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Robust Support Vector Machine
Trung Le, Dat Tran, Wanli Ma, Thien Pham, Phuong Duong, and Minh Nguyen

Abstract—Support Vector Machine (SVM) is a well-known
kernel-based method for binary classification problem. SVM aims
at constructing the optimal middle hyperplane which induces the
largest margin. It is proven that in a linearly separable case,
this middle hyperplane offers the high accuracy on universal
datasets. However, real world datasets often contain overlapping
regions and therefore, the decision hyperplane should be adjusted
according to the profiles of the datasets. In this paper, we propose
Robust Support Vector Machine (RSVM), where the hyperplanes
can be properly adjusted to accommodate the real world datasets.
By setting the value of the adjustment factor properly, RSVM can
handle well the datasets with any possible profiles. Our experi-
ments on the benchmark datasets demonstrate the superiority of
the RSVM for both binary and one-class classification problems.

Index Terms—Kernel-based method, Support Vector Machine,
One-class Support Vector Machine.

I. INTRODUCTION

Support Vector Machine (SVM) [1, 2] is a well-known

kernel-based method for classification problem. SVM aims at

constructing the optimal hyperplane such that the margin, i.e.,

the distance from the closest data sample of the training set

to the hyperplane, is maximized. It is proven that in a linearly

separable case, the optimal (middle) hyperplane offers the high

accuracy not only on the currently collected training set but

also on the universal dataset [3, 4]. However, for any real

dataset with the overlap of positive and negative regions, the

decision hyperplane should be adjusted according to the profile

of the dataset. This is the same idea in the generative linear

models of Bayes inference, e.g. naive Bayes, etc., in which

the decision hyperplane can be adjusted according the prior

and posterior probabilities of the classes [5].

It is known that SVM offers good performance for balanced

datasets, but may perform poorly on imbalanced datasets.

To solve the problem, One-class Support Vector Machine

(OCSVM) [6] and Support Vector Data Description (SVDD)

[7, 8] were proposed. OCSVM tries constructing the optimal

hyperplane such that the margin, i.e., the distance from the

origin to the hyperplane, is maximized. The obvious drawback

of OCSVM is that it regards all negative data samples the

same as a common symbol (the origin) and certainly cannot

efficiently utilize the information carried by them. In contrast,

SVDD is able to utilize the negative data samples, but the

derivation of SVDD in its original paper [7] is not theoretically

sound, because the constrains may not be convex, and then
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Karush-Kuhn-Tucker (KKT) theorem cannot be applied for

the derivation.

In this paper, we propose Robust Support Vector Machine

(RSVM) where the optimal hyperplanes can be adjusted to

fit the profiles of the datasets. In RSVM, two margins are

adjustable and proportional with a certain ratio µ, called the

adjustment factor. By setting the appropriate values for µ,

RSVM can adjust well to both the balanced and imbalanced

datasets. We also suggest, in this paper, the procedure to

calculate the optimal value of µ.

II. SUPPORT VECTOR MACHINE

SVM [1, 2] aims at constructing an optimal hyperplane,

which can separate the positive and negative classes such that

the margin, i.e., the distance from the closest sample of the

training set to the hyperplane, is maximized. The optimization

problem of SVM is as follows:

min
w,ρ

(

1
2
‖w‖

2
+ C

∑N

i=1 ξi

)

s.t. : ∀Ni=1 : yi
(

wTxi − ρ
)

≥ 1− ξi
∀Ni=1 : ξi ≥ 0

where ξ = [ξi]
N

i=1 is the vector of slack variables, C is the

trade-off parameter.

The decision function is of the following form:

f(x) = sign(wTx− ρ)

III. ONE-CLASS SUPPORT VECTOR MACHINE

OCSVM [6] builds an optimal hyperplane that can separate

the origin and the positive class such that the margin, i.e., the

distance from the origin to the hyperplane, is maximized. The

optimization problem of OCSVM is given by:

min
w,ρ

(

1
2
‖w‖

2
− ρ+ 1

νN

∑N

i=1 ξi

)

s.t. : ∀Ni=1 : wTxi ≥ ρ− ξi
∀Ni=1 : ξi ≥ 0

where the training set X = {x1, x2, . . . , xN} contains only

positive data, ν is a constant.

