
Sampling-based learning control for quantum discrimination and
ensemble classification

Chunlin Chen
Department of Control and System Engineering, Nanjing University, Nanjing 210093, China

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
Email: clchen@nju.edu.cn.

Daoyi Dong
School of Engineering and Information Technology, University of New South Wales,

Canberra, ACT 2600, Australia (Email: daoyidong@gmail.com)
Bo Qi

Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China (Email: qibo@amss.ac.cn.)

Ian R. Petersen
School of Engineering and Information Technology, University of New South Wales,

Canberra, ACT 2600, Australia (Email: i.r.petersen@gmail.com)
Herschel Rabitz

Department of Chemistry, Princeton University, Princeton,
New Jersey 08544, USA (Email: hrabitz@princeton.edu.)

Abstract—Quantum ensemble classification has significant
applications in discrimination of atoms (or molecules), separation
of isotopic molecules and quantum information extraction. In this
paper, we recast quantum ensemble classification as a supervised
quantum learning problem. A systematic classification methodol-
ogy is presented by using a sampling-based learning control (SLC)
approach for quantum discrimination. The classification task
is accomplished via simultaneously steering members belonging
to different classes to their corresponding target states (e.g.,
mutually orthogonal states). Numerical results demonstrate the
effectiveness of the proposed approach for the discrimination of
two quantum systems and the binary classification of two-level
quantum ensembles.
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inhomogeneous ensembles, sampling-based learning control.

I. INTRODUCTION

Optimal discrimination [1], [2] and classification [3] of
quantum states or quantum systems is a central topic in
quantum information technology [4]-[7]. In existing research,
discrimination of two similar quantum systems (e.g., similar
molecules) has been extensively investigated [8]-[15]. Many
practical quantum systems exist in the form of quantum ensem-
bles. A quantum ensemble consists of a large number of (e.g.,
1023) single quantum systems (members). Quantum ensem-
bles have wide applications in emerging quantum technology
including quantum computation [16], long-distance quantum
communication [17], and magnetic resonance imaging [18].
In practical applications, the members of a quantum ensemble
could show variations in the parameters that characterize the
system dynamics [19], [20]. Such an ensemble is called an
inhomogeneous quantum ensemble [21]. The classification
of inhomogeneous quantum ensembles is a significant issue
and has great potential applications in the discrimination of

atoms (or molecules), the separation of isotopic molecules and
quantum information extraction.

However, quantum mechanics forbids deterministic dis-
crimination among nonorthogonal states [1]. A useful idea
is to first drive the members of a quantum ensemble from
an initial state to different orthogonal states corresponding
to different classes (e.g., eigenstates) before classifying them.
Usually, it is impractical to employ different control inputs
for individual members of a quantum ensemble in physical
experiments. Hence, it is important to develop new approaches
for designing external control fields that can simultaneously
steer the ensemble of inhomogeneous systems from an initial
state to different target states when variations exist in their
internal parameters. Some quantum control techniques such as
the multidimensional pseudospectral method [18], [22] and the
sampling-based learning control approach [21] may provide
inspiration for the solution to this problem.

In this paper, we recast the quantum ensemble classification
task as a supervised quantum learning problem and present a
systematic classification methodology by using a sampling-
based learning control (SLC) method [21], [23] in quantum
discrimination. In this method, we first learn an optimal control
strategy to steer the members in a quantum ensemble belonging
to different classes into their corresponding target states, and
then employ a physical read-out process (e.g., Stern-Gerlach
experiment [4]) to classify these classes.

