
 
 

 

  

Abstract—The objective of the haplotype assembly problem is 
to conclude a pair of haplotypes from a set of aligned single 
nucleotide polymorphism (SNP) fragments from a single 
individual. Errors in the SNP fragments, which are inevitable in 
the real-world application, severely increase the difficulty of the 
problem. As a result, most methods could not get accurate 
haplotypes on the data with high error rate. In this paper, we 
introduce a Hopfield neural network based method, named 
HNHap, to solve the haplotype assembly problem. Hopfield 
neural network is a very promising and effective approach to 
solve the combinatorial optimization problem. The stochastic 
optimal competitive Hopfield network model that has the 
mechanism to escape from the local optimum is a great 
improvement for the original model. Thus we map the 
haplotype assembly problem onto the stochastic optimal 
competitive Hopfield network model, in which a group of 
neurons correspond to an SNP fragment and the states of 
neurons denote the classification of the fragment. We also 
design a proper energy function based on the minimum error 
correction model for the haplotype assembly problem. We 
compare HNHap with other algorithms and the experiment 
results show that HNHap is an effective method to solve the 
haplotype assembly problem, especially on data with high error 
rate.  

I. INTRODUCTION 
HE research of Human Genome Project shows that 
people are almost identical at the DNA level. There 
should be associations between human diseases and 

genetic variations [1]. Consequently, the study of genetic 
variations among individuals has been an active research area 
in the recent years. Single nucleotide polymorphisms (SNPs) 
are the main form of human genetic variations, which play an 
important role in association studies, gene disease diagnoses, 
etc. [2]. 

Humans are diploid organisms, i.e. the chromosomes come 
in two copies: one comes from mother and the other from 
father. An SNP is a specific base alteration in the 
chromosome, and the sequence of SNPs in a certain 
chromosome is called a haplotype. Therefore, there are two 
copies of haplotypes in human genome. Great efforts have 
been taken to get the haplotypes because haplotypes contain 
more information than individual SNP [3]. However, 
sequencing the two haplotypes directly is very difficult and 
costly for the current sequencing technologies. So 
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computational methods to get haplotypes now receive more 
and more attentions. 

There are two main classes of computational methods: 
haplotype inference and haplotype assembly. Haplotype 
inference is to obtain haplotypes from population genotype 
data. Various methods have been used to solve the haplotype 
inference problem [4]-[6]. An alternative way to obtain the 
haplotypes for an individual is haplotype assembly. Given a 
set of aligned overlapping fragments which are of arbitrary 
length and contain errors from a single individual, the 
haplotype assembly problem is to obtain the pair of 
haplotypes from them. 

The haplotype assembly problem, also named the Single 
Individual Haplotyping problem, was first introduced by 
Lancia et al. [7]. Various optimization models have been 
proposed to solve this problem, such as minimum fragment 
removal (MFR), minimum SNP removal (MSR) [7], 
minimum error correction (MEC) [8], and maximum 
fragments cut (MFC) [9]. Among them, MEC is the most 
complex model; however, it is the most commonly used in 
practice. Wang et al. designed a genetic algorithm based on 
MEC model. However, the accuracy of the genetic algorithm 
degrades [10]. In order to improve the accuracy, a clustering 
algorithm based on two distance functions, named 2d-mec, 
was proposed [11]. Levy et al. introduced a greedy heuristic 
algorithm for the noise-free data [12]. Bansal et al. developed 
a method, named HapCUT, to minimize the MEC score of the 
reconstructed haplotypes by iteratively computing max-cuts 
in graphs derived from the sequenced fragments [13]. 
Recently, Wang et al. proposed a genetic algorithm based 
method that is equipped with a well-designed fitness function 
[14]. Besides, some other heuristic algorithms have also been 
proposed for the problem [15]-[18]. 