The decision function is of the following form:

f(x) = sign(wTx− ρ)

IV. ROBUST SUPPORT VECTOR MACHINE

A. The Basic Idea

To propose the model of RSVM, we first examine the model

of SVM from a different viewpoint. We start with a linearly

separable case with the following lemma.
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Lemma 1. Given the linearly separable training set X =
{(x1, y1) , (x2, y2) , . . . , (xN , yN )} . Let us denote m+,m− by

the distances from the closest samples of positive and negative

classes, respectively, to the optimal hyperplane. The following

holds:

m+ = m− = m = max
1≤i≤N

(

yi
(

wTxi − ρ
)

‖w‖

)

Proof: We prove by contradiction. Suppose that m+ >

m−, by slightly moving the optimal hyperplane toward the

positive class, we gain a new hyperplane, which is par-

allel to the optimal hyperplane, but has a larger margin.

Therefore, m+ = m−. Furthermore, we also have m =
min {m+,m−} = m+ = m−.

According to Lemma 1, we can reformulate SVM in sepa-

rable case as follows:

max
w,ρ

(m+ +m−)

s.t. : m+ = m−

m+ = min
yi=1

(

yi(wT xi−ρ)
‖w‖

)

m− = min
yi=−1

(

yi(wT xi−ρ)
‖w‖

)

∀Ni=1 : yi
(

wTxi − ρ
)

≥ 0

(1)

To extend SVM, we allow the two margins adjustable and

proportional by the adjustment factor, i.e., m+ = µm−. The

optimization problem in Eq. (1) becomes:

max
w,ρ

(m+ +m−)

s.t. : m+ = µm−

m+ = min
yi=1

(

yi(wT xi−ρ)
‖w‖

)

m− = min
yi=−1

(

yi(wT xi−ρ)
‖w‖

)

∀Ni=1 : yi
(

wTxi − ρ
)

≥ 0

(2)

B. The Derivation of RSVM

To derive the optimization problem in Eq. (2), because the

positive and negative margins m+ and m− are invariant if we

scale (w, ρ) by a factor k, without loss of generality, we can

assume that: min
yi=1

yi
(

wTxi − ρ
)

+ min
yi=−1

yi
(

wTxi − ρ
)

= 2.

The optimization problem in Eq. (2) thus becomes:

min
w,ρ

(

1
2
‖w‖

2
)

s.t. : ∀Ni=1yi = 1 : yi
(

wTxi − ρ
)

≥ 2µ
µ+1

∀Ni=1yi = −1 : yi
(

wTxi − ρ
)

≥ 2
µ+1

(3)

We extend the optimization problem in Eq. (3) by using the

slack variables to accommodate the soft model as follows:

min
w,ρ,ξ

(

1
2
‖w‖

2
+ C

∑N

i=1 ξi

)

s.t. : ∀Ni=1yi = 1 : yi
(

wTxi − ρ
)

≥ 2µ
µ+1

− ξi

∀Ni=1yi = −1 : yi
(

wTxi − ρ
)

≥ 2
µ+1

− ξi

∀Ni=1 : ξi ≥ 0

(4)

C. The Solution

We apply Karush-Kuhn-Tucker (KKT) theorem to solve the

optimization problem in Eq. (4). The Lagrange function is of

the following form:

L (w, ρ, ξ, α, β) =
1

2
‖w‖

2
+ C

N
∑

i=1

ξi

−
N
∑

i=1

αi

(

yi
(

wTxi − ρ
)

− θi + ξi
)

−
N
∑

i=1

βiξi

where θi =

{

2µ
µ+1

if yi = 1
2

µ+1
if yi = −1

By setting the derivatives to zero, we achieve:

δL

δw
= 0 → w =

N
∑

i=1

yiαixi (5)

δL

δρ
= 0 →

N
∑

i=1

yiαi = 0 (6)

∀Ni=1 :
δL

δξi
= 0 → αi + βi = C (7)

∀Ni=1 : αi ≥ 0, yi
(

wTxi − ρ
)

− θi + ξi ≥ 0

, αi

(

yi
(

wTxi − ρ
)

− θi + ξi
)

= 0 (8)

∀Ni=1 : βi ≥ 0, ξi ≥ 0, βiξi = 0 (9)

By substituting Eqs. (5 - 7) to the Lagrange function, we obtain

the following optimization problem:

min
α

(

1
2

∑N

i=1

∑N

j=1 yiyjx
T
i xjαiαj −

∑N

i=1 θiαi

)

s.t. :
∑N

i=1 yiαi = 0
∀Ni=1 : 0 ≤ αi ≤ C

(10)

The Kernel trick can be employed to transform the opti-

mization problem of Eq. (10) in the input space to that in the

feature space as follows:

min
α

(

1
2

∑N

i=1

∑N

j=1 yiyjK(xi, xj)αiαj −
∑N

i=1 θiαi

)

s.t. :
∑N

i=1 yiαi = 0
∀Ni=1 : 0 ≤ αi ≤ C

(11)

To compute ρ, let us denote I =
{i : 1 ≤ i ≤ N ∧ 0 < αi < C}. For all i ∈ I , according to

KKT conditions in Eqs. (8,9), we have:
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yi
(

wTxi − ρ
)

= θi → ρ = wTxi−yiθi =

N
∑

j=1

yjαjx
T
i xj−yiθi

(12)

If a general kernel function is in use, by referring the Kernel

trick, Eq. (12) becomes:

ρ =
N
∑

j=1

yjαjK(xj , xi)− yiθi (13)

In practice, to avoid favoring any particular sample, we take

average all on the right hand sides of Eq. (13).

D. RSVM Incorporate both SVM and OCSVM

By setting µ = 1, the optimization problem in Eq. (10)

becomes:

min
α

(

1
2

∑N

i=1

∑N

j=1 yiyjx
T
i xjαiαj −

∑N

i=1 αi

)

s.t. :
∑N

i=1 yiαi = 0
∀Ni=1 : 0 ≤ αi ≤ C

(14)

The optimization problem in Eq. (14) coincides with that

of SVM.

On the other hand, by setting µ = 0, the optimization

problem in Eq. (10) becomes:

min
α

(

1
2

∑N

i=1

∑N

j=1 yiyjK(xi, xj)αiαj −
∑N

i=1 θiαi

)

s.t. :
∑N

i=1 yiαi = 0
∀Ni=1 : 0 ≤ αi ≤ C

(15)

where θi =
1−yi

2
.

The fact that the positive margin, i.e., m+, is 0 implies that

the negative margin or the margin, i.e., m− = m, which is

measured by the distance from the closest negative data sample

to the hyperplane, is maximized. Although the optimization

problem in Eq. (15) is not that of OCSVM, however it can

certainly be used for novelty detection and is somehow better

than OCSVM since it enables the use of the negative data

samples, while OCSVM regards all negative data samples as

a common symbol and obviously cannot efficiently take the

advantage from these data.

V. CALCULATING THE ADJUSTMENT FACTOR µ

A. Problem Statement

In this section, we discuss how to calculate the optimal value

of the adjustment factor µ for RSVM. The value of µ can be

obtained by solving the following optimization problem:

min
w,ρ,µ,ξ

(

1
2
‖w‖

2
+ C

∑N

i=1 ξi

)

s.t. : ∀Ni=1yi = 1 : yi
(

wTxi − ρ
)

≥ 2µ
µ+1

− ξi

∀Ni=1yi = −1 : yi
(

wTxi − ρ
)

≥ 2
µ+1

− ξi

∀Ni=1 : ξi ≥ 0
µ ≥ 0

(16)

where µ is regarded as a variable.