This paper is organized as follows. Section II formulates
the learning problem for quantum ensemble classification. A
control design method is presented in Section III for quantum
discrimination of similar quantum systems. In Section IV
an SLC method is proposed for the binary classification of
quantum ensembles and numerical results are demonstrated
for a spin ensemble. Conclusions are presented in Section V.
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II. PROBLEM FORMULATION

We focus on finite-dimensional closed quantum systems
with the following dynamics (setting the constant h̄ = 1):{

d
dt |ψ(t)⟩=−iH(t)|ψ(t)⟩
t ∈ [0,T ], |ψ(0)⟩= |ψ0⟩

(1)

where |ψ(t)⟩ (quantum state) is a unit complex vector on the
underlying Hilbert space, H(t) is the system Hamiltonian and
i =
√
−1. The dynamics of the system is governed by a time-

dependent Hamiltonian of the form

H(t) = H0 +Hc(t) = H0 +
M

∑
m=1

um(t)Hm, (2)

where H0 is the free Hamiltonian of the system and Hc(t) =
∑M

m=1 um(t)Hm is the time-dependent control Hamiltonian that
represents the interaction of the system with the external fields
um(t). Hm are Hermitian operators through which the controls
couple to the system. The solution of (1) is given by |ψ(t)⟩=
U(t)|ψ0⟩, where the propagator U(t) satisfies the following
equation (U(0) = I and I is an identity matrix)

d
dt

U(t) =−iH(t)U(t). (3)

In this paper, we consider the classification problem for a
quantum ensemble of similar members with different Hamil-
tonians, which is referred to as quantum ensemble classifi-
cation (QEC). Suppose that for an inhomogeneous quantum
ensemble, we are given an unknown member belonging to
a certain class, how well can we predict the class that the
unknown member belongs to? We have to drive the members
from different classes to appropriate orthogonal states (e.g.,
eigenstates) before we can discriminate them with high accu-
racy. The sampling-based learning control approach presented
for the control of inhomogeneous quantum ensembles can be
combined with supervised learning for QEC. We denote a
training set as DN = {(H1(t),y1),(H2(t),y2), . . . ,(HN(t),yN)}
which consists of N quantum systems (each of them labeled
with an associated class). Hn(t) (n = 1,2, . . . ,N) describes the
nth quantum system in the training set and yn is the associated
class that this quantum system belongs to.

For simplicity, we consider an inhomogeneous ensemble
consisting of two classes of members (i.e., classes A and B)
and propose an SLC approach for this binary quantum ensem-
ble classification problem using a spin- 1

2 quantum ensemble
example. Assume that the Hamiltonian of each member has
the following form

HA
ε0,εu

(t) = gA
0 (ε0)H0 +gA

u (εu)
M

∑
m=1

um(t)Hm

HB
ε0,εu

(t) = gB
0 (ε0)H0 +gB

u (εu)
M

∑
m=1

um(t)Hm.

(4)

gA
0 (·) and gA

u (·) are known functions, while the inhomogeneity
parameters ε0 and εu in the Hamiltonian HA

ε0,εu
(t) for class

A are characterized by the distribution functions dA
0 (ε0) and

dA
u (εu), respectively. We assume that the parameters ε0 and εu

are time independent. A similar expression to (4) is defined
for the Hamiltonian HB

ε0,εu
(t) of class B.

For a binary quantum ensemble classification task, the
objective is to design a control strategy u(t) = {um(t),m =
1,2, . . . ,M} to simultaneously stabilize the members in class
A (with different ε0 and εu) from an initial state |ψ0⟩ to the
same target state |ψtargetA⟩, and at the same time to stabilize
the members in class B (with different ε0 and εu) from |ψ0⟩
to another target state |ψtargetB⟩. A binary quantum ensemble
classification (binary QEC) task is to construct a binary quan-
tum classifier to maximize the classification accuracy. The key
task of a binary QEC is to learn an optimal control strategy in
the training step for the binary quantum classifier. The training
performance is described by a performance function J(u) for
each learned control strategy u = {um(t),m = 1,2, . . . ,M}. The
binary QEC problem can then be formulated as a maximization
problem as follows:

max
u

J(u) := max
u
{wAE[JA

ε0,εu
(u)]+wBE[JB

ε0,εu
(u)]}

s.t. t ∈ [0,T ] |ψA
ε0,εu

(0)⟩= |ψB
ε0,εu

(0)⟩= |ψ0⟩

d
dt
|ψA

ε0,εu
(t)⟩=−iHA

ε0,εu
(t)|ψA

ε0,εu
(t)⟩

HA
ε0,εu

(t) = gA
0 (ε0)H0 +gA

u (εu)
M

∑
m=1

um(t)Hm

JA
ε0,εu

(u) := |⟨ψA
ε0,εu

(T )|ψtargetA⟩|2

d
dt
|ψB

ε0,εu
(t)⟩=−iHB

ε0,εu
(t)|ψB

ε0,εu
(t)⟩

HB
ε0,εu

(t) = gB
0 (ε0)H0 +gB

u (εu)
M

∑
m=1

um(t)Hm

JB
ε0,εu

(u) := |⟨ψB
ε0,εu

(T )|ψtargetB⟩|2

(5)

where wA,wB ∈ [0,1] are the weights assigned to classes A and
B, respectively, satisfying wA +wB = 1. JA

ε0,εu
(u) is a measure

of classification accuracy for each member in class A regarding
the target state |ψtargetA⟩ and E[JA

ε0,εu
(u)] denotes the average

value of JA
ε0,εu

(u) over class A. A similar expression holds
for class B. The performance J(u) represents the weighted
accuracy of classification.

III. DISCRIMINATION OF TWO SIMILAR QUANTUM
SYSTEMS

Optimal dynamic discrimination between two similar quan-
tum systems has been investigated using different techniques
[2], [8]. The quantum discrimination problem can be taken as
a special case of the binary QEC problem with the number
of members in an ensemble Ne = 2. In this section, we
develop a gradient-based learning control method for quantum
discrimination of two similar quantum systems.

A. Learning control design for quantum discrimination

Suppose two similar quantum systems to be discriminated
a and b have the following Hamiltonians:

Ha
εa

0 ,εa
u
(t) = g0(εa

0 )H0 +gu(εa
u )

M

∑
m=1

um(t)Hm

Hb
εb

0 ,εb
u
(t) = g0(εb

0 )H0 +gu(εb
u )

M

∑
m=1

um(t)Hm

(6)

where εa
0 , εa

u , εb
0 and εb

u are predefined constants for functions
g0(·) and gu(·). a and b are prepared in the same initial state
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|ψ0⟩. The objective is to find an optimal control strategy u(t)
(t ∈ [0,T ]) to drive the state of system a to the target state
|ψtargetA⟩ and the state of system b to the target state |ψtargetB⟩
at the same time. Usually, we let ⟨ψtargetA|ψtargetB⟩= 0 so that
we can completely discriminate system a from system b. The
control performance J(u) is redefined for the discrimination
problem as

J(u) := waJa
εa

0 ,εa
u
(u)+wbJb

εb
0 ,εb

u
(u) (7)

where wa,wb ∈ [0,1] are the weights assigned to the associated
systems, respectively, and

Ja
εa

0 ,εa
u
(u) := |⟨ψa

εa
0 ,εa

u
(T )|ψtargetA⟩|2,

Jb
εb

0 ,εb
u
(u) := |⟨ψb

εb
0 ,εb

u
(T )|ψtargetB⟩|2.

(8)

Here we set wa = wb = 0.5 for the discrimination problem.

In order to find an optimal control strategy u∗= {u∗m(t),(t ∈
[0,T ]),m = 1,2, . . . ,M} for the discrimination problem, it is a
good choice to follow the direction of the gradient of J(u) as an
ascent direction. For ease of notation, we present the method
for M = 1. We introduce a time-like variable s to characterize
different control strategies u(s)(t). Then a gradient flow in the
control space can be defined as

du(s)

ds
= ∇J(u(s)), (9)

where ∇J(u) denotes the gradient of J(u) with respect to
the control u. Starting from an initial guess u0, we solve the
following initial value problem

du(s)

ds
= ∇J(u(s)) = wa∇Ja

εa
0 ,εa

u
(u(s))+wb∇Jb

εb
0 ,εb

u
(u(s))

u(0) = u0
(10)

in order to find a control strategy which maximizes J(u). This
initial value problem can then be solved numerically by a
forward Euler method over the s-domain, i.e.,

u(s+△s, t) = u(s, t)+△s∇J(u(s)). (11)