Although these algorithms perform well in the error-free or 
low error rate cases, but they perform worse as the error rate 
of fragments increases. Advanced personalized medicine is 
one of the goals of current research, and new genetic 
diagnostic methods are critical for it. Thus, there is an 
increasing demand for the portable sequencing equipment 
that can be used widely. However, the portable sequencing 
equipment is likely to produce low-quality data without the 
high-tech laboratory environment [18]. Therefore, it is a 
crucial and challenging task to reconstruct haplotypes from 
low-quality data. The haplotype assembly problem is a 
combinatorial optimization problem when using MEC model 
and Hopfield neural network [19] is a very promising and 
effective approach to combinatorial optimization problems. A 
Hopfield neural network based on MFR model is proposed by 
Xu et al [20]. In this paper, we introduce a Hopfield neural 
network based method named HNHap, to solve the haplotype 
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assembly problem based on the MEC model. We map the 
problem onto the stochastic optimal competitive Hopfield 
network model (SOCHN) [21] and design an energy function 
based on MEC model. The SOCHN has the mechanism to 
escape from local optimum, so it can find better solutions. We 
evaluate the performance of HNHap using Geraci’s data set 
and compare HNHap with the seven selected algorithms in 
Geraci’s study [22]. 

The rest of the article is organized as follows. In Section 2, 
we introduce the haplotype problem formulation and describe 
our algorithm based on the SOCHN. In Section 3, we show 
the performance of our algorithm compared with other 
methods. Finally, we conclude in Section 4. 

II. METHODS 

A. Problem Formulation 
Assume that there are a set of SNP fragments obtained 

from a pair of chromosomes. These fragments are stored in an 
SNP matrix ( )ij m nS s ×= , where m  is the number of SNP 
fragments and n  is the length of the corresponding 
haplotypes. In the matrix S , each row and column 
corresponds to an SNP fragment and an SNP site, 
respectively. Each entry {' ', ' ', ' ', ' ', ' '}ijs a c g t∈ − , in which ' '−  
is  a gap that is uncovered by the fragments or a missing allele, 
and other four characters represent four types of nucleotides. 
Because the fragments are all much shorter than n , the 
uncovered parts of the fragments aligned against the 
corresponding haplotypes are denoted by gaps. 

The haplotypes of this matrix can be represented by a pair 
of nucleotide strings 1 2( ) ( , )H S h h= , and the length of each 
string is n . For a specific position i  of 1h  and 2h , if it is a 
homozygous site, two nucleotides in the thi  column of 1h  
and 2h  are the same; otherwise, they are complementary. The 
haplotype assembly problem is to divide the rows of the 
matrix into two disjoint subsets and each subset determines a 
haplotype. 

The distance between two fragments 1 2, ,( ), nX x x x=  and 

1 2, ,( ), nY y y y= , is defined as: 

( ) 1
, ( , )n

i ii
D X Y d x y

=
=∑                                                          (1) 

where ( ) 1, if ' ', ' ', .
,

0, otherwise.
x y x y

d x y
≠ − ≠ − ≠⎧= ⎨

⎩
                          (2) 

The distance between a fragment and a haplotype is defined 
in the same way. If ( ), 0D X Y > , two fragments X  and Y  
are called conflict, otherwise they are called compatible. Two 
fragments that conflict either are not from the same 
chromosome copy or contain errors. The matrix S  is called 
feasible when the rows of S  can be divided into two disjoint 
subsets and fragments in each subset are pairwise compatible. 
Otherwise, it is infeasible [10]. If the fragments in the matrix 
S  are error-free, S  is feasible. 

The MEC model is defined as follows: Given an SNP 
matrix S , correct a minimum number of elements to make 
the resulting matrix feasible.  

B. Hopfield Neural Network 
Hopfield neural network is a fully connected feedback 

neural network, and the energy function of the network 
corresponds to its state. Thus, the process of finding the 
minimum value of energy function is translated into the state 
evolution process of the network towards equilibrium state. 
Hopfield neural network has been widely applied to 
associative memory and optimization calculation. Many 
improvements of Hopfield neural network are also proposed 
to solve various optimization problems. Galán-Marín et al. 
proposed a discrete Hopfield model termed the optimal 
competitive Hopfield model (OCHN) [23], [24]. The OCHN 
maximizes the descent of energy function by updating the 
groups of neurons. 