B. The Solution

We apply KKT theorem to derive the optimization problem

in Eq. (16). The Lagrange function is of the following form:

L (w, ρ, µ, ξ, α, β, γ) =
1

2
‖w‖

2
+ C

N
∑

i=1

ξi

−
N
∑

i=1

αi

(

yi
(

wTxi − ρ
)

− θi + ξi
)

−
N
∑

i=1

βiξi − γµ

Setting the derivatives to 0, we gain:

δL

δw
= 0 → w =

N
∑

i=1

yiαixi (17)

δL

δρ
= 0 →

N
∑

i=1

yiαi = 0 (18)

∀Ni=1 :
δL

δξi
= 0 → αi + βi = C (19)

δL

δµ
= 0 →

∑

yi=1

2αi

(µ+ 1)
2
−

∑

yi=−1

2αi

(µ+ 1)
2
− γ = 0 (20)

∀Ni=1 : αi ≥ 0, yi
(

wTxi − ρ
)

− θi + ξi ≥ 0

, αi

(

yi
(

wTxi − ρ
)

− θi + ξi
)

= 0 (21)

∀Ni=1 : βi ≥ 0, ξi ≥ 0, βiξi = 0 (22)

γµ = 0 (23)

Eqs. (18, 20) imply that γ = 0.

Substituting Eqs. (17-20) to the Lagrange function, we

achieve:

L = −
1

2
‖w‖

2
+

N
∑

i=1

θiαi

= −
1

2
‖w‖

2
+

∑

yi=1

(

2−
2

µ+ 1

)

+
∑

yi=−1

2

µ+ 1

= −
1

2
‖w‖

2
+ 2

∑

yi=1

αi

= −
1

2
‖w‖

2
+

N
∑

i=1

αi
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since Eq. (18) implies that
∑

yi=1 αi =
∑

yi=−1 αi.

We end up with the following optimization problem:

min
α

(

1
2

∑N

i=1

∑N

j=1 yiyjx
T
i xjαiαj −

∑N

i=1 αi

)

s.t. :
∑N

i=1 yiαi = 0
∀Ni=1 : 0 ≤ αi ≤ C

C. The Decision Function

There are two margins which are specified by the equations:

(H+) : wTx − ρ = 2µ
µ+1

and (H-) : wTx − ρ = − 2
µ+1

. To

find out the optimal decision hyperplane (H) : wTx− ρ = 0,

we only need to consider the data samples which locate inside

the strip formed by the two margins and propose the decision

hyperplane such that the empirical error caused by those is

minimal. To illuminate it in more details, we enumerate the

possible cases:

Case 1. 0 < αi < C

◦ yi = 1 : wTxi − ρ = 2µ
µ+1

. Let us call such an

index by i1 and we have wTxi1 − ρ = 2µ
µ+1

.

◦ yi = −1 : wTxi − ρ = − 2
µ+1

. Let us call such

an index by i2 and we have wTxi2 − ρ = − 2
µ+1

.

Case 2. αi = 0
yi(w

Txi − ρ) ≥ θi implies that xi is correctly

classified and resides outside the margins. We can

safely ignore them.

Case 3. αi = C

yi(w
Txi−ρ) = θi− ξi. We can decide whether xi

locates inside the margins by verifying as follows:

◦ yi = 1 : wTxi − ρ ≥ − 2
µ+1

= wTxi2 − ρ or

wTxi ≥ wTxi2 (condition 1).

◦ yi = −1 : wTxi − ρ ≤ 2µ
µ+1

= wTxi1 − ρ or

wTxi ≤ wTxi1 (condition 2).

Let’s denote J the set of all indices whose data samples locate

inside the margins. We can use the conditions 1 and 2 to

construct J as follows:

J =
{

i : αi = C ∧ yi = 1 ∧ wTxi ≥ wTxi2

}

(24)

∪
{

i : αi = C ∧ yi = −1 ∧ wTxi ≤ wTxi1

}

We propose to choose ρopt and µopt = − 2
wT xi2

−ρopt
− 1

such that the empirical error caused by the data samples whose

indices are in J is minimal.