As for practical applications, we present its iterative ap-
proximation version to find the optimal control u∗(t), where
we use k as an index of iterations instead of the variable s and
denote the control at iteration step k as uk(t). Equation (11)
can be rewritten as

uk+1(t) = uk(t)+ηk∇J(uk), (12)

where ηk is the updating step (learning rate) for the kth
iteration and

∇J(uk) = wa∇Ja
εa

0 ,εa
u
(uk)+wb∇Jb

εb
0 ,εb

u
(uk). (13)

In addition, we have the gradient of Ja
εa

0 ,εa
u
(uk) with respect to

the control u as follows (for more details, see, e.g., [21])

∇Ja
εa

0 ,εa
u
(uk) = 2ℑ

(
⟨ψa

εa
0 ,εa

u
(T )|ψtargetA⟩⟨ψtargetA|Ga

1(t)|ψ0⟩
)
,

(14)
where ℑ(·) denotes the imaginary part of a complex number,
Ga

1(t) =Uεa
0 ,εa

u
(T )U†

εa
0 ,εa

u
(t)gu(εa

u )H1Uεa
0 ,εa

u
(t), and the propaga-

tor Uεa
0 ,εa

u
(t) satisfies

d
dt

Uεa
0 ,εa

u
(t) =−iHa

εa
0 ,εa

u
(t)Uεa

0 ,εa
u
(t), U(0) = I.

A similar expression can also be derived for ∇Jb
εb

0 ,εb
u
(uk). When

we generalize the gradient flow method to the case with M> 1,
for each control um(t) (m = 1,2, . . . ,M) of the control strategy
u(t), we have

∇J(uk
m) =2waℑ

(
⟨ψa

εa
0 ,εa

u
(T )|ψtargetA⟩⟨ψtargetA|Ga

m(t)|ψ0⟩
)

+2wbℑ
(
⟨ψb

εb
0 ,εb

u
(T )|ψtargetB⟩⟨ψtargetB|Gb

m(t)|ψ0⟩
) (15)

where

Ga
m(t) =Uεa

0 ,εa
u
(T )U†

εa
0 ,εa

u
(t)gu(εa

u )HmUεa
0 ,εa

u
(t),

Gb
m(t) =Uεb

0 ,εb
u
(T )U†

εb
0 ,εb

u
(t)gu(εb

u )HmUεb
0 ,εb

u
(t).

A gradient flow based iterative learning algorithm for the
discrimination of quantum systems is shown in Algorithm 1.

Algorithm 1. Gradient flow based iterative learning for quantum discrimina-
tion

1: Set the index of iterations k = 0
2: Choose a set of arbitrary controls uk=0(t) = {u0

m(t), m =
1,2, . . . ,M}, t ∈ [0,T ]

3: repeat (for each iterative process)
4: Compute the propagator Uk

εa
0 ,εa

u
(t) and Uk

εb
0 ,εb

u
(t) for

systems a and b, respectively, with the control strategy
uk(t)

5: repeat (for each control um(t) (m = 1,2, . . . ,M) of the
control vector uk(t))

6: δ k
m(t) := ∇J(uk

m) and compute ∇J(uk
m) using equa-

tion (15)
7: uk+1

m (t) = uk
m(t)+ηkδ k

m(t)
8: until m = M
9: k = k+1

10: until the learning process ends
11: The optimal control strategy u∗(t) = {u∗m(t)} =
{uk

m(t)}, m = 1,2, . . . ,M

Remark 1: In the practical implementation, we usually
divide the time duration [0,T ] equally into a number of time
slices△t and assume that the controls are constant within each
time slice. Instead of t ∈ [0,T ], the time index is tq = qT/Q,
where Q = T/△t and q = 1,2, . . . ,Q.