The OCHN contains p  disjoint groups of neurons and each 
group consists of k  neurons. For the thi  neuron in the thr  
group, the input is ( )riu t , the output is ( )riv t  and the threshold 
is riθ , where { }( ) 0,1riv t ∈  and t  is the discrete time. ,ri ljw  
denotes the connection weight between the thi  neuron in the 

thr  group and the thj  neuron in the thl  group. ,ri riw  can be 
arbitrary values and , ,ri lj lj riw w= . The energy function of the 
OCHN is as follows: 

,1 1 1 1

1 1

( ) 1 2 ( ) ( )

          ( ).

p k p k
ri lj ri ljr i l j

p k
ri rir i

E t w v t v t

v tθ
= = = =

= =

= −

+

∑ ∑ ∑ ∑
∑ ∑

                           (3) 

The input of the neuron is computed by the updating rule 

,1 1
( ) ( ) .p k

ri ri lj lj ril j
u t w v t θ

= =
= −∑ ∑                                                  (4) 

At time t , only one group is updated, i.e. the states of 
neurons in the same group are synchronously updated and the 
states of neurons in different groups are cyclically updated. 
Note that, in a specific group, one and only one neuron’s 
output is 1. Let rc  be the neuron with the output 1 in the thr  
group at time t  and ra be the candidate neuron in the thr  
group that will has the output 1 at time 1t + , then the energy 
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Fig. 1  The mapping of the haplotype assembly problem onto the SOCHN. 
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difference is 
,( ) ( 1) ( ) ( ) ( ( ) ),r rc ra rc raE t E t E t u t u t WΔ = + − = − −                            (5) 

where , , , ,1 2( 2 ).rc ra rc rc ra ra rc raW w w w= − + −  The neuron with the 
maximum value of ,( )ra rc rau t W−  is selected as ra , i.e., the 
input-output function of the thi  neuron in the thr  group is 

{ }, ,1,...,
1, if ( ) max ( ) .

( 1)
0, otherwise.

ri rc ri rj rc rjj k
ri

u t W u t W
v t =

⎧ − = −⎪+ = ⎨
⎪⎩

               (6) 

In this case, ( ) 0rE tΔ ≤ is guaranteed and the energy descends 
maximum at each time. 

Because the OCHN is a gradient descent based algorithm, 
it is easy to fall into the local minima. Wang et al. proposed 
the SOCHN to help the OCHN escape from the local minima 
by applying the stochastic hill-climbing dynamics. In the 
SOCHN, the input-output function of the thi  neuron in the 

thr  group is modified as follows: 
'

,( ) ( ) ( ( ) ),
ri ri rc riu t z u t Wα= ⋅ −                                                             (7) 

{ }' '

1,...,
1, if ( ) max ( ) ,

( 1)
0, otherwise,

ri rjj k
ri

u t u t
v t =

⎧ =⎪+ = ⎨
⎪⎩

                                     (8) 

where ( ) ( ( ),1)z random g zα = , ( ) 1 2 zg z e β−= −  and z t p= . β  
is a parameter that controls the evolution speed of stochastic 
dynamics. The SOCHN permits energy to increase initially 
and reverts towards the OCHN finally. 

C. The HNHap Method 
In this section, we propose a method termed HNHap to 

solve the haplotype assembly problem, based on the SOCHN. 
Before we map the problem onto the SOCHN, we first make 
some preprocess on data. 

1) Data Preprocess:  
Given an SNP matrix ( )ij m nS s ×= , we calculate a 2n ×  

matrix MF, where ( ,1)MF j , 1, ,j n=  is the most frequent 
nucleotide in the thj  column of S  and ( ,2)MF j , 1, ,j n=  
is the second most frequent nucleotide in the thj  column of 

S . Considering the thj  column of S , if the frequency of 
( ,1)MF j  is greater than 0.8, this column is considered as a 

homozygous site with the nucleotide ( ,1)MF j . Otherwise, the 
thj  column is considered as a heterozygous site. The 

threshold is set to 0.8 according to the statistical analysis. Too 
large threshold leads to an omission of real homozygous sites 
because of the existence of data errors, and too small 
threshold gets many false homozygous sites. In the thj  
column of the matrix S , the nucleotides equal to ( ,1)MF j  are 
replaced with '1' , and those equal to ( ,2)MF j  are replaced 
with '0 ' . Other nucleotides if any in the thj  column will be 
replaced with ' '− . Then the homozygous sites are removed 
from the matrix S . After doing this, the SNP matrix S  is 
converted to a smaller binary matrix 0S , which facilitates the 
following steps. Note that, the homozygous sites will be 
inserted into the corresponding positions of the final solution 
at last. 