ρopt = argmin
ρ

∑

j∈J

l
(

yj(w
Txj − ρ)

)

(25)

where l (o) =

{

0 if o ≥ 0

1 if o < 0
is the empirical loss function.

In many real world applications, the cost suffered by

classifying the negative data samples as the positive ones is

different from that of classifying the positive data samples as

the negative samples. To handle this problem, we consider the

relative cost λ, the difference between the former and later,

and find ρopt by:

ρopt = argmin
ρ



argmin
ρ

∑

j∈J

λil
(

yj(w
Txj − ρ)

)



(26)

where λi =

{

1 if yi = 1

λ if yi = −1
.

The algorithm for determining ρopt is proposed as follows:

Algorithm 1 Determining the optimal decision hyperplane.

Form the set J = {j1, j2, . . . , jk} as defined in Eq. (24).

Arrange the objective values of the data samples whose indices

are in J in descending order, assume that wTxj1 ≥ wTxj2 ≥
. . . ≥ wTxjk .

j0 = i1; //yj0=1

t = 0;

nCorrectMax = λcard ({yjt : yjt = −1}) ; /*at first all

negative data sample in J are correctly classified */

while(yjt = 1) {t++; nCorrectMax ++;}

pos = t− 1;

nCorrect = nCorrectMax;
do{

while(yjt = −1) { t++; nCorrect− = λ; }

while(yjt = 1) {t++; nCorrect ++;}

if(nCorrect > nCorrectMax) {

nCorrectMax = nCorrect;
pos = t− 1; }

}while(t ≤ k)

ρopt =
wT xjpos+wT xjpos+1

2
;

The idea behind Algorithm 1 is that we traverse all indices

t (1 ≤ t ≤ k) where yjt = 1 and yjt+1
= −1, and count the

number of correctly classified data samples with the weight λ

between the correctly and incorrectly classified negative and

positive data samples with the assumption that the hyperplane

wTx − ρ = 0, where ρ =
wT xjt

+wT xjt+1

2
is used as the

classifier and then choose the case that offers the highest

accuracy. The cost of Algorithm 1 includes the cost to arrange

an array of size k = card(J) and the cost to choose ρopt,

which is obviously O(k). Therefore, the total cost of Algorithm

1 is around O(klnk + k). This cost is not expensive at all

because k , i.e., the cardinality of the set J , is always very

small as compared to the size of the training set.

VI. THE EXPERIMENTS

A. The Experiments on the Toy datasets

1) The Experiments with the Linear Kernel: To visually

explain the behaviors of RSVM, we first conducted the exper-

iments on 2-D toy datasets. The linear kernel was employed

and the parameter µ was varied in the grid {0, 0.5, 1, 15}.

When µ = 0 as shown in Figure 1, the margin, which is the

distance from the closest negative data sample, is maximized

and the optimal hyperplane is pushed as close as possible to

the positive region (m+ = 0 and m− = m is maximized). It is

obvious that this setting can be used for one-class classification

to classify imbalanced datasets. When µ = 1 as shown in
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Figure 2, two margins are equal (m+ = m−), this setting

corresponds to SVM and is used for classifying balanced

datasets. In Figure 3, µ was set to 0.5 and the positive margin

is a half of the negative margin. This setting is good for

imbalanced datasets with a certain level of deviation. In Figure

4, µ was set to 15 and the negative margin is very small.

Fig. 1. Experiment with linear kernel and µ = 0, C = 30.

Fig. 2. Experiment with linear kernel and µ = 1, C = 30.

Fig. 3. Experiment with linear kernel and µ = 0.5, C = 30.

Fig. 4. Experiment with linear kernel and µ = 15, C = 30.