B. Numerical examples

To demonstrate this learning control method for discrimi-
nation of two similar quantum systems, we consider two-level
(spin- 1

2 ) systems. We denote the Pauli matrices σ =(σx,σy,σz)
[4]. For a two-level quantum system, we may assume the
free Hamiltonian H0 = 1

2 σz. Its two eigenstates are denoted
as |0⟩ (e.g., spin up) and |1⟩ (e.g., spin down). To control a
two-level quantum system, we use the control Hamiltonian of
Hu =

1
2 u1(t)σx +

1
2 u2(t)σy. Hence,

H(t) = H0 +Hu(t) =
1
2

σz +
1
2

u1(t)σx +
1
2

u2(t)σy. (16)

For two similar spin- 1
2 systems, the Hamiltonian of each

system can be described as

Hε0,εu(t) = g0(ε0)H0 +gu(εu)Hu(t)

=
1
2

g0(ε0)σz +
1
2

gu(εu)(u1(t)σx +u2(t)σy).
(17)
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Fig. 1. Learning performance of discrimination between system a ((εa
0 ,ε

a
u ) =

(0.9,0.9)) and system b ((εb
0 ,ε

b
u ) = (1.1,1.1)). (a) Evolution of performance

functions Ja(u) and Jb(u); (b) The learned optimal control strategy u(t).

We assume g0(ε0) = ε0 and gu(εu) = εu. The state of the two
quantum systems can be represented in the eigen-basis of H0
by |ψ(t)⟩ = c0(t)|0⟩+ c1(t)|1⟩. Denote C(t) = (c0(t),c1(t))T ,
where c0(t) and c1(t) are complex numbers, and xT represents
the transpose of x. We have(

ċ0(t)
ċ1(t)

)
=

(
0.5ε0i εu f (u)
−εu f ∗(u) −0.5ε0i

)(
c0(t)
c1(t)

)
, (18)

where f (u) = u2(t)− 0.5iu1(t), (ε0,εu) = (εa
0 ,ε

a
u ) for system

a and (ε0,εu) = (εb
0 ,ε

b
u ) for system b.

Define the performance function as

J(u) =
1
2

Ja(u)+
1
2

Jb(u)

=
1
2
|⟨Ca(T )|CtargetA⟩|2 +

1
2
|⟨Cb(T )|CtargetB⟩|2.

(19)

The task is to find a control u(t) to maximize the perfor-
mance function in (19). For a given small threshold ε > 0, if
|J(uk+1)−J(uk)|< ε for uninterrupted ne steps, we may think
we find a suitable control law for the problem. In this paper,
we set ε = 10−4 and ne = 100 in all numerical experiments.

Now we employ Algorithm 1 to find the optimal control
strategy u∗(t) = {u∗m(t),m = 1,2} and then apply the optimal
control strategy for discriminating system a from system b.
The parameter settings are listed as follows: the initial state
C0 = (1,0)T , i.e., |ψ0⟩ = |0⟩, and the target state for system
a CtargetA = (1,0)T , i.e., |ψtargetA⟩ = |0⟩; the target state for
system b CtargetB = (0,1)T , i.e., |ψtargetB⟩ = |1⟩; The ending
time T = 5 (in atomic units) and the total time duration
[0,T ] is equally discretized into Q = 500 time slices with
each time slice ∆t = (tq− tq−1)|q=1,2,...,Q = T/Q = 0.01; the
learning rate ηk = 0.2; the control strategy is initialized as
uk=0(t) = {u0

1(t) = sin t,u0
2(t) = sin t}.