2) SOCHN for The Haplotype Assembly Problem:  
 A partition P  of the matrix 0S  divides the rows of 0S  

into two disjoint subsets. Let 1C  be one subset of rows, and 
the character with maximum frequency at position q  among 
the fragments in 1C  is denoted as { }1 0,1C

qε ∈ . Thus the 
consensus string '

1h  deduced by 1C  is defined as a string, 
where the character at position q  is 1C

qε . The corresponding 
consensus string '

2h  of the other subset of fragments is 
obtained in the same way. 

For a partition 1 2( , )P C C=  of 0S , the error function can be 
defined as: 

( ) 2 '
1

( , ).
i

ii f C
ERR D f hP

= ∈
=∑ ∑                                                 (9) 

The error function denotes the number of corrected elements 
to make the resulting matrix feasible based on the partition P . 
Therefore, the objective of MEC model for the haplotype 
assembly problem is equivalent to finding a partition *P  of 

TABLE I 
COMPARISON OF HNHAP WITH OTHER ALGORITHMS ON DATA SET OF 100l = . 

e c Baseline SPH FAST 2d-mec HapCUT MLF SHR DGS HNHap 
0.0 3 1.0000 0.9989 0.9998 0.9905 1.0000 0.9730 0.8162 1.0000 0.9799 
0.0 5 1.0000 1.0000 0.9996 0.9973 1.0000 0.9922 0.8609 1.0000 0.9936 
0.0 8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9970 0.9119 1.0000 0.9992 
0.0 10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9440 1.0000 0.9977       
0.1 3 0.9707 0.8948 0.9128 0.9116 0.9286 0.8891 0.6957 0.9301 0.9324 
0.1 5 0.9918 0.9675 0.9642 0.9508 0.9204 0.9697 0.7377 0.9851 0.9867 
0.1 8 0.9972 0.9892 0.9930 0.9835 0.9006 0.9854 0.7584 0.9894 0.9993 
0.1 10 0.9992 0.9904 0.9981 0.9881 0.8921 0.9951 0.7621 0.9967 0.9998 

0.2 3 0.8984 0.6230 0.7150 0.7380 0.7822 0.7251 0.6148 0.7250 0.8328 
0.2 5 0.9444 0.7992 0.7974 0.7931 0.8380 0.8358 0.6546 0.8127 0.9430 
0.2 8 0.9672 0.8517 0.8807 0.8730 0.8640 0.9176 0.6812 0.8785 0.9871 
0.2 10 0.9802 0.8654 0.9154 0.8943 0.8710 0.9376 0.6989 0.9175 0.9935 

0.3 3 0.7886 0.4802 0.6169 0.6233 0.6019 0.6176 0.5571 0.6111 0.6838 
0.3 5 0.8404 0.6370 0.6391 0.6403 0.6294 0.6528 0.5993 0.6469 0.8542 
0.3 8 0.8780 0.6666 0.6610 0.6749 0.6726 0.6968 0.6322 0.6634 0.9362 
0.3 10 0.9030 0.6758 0.6754 0.6779 0.7086 0.7146 0.6321 0.6876 0.9668 
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the matrix 0S  such that ( ) ( )*RR P PE ERR≤  for any partition 
P . 

The haplotype assembly problem is to partition m  
fragments into two subsets. Thus, it can be mapped onto the 
SOCHN with 2m ×  neurons, where there are m  groups of 
neurons and each group consists of two neurons. A group of 
neurons correspond to a fragment and the states of the 
neurons in a group determine which subset the fragment 
belongs to. Fig. 1 illustrates the mapping of the haplotype 
assembly problem onto the SOCHN. The number on the 
neuron denotes its output. For example, in Fig. 1 the first 
fragment is classified into the first subset, and the second and 
third fragments are classified into the second subsets. 