2) The Experiments with RBF Kernel: The experiments

were also conducted on the same 2-D datasets. The first dataset

is imbalanced and was mainly drawn from the mixture of

three Gaussian distributions together with some negative data

samples. For the task of learning the data description of the

positive class to detect the divergence from normality, µ was

set to 0 and 0.5, respectively. As seen in Figure 5, when

µ = 0, the classifier can perfectly recognize the mixture of

three Gaussian distributions. In Figure 6, µ = 0.5, the positive

margin m+ becomes larger and thereby connect two Gaussian

distributions together. The second dataset is fairly balanced

and includes some Gaussian distributions inside it. For the task

of classifying the positive and negative classes, µ was set to 1
and 15. As shown in Figure 7, the classifier classifies well the

dataset when µ = 1. In Figure 8, when µ = 15, the negative

margin m− is very thin. To conclude, it is fair to claim that

RSVM can handle well all kinds of datasets. Furthermore, it

also offers more insights to fit the real datasets.

Fig. 5. Experiment with RBF kernel and µ = 0, C = 30, γ = 2.
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Fig. 6. Experiment with RBF kernel and µ = 0.5, C = 30, γ = 2.

Fig. 7. Experiment with RBF kernel and µ = 1, C = 30, γ = 2.

Fig. 8. Experiment with RBF kernel and µ = 15, C = 30, γ = 2.

3) The Experiments on Calculating the Adjustment Factor:

To demonstrate how to calculate the optimal adjustment factor,

we conducted the experiments on two other 2-D toy datasets.

In these experiments, the linear kernel was employed. In

Figure 9, the relative cost λ was set to 1, i.e., the positive

and negative data samples are identically treated, the margin

is adjusted to minimize the empirical lost caused by the data

samples inside two margins consequently. In Figure 10, the

relative cost λ was set to #Positive
#Negative

. Because the currently

experimental dataset is imbalanced, where the positive class

is the majority, the negative data samples are favored, and as

the consequence, the decision hyperplane is pushed closer to

the positive region to reduce the empirical error on the inside-

margin negative data samples.

Fig. 9. Experiment with linear kernel and λ = 1, C = 30.

Fig. 10. Experiment with linear kernel and λ = #Positive/#Negative, C =

30.

B. The Experiments on Real Datasets

1) The Experimental Settings: To demonstrate the ability

of the proposed method, we conducted the experiments on

the benchmark datasets of UCI repository. The methods in

comparison are SVM, SVDD, OCSVM, and our proposed

RSVM. We designed the experiments for both two-classes and

one-class classifications.

RBF kernel given by K (x, x′) = e−γ‖x−x′‖
2

was used

in the experiments. The width of kernel γ was varied in

the grid
{

2−15, 2−13, . . . , 23, 25
}

. The trade-off parameter

C was searched in the grid
{

2−15, 2−13, . . . , 23, 25
}

. For

RSVM, the adjustment factor µ was searched in the grid
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{0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 20}. To investigate how good the

procedure for calculating the adjustment parameter µ is, we

computed the optimal values two ways by setting the relative

cost λ by 1 and #Positve
#Negative

, respectively. We name two these

specific cases by Optimal RSVM 1 (OR1) and Optimal RSVM

2 (OR2), respectively. The cross-validation with five folds was

used. The accuracy was measured by acc = acc++acc−

2
where

acc+ = %TP and acc− = %TN are the accuracies on

the positive and negative classes, respectively. This measure

is appropriate since it insures the high accuracies for both

positive and negative classes to ensure the high accuracy for

the entire dataset.

In the experiments for one-class classification, we prepro-

cessed the datasets by: 1) appointing one class as the normal

class; 2) recommending the rest as the abnormal class; 3)

randomly selecting the data samples in the abnormal class

such that the ratio of the data in the normal and abnormal

classes is 10:1.

In the experiments for two-classes classification, we prepro-

cessed the datasets by: 1) choosing one class as the positive

class; 2) choosing one another class as the negative class.

2) The Experiments on Imbalanced Datasets: The exper-

imental results on the imbalanced are shown in Table I and

Figure 11. To increase the readability, we emphasized in bold

the methods that result in the highest accuracy for each dataset.

