and Pattern Recognition (CVPR), June 2009, pp. 
1794–1801. 

[23] H. Liu, Y. Liu, F. Sun, “Traffic sign recognition using group sparse 
coding,” Information Science, vol.266, pp.75–89, 2014. 

[24] G.Huang, Q. Zhu, CK. Siew. “Extreme learning machine: theory and 
applications,” Neurocomputing, vol. 70, pp. 489–501, Dec. 2006. 

TABLE I  
CLASSIFICATION ACCURACY WITH DIFFERENT 

NUMBER OF k 
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