The energy function based on the SOCHN for the 
haplotype assembly problem is defined as: 

( ) 2 '
1 1

( , ),m
ri r ii r

tE v D f h
= =

=∑ ∑                                                       (10) 
where rf  is the thr  row of the matrix 0S  and '

ih  is the 

consensus string obtained from the thi  subset of 0S  
according to a partition. Comparing the energy function (10) 
and the original energy function (3), we can get the 
connection weights and the thresholds of SOCHN for the 
haplotype assembly problem. Then they are substituted into 
the original input updating rule (4) and the input-output 
function (6). By referring to (7), we get the resulting input 
updating rule of SOCHN for the haplotype assembly problem 
as follows: 

'( ) 2 ( ) ( , ).r ii rDu ft z hα= −                                                               (11) 
The resulting input-output function of the thi  neuron in the 

thr  group in the SOCHN for the haplotype assembly problem 
is as follows: 

{ }
1,...,

1, if ( ) max ( ) .
( 1)

0, otherwise.

ri rjj k
ri

u t u t
v t =

⎧ =⎪+ = ⎨
⎪⎩

                                     (12) 

In order to avoid the occurrence of empty subsets, a 

TABLE II 
COMPARISON OF HNHAP WITH OTHER ALGORITHMS ON DATA SET OF 350l = . 

e c Baseline SPH FAST 2d-mec HapCUT MLF SHR DGS HNHap 
0.0 3 1.0000 0.9993 0.9896 0.9650 1.0000 0.8642 0.8297 0.9998 0.9626 
0.0 5 1.0000 1.0000 0.9996 0.9927 1.0000 0.9288 0.8295 1.0000 0.9983 
0.0 8 1.0000 1.0000 1.0000 0.9978 1.0000 0.9692 0.8954 1.0000 0.9997 
0.0 10 1.0000 1.0000 0.9999 0.9991 1.0000 0.9810 0.8784 1.0000 0.9996 

  

0.1 3 0.9707 0.8188 0.8711 0.8386 0.9299 0.7517 0.6822 0.9260 0.8943 
0.1 5 0.9905 0.9592 0.9453 0.9130 0.9134 0.8582 0.7244 0.9785 0.9832 
0.1 8 0.9972 0.9843 0.9852 0.9641 0.8963 0.9327 0.7416 0.9963 0.9969 
0.1 10 0.9990 0.9836 0.9948 0.9781 0.8883 0.9616 0.7285 0.9982 0.9993 

  

0.2 3 0.8959 0.4392 0.6843 0.6746 0.7709 0.6418 0.5915 0.6914 0.8015 
0.2 5 0.9430 0.7287 0.7456 0.7284 0.8306 0.7278 0.6318 0.7689 0.9392 
0.2 8 0.9680 0.8247 0.8529 0.7912 0.8616 0.7985 0.6699 0.8423 0.9863 
0.2 10 0.9811 0.8555 0.8774 0.8169 0.8672 0.8314 0.6682 0.8784 0.9910 

  

0.3 3 0.7826 0.2509 0.5901 0.5927 0.5648 0.5808 0.5476 0.5781 0.6380 
0.3 5 0.8401 0.5784 0.6021 0.6061 0.5817 0.6063 0.5575 0.6095 0.8307 
0.3 8 0.8734 0.6294 0.6259 0.6230 0.6206 0.6339 0.6043 0.6285 0.9165 
0.3 10 0.9026 0.6381 0.6437 0.6340 0.6641 0.6408 0.6189 0.6408 0.9600 

TABLE III 
COMPARISON OF HNHAP WITH OTHER ALGORITHMS ON DATA SET OF 700l = . 

e c Baseline SPH FAST 2d-mec HapCUT MLF SHR DGS HNHap 

0.0 3 1.0000 0.9993 0.9876 0.9461 1.0000 0.7816 0.7815 0.9999 0.8830 
0.0 5 1.0000 1.0000 0.9989 0.9760 1.0000 0.8544 0.8324 1.0000 0.9301 
0.0 8 1.0000 1.0000 1.0000 0.9917 1.0000 0.9194 0.8682 1.0000 0.9931 
0.0 10 1.0000 1.0000 0.9998 0.9966 1.0000 0.9333 0.8983 1.0000 0.9973 

  

0.1 3 0.9712 0.7047 0.8295 0.7860 0.9269 0.6982 0.6679 0.9315 0.8427 
0.1 5 0.9913 0.9471 0.9408 0.8805 0.9158 0.8094 0.7158 0.9775 0.9782 
0.1 8 0.9972 0.9848 0.9859 0.9483 0.8957 0.8632 0.7429 0.9873 0.9898 
0.1 10 0.9992 0.9861 0.9955 0.9649 0.8892 0.8839 0.7260 0.9966 0.9996 

  