As shown in Table I and Figure 11, our proposed methods

RSVM and its variations OR1 and OR2 always surpass other

methods on all experimental datasets. To examine how good

the procedure of calculating the adjustment factor µ is, we

focus on the proposed methods RSVM, OR1, and OR2. It

appears that OR1 wins RSVM on the three datasets whereas

OR2 wins RSVM on the five datasets. On the remaining

datasets, both OR1 and OR2 are slightly lower than RSVM.

In the comparison of OR1 and OR2, it can be seen that

OR2 is better than OR1. It is is not unexpected because the

relative cost λ of OR2 is 10 and thus it favors the negative

data samples and thereby encouraging the magnitude of the

negative accuracy acc−.

TABLE I
THE EXPERIMENTAL RESULTS ON THE IMBALANCED DATASETS (OC

means OCSVM).

Datasets SVM SVDD OC RSVM OR1 OR2

a1a 67% 69% 68% 74% 76% 76%

a2a 69% 73% 67% 79% 76% 78%

a3a 72% 72% 69% 83% 81% 82%

a4a 71% 70% 66% 80% 78% 80%

Australian 70% 77% 80% 82% 79% 82%

BC 97% 97% 93% 99% 97% 98%

Diabetes 57% 64% 63% 67% 70% 70%

Fourclass 97% 100% 84% 100% 98% 98%

German 56% 66% 61% 71% 69% 69%

Heart 76% 80% 82% 86% 80% 83%

Ionosphere 84% 91% 83% 91% 92% 92%

Liver Disorders 50% 64% 68% 68% 67% 67%

Sonar 80% 78% 65% 96% 83% 83%

Splice 75% 65% 51% 85% 80% 84%

SvmGuide3 57% 60% 53% 71% 65% 73%

Fig. 11. The experimental results on the imbalanced datasets.

3) The Experiments on Balanced Datasets: The experimen-

tal results on balanced datasets are shown in Table II and

Figure 12. As shown in II and Figure 12, our proposed RSVM,

OR1, and OR2 win over the others on all experimental datasets.

RSVM is the best on 11 out of 15 datasets. OR1 wins on 4

datasets whereas OR2 wins on 9 datasets. Although, in OR1

and OR2, we scan only one value for the adjustment factor

µ, they are still comparable with RSVM. According to the

experimental results, OR2 performs better than OR1.

TABLE II
THE EXPERIMENTAL RESULTS ON THE IMBALANCED DATASETS.

Datasets SVM SVDD OC RSVM OR1 OR2

a1a 74% 72% 55% 79% 78% 81%

a2a 74% 71% 67% 79% 76% 78%

a3a 79% 69% 69% 83% 81% 82%

a4a 78% 70% 66% 80% 78% 80%

Australian 86% 81% 78% 86% 88% 88%

BC 97% 97% 89% 98% 98% 98%

Diabetes 72% 67% 60% 76% 74% 74%

Fourclass 100% 97% 66% 100% 100% 100%

German 68% 64% 53% 72% 71% 72%

Heart 84% 76% 61% 85% 84% 84%

Ionosphere 96% 92% 80% 96% 95% 95%

LD 65% 65% 58% 65% 66% 69%

Sonar 67% 64% 55% 67% 68% 72%

Splice 87% 71% 52% 87% 87% 87%

SG3 83% 79% 79% 84% 83% 82%
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Fig. 12. The experimental results on the imbalanced datasets.

VII. CONCLUSION

In this paper, we propose Robust Support Vector Machine

(RSVM), where the optimal hyperplanes can be adjusted to

fit the profiles of the datasets. In RSVM, two margins are

adjustable by a certain ratio µ, called the adjustment factor.

By setting the appropriate values for µ, RSVM can adjust well

to both the balanced and imbalanced datasets. We also suggest,

in this paper, the procedure to calculate the optimal value for

µ. The experiments conducted on 15 benchmark datasets of

UCI repository demonstrate the superiority of our proposed

method.
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