0.2 3 0.8978 0.1990 0.6518 0.6468 0.7531 0.6240 0.5913 0.6692 0.7771 
0.2 5 0.9427 0.6810 0.7118 0.6969 0.8250 0.6820 0.6170 0.7415 0.9259 
0.2 8 0.9661 0.8006 0.8078 0.7512 0.8562 0.7475 0.6529 0.8177 0.9762 
0.2 10 0.9798 0.8127 0.8719 0.7780 0.8610 0.7650 0.6748 0.8607 0.9945 

  

0.3 3 0.7860 0.0953 0.5814 0.5828 0.5524 0.5701 0.5363 0.5726 0.6263 
0.3 5 0.8382 0.5232 0.5915 0.5961 0.5553 0.5944 0.5622 0.5946 0.7762 
0.3 8 0.8748 0.6158 0.6147 0.6126 0.5966 0.6139 0.6113 0.6138 0.9509 
0.3 10 0.9024 0.6271 0.6165 0.6219 0.6455 0.6248 0.6251 0.6222 0.9737 
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hill-climbing term is added to (11). Then the final form of the 
input updating rule is: 

'( , )( ) 2 ( ) ( ),rr ii D f h C it z Gu α + ⋅= −                                              (13) 
where C  is a big positive constant, and ( ) 1G i =  if the thi  
subset of 0S  is empty, otherwise, ( ) 0G i = . 

3) Determining Haplotypes: 
The SOCHN for the haplotype assembly problem outputs 

the final partition and the corresponding consensus strings. 
Let *

1 1( )h C  and *
2 2( )h C  denote the two consensus strings. 

Note that *
1 1( )h C  and *

2 2( )h C  does not contain the 
homozygous sites deleted at the preprocessing step. Now the 
homozygous sites are inserted into the consensus strings with 
the character '1' , such that the binary haplotypes 

1 2_ ( _ , _ )b H b h b h=  with length of n  are obtained. The final 
haplotypes in terms of the original alphabet character 

1 2
ˆ ˆˆ ( , )H h h=  are determined as: If 1_ ( ) '1'b h q = , 

1̂( ) ( ,1)h q MF q= ; otherwise, 1̂( ) ( ,2)h q MF q= . If 2_ ( ) '1'b h q = , 

2
ˆ ( ) ( ,1)h q MF q= ; otherwise, 2

ˆ ( ) ( ,2)h q MF q= . 

III. RESULTS 

A. Data Set and Measurement Criteria 
The data set used to evaluate the proposed method is the 

one used in Geraci’s research [22], which was created from 
real haplotypes of Phase 1 HapMap data [25]. The Geraci’s 
data set consists of 22 pairs of human autosomes from four 
different populations and is produced by simulating shotgun 
sequencing algorithm. There are three parameters for the data 
set: haplotype length l =  100, 350, 700, error rate e =  0, 0.1, 
0.2, 0.3 and coverage rate c =  3, 5, 8, 10. Each triplet of 
parameters , ,l e c< >  contains 100 instances, and the results in 
the following subsection are the average values of 100 
instances. 

Let 1 2( , )H h h=  be the pair of real haplotypes and 

1 2
ˆ ˆˆ ( , )H h h=  be the pair of haplotypes returned by a haplotype 

assembly algorithm, where 1 2 1
ˆ ˆ,  ,  h h h  and 2h  have the length 

of n . The performance of the algorithm is measured by 
reconstruction rate RR , which is defined as: 

1 1 2 2 1 2 2 1
ˆ ,

ˆ ˆ ˆ ˆmin( ( , ) ( , ), ( , ) ( , ))1 ,
2H H

D h h D h h D h h D h hRR
n

+ += −
⋅

      (14) 

where ( ) 1
, ( , )n

i ii
D X Y d x y

=
=∑ , ( ) 1, if 

,
0, otherwise

x y
d x y

≠⎧
= ⎨
⎩

, for 

two strings 1 2, ,( ), nX x x x=  and 1 2, ,( ), nY y y y= . 

B. Performance Comparison 
We conducted several experiments on the same data set to 

evaluate the best termination criterion for SOCHN. Based on 
the experiment results, we consider the network to reach an 
equilibrium state if the energy of the SOCHN for the 
haplotype assembly problem remains unchanged for 100 
iterations. In order to obtain proper evolution speed of the 
stochastic dynamics and avoid the occurrence of empty 
subsets, we set 60β =  and 100C = . 

To evaluate the performance of our method HNHap, we 

compare it with the algorithms examined in [22] on the same 
benchmark. Tables I-III show the results for haplotype length 
of 100, 350 and 700, respectively. The first two columns in 
these tables represent the error rate e  and the coverage rate c . 
The third column is the Baseline algorithm that can access the 
true fragment partition and simply reconstruct haplotypes by 
majority rule. Note that Baseline is not actually a true 
haplotype assembly algorithm and it provides a near-optimal 
solution. The other columns show the results of the seven 
algorithms which are taken from [22] and the results of our 
method HNHap. In the last columns of Tables I-III, the values 
identified in bold are the highest RR  among all the 
algorithms except the baseline and the values in gray are the 
second highest RR . 

It can be observed in Table I that HNHap achieves the 
highest RR  on all the data sets of 0e > . HNHap also gets 
good RR  that is very close to the best result on the data sets of 

0e = . It is clear that all the other algorithms lose much 
accuracy on the data sets of 0.2e =  and 0.3e = . However, our 
method HNHap achieves much higher RR  than other 
algorithms especially on the data sets of 0.3e = . Although the 
RR  of HNHap on the data sets of 3c =  drops a little more 
than that on the data sets of other cover rate as the error rate 
increases, it is still higher than other algorithms. Table II 
shows the comparison on data sets of 350l = . HNHap gets 
highest RR  on all the data sets of 0e >  except only one data 
set. On the error-free data sets, HNHap also achieves RR  that 
is close to the best one. Similar conclusion can be obtained 
from the results on the data sets of 700l =  in Table 3. It can 
be seen that the higher the error rate, the more significantly 
HNHap outperforms others. HNHap is designed to solve the 
haplotype assembly problem on the higher-error-rate data, so 
the network structure and parameters of SOCHN is not 
optimal for the error free data. As a result, HNHap does not 
perform best on the error free data. As can be seen in Tables 
I-III, HNHap even outperforms Baseline in some cases. In 
fact, Baseline is not an upper-bound of the accuracy of all the 
algorithms. It is included in [22] with simplified ‘0-1’ SNP 
fragments as input, while HNHap handles raw SNP 
fragments. 

We also compute the average RR  on all the data sets, the 
average RR  on the data sets of 0e >  and the average RR  on 
the data sets of 0.1e > . Table IV shows the comparison of the 
average RR  on different data sets. It can be seen that the 
highest average RR  on all the data sets of other algorithms is 
0.8493 that is gotten by DGS, while HNHap gets 0.9291. The 

TABLE IV 
THE AVERAGE RR ON ALL THE DATA SETS, ON THE DATA SETS OF 0e >  

AND ON THE DATA SETS OF 0.1e > . 
All e>0 e>0.1 

SPH 0.7939 0.7252 0.6208 
FAST 0.8409 0.7885 0.7071 

2d-mec 0.8256 0.7715 0.6945 
HapCUT 0.839 0.7853 0.7239 

MLF 0.8036 0.7605 0.6992 
SHR 0.7054 0.6532 0.6179 
DGS 0.8493 0.7991 0.7114 

HNHap 0.9291 0.9129 0.8859 
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highest average RR  for 0e >  is 0.7991 that is also given by 
DGS, while HNHap is 0.9129. The highest average RR  for 

0.1e >  is 0.7239 that is gotten by HapCUT, while HNHap is 
0.8859. It is proven that our method is a powerful tool for the 
haplotype assembly problem, especially in cases with high 
error rate. 

IV. CONCLUSION 
Errors in the fragments makes great barrier to obtain 

accurate haplotypes for the haplotype assembly algorithms. 
Few algorithms could get satisfying reconstruction rate in 
cases with higher error rate. In this study, we map the 
haplotype assembly problem onto the stochastic optimal 
competitive Hopfield network model and design an energy 
function based on the MEC model. Experiment results show 
that the proposed method HNHap greatly outperforms other 
methods on data set where the noise in the data is higher. 
Considering that haplotype assembly from error-free data is 
trival and there have been many methods that are effective for 
high-quality data, the slight weakness of HGHap on 
high-quality data makes no difference. In the coming era of 
the advanced personalized medicine, the application of the 
Hopfield neural network in the haplotype assembly problem 
is meaningful and the proposed method HNHap is effective 
and promising.  
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