In the example, two similar systems a and b are char-
acterized with parameters (εa

0 ,ε
a
u ) = (0.9,0.9) and (εb

0 ,ε
b
u ) =

(1.1,1.1), respectively. The numerical results are shown in Fig.
1 and Fig. 2. As shown in Fig. 1(a), the learning process
converges very quickly and the performance function J(u)
converges to 0.999 after about 2000 steps of iterative learning

Fig. 2. Evolution of the states of system a ((εa
0 ,ε

a
u ) = (0.9,0.9)) and system

b ((εb
0 ,ε

b
u ) = (1.1,1.1)) regarding their populations (|ca

0(t)|2 and |cb
0(t)|2) at

the state |0⟩, respectively.

with an optimized control strategy u(t) = {u1(t),u2(t)} in Fig.
1(b). Then we apply the learned optimal control strategy to
systems a and b. The evolution of their states can be clearly
demonstrated regarding their populations at the state |0⟩ as
shown in Fig. 2. At time t = T = 5, |ca

0(T )|2 = 1.0000 and
|cb

0(T )|2 = 0.0000, which indicates that, after the coherent
control step, we can discriminate system a from system b using
a projective measurement and the success probability is almost
100%.

IV. QUANTUM ENSEMBLE CLASSIFICATION VIA SLC

Binary classification is to classify the members of a given
set of objects into two classes on the basis of whether they
have certain properties or not. For a binary QEC problem, we
have to learn from a training set and find out an optimal control
strategy for all the members in the quantum ensemble. In this
section, we combine a sampling-based learning control (SLC)
approach into the quantum discrimination method introduced
above to solve the QEC problem (i.e., the maximization
problem formulated as Equation (5)).

A. SLC for quantum ensemble classification

In the quantum domain, it is difficult to obtain a spe-
cific description for a single system in a quantum ensemble,
while we can characterize an ensemble of similar systems
with a distribution of parameters (e.g., Gaussian distribution,
Boltzmann distribution and uniform distribution). According
to the distribution of parameters for a quantum ensemble, we
can choose sample members to construct the training set for
the learning control design. This approach is referred to as
sampling-based learning control (SLC), which originated in
[21], [23] as a general framework for optimal control design of
inhomogeneous quantum ensembles and robust control design
of quantum systems with uncertainties.

In the SLC approach, a generalized system is constructed
by sampling members from the inhomogeneous ensemble. In
this paper, we adopt the key idea from SLC and solve the
supervised quantum learning problem of QEC via constructing
a generalized system using the training set.
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Suppose we have obtained a training set DN =
{(Hn(t),yn)} (n = 1,2, . . . ,N) for the binary QEC problem,
where yn ∈ {A,B} and Hn(t) is the time-dependent Hamilto-
nian that describes the nth member of the quantum ensemble.
Now we split DN into two subsets according to the value of
yn and rewrite the training set as follows

DN = DNA ∪DNB , N = NA +NB,

DNA = {(HA
εnA

0 ,εnA
u
(t),ynA = A)}, nA = 1,2, . . . ,NA,

DNB = {(HB
εnB

0 ,εnB
u
(t),ynB = B)}, nB = NA +1,NA +2, . . . ,N,

(20)

where HA
εnA

0 ,εnA
u
(t) = gA

0 (ε
nA
0 )H0 + gA

u (ε
nA
u )∑M

m=1 um(t)Hm and

HB
εnB

0 ,εnB
u
(t) = gB

0 (ε
nB
0 )H0 +gB

u (ε
nB
u )∑M

m=1 um(t)Hm.

Using the training set (20), we can construct a generalized
system as follows

d
dt



|ψA
ε1

0 ,ε1
u
(t)⟩

...
|ψA

εNA
0 ,εNA

u
(t)⟩

|ψB
εNA+1

0 ,εNA+1
u

(t)⟩
...

|ψB
εN

0 ,εN
u
(t)⟩


=−i



HA
ε1

0 ,ε1
u
(t)|ψA

ε1
0 ,ε1

u
(t)⟩

...
HA

εNA
0 ,εNA

u
(t)|ψA

εNA
0 ,εNA

u
(t)⟩

HB
εNA+1

0 ,εNA+1
u

(t)|ψB
εNA+1

0 ,εNA+1
u

(t)⟩
...

HB
εN

0 ,εN
u
(t)|ψB

εN
0 ,εN

u
(t)⟩


.

(21)
The performance function for this generalized system is de-
fined by

JN(u) := wAJA +wBJB, (22)

where

JA =
1

NA

NA

∑
nA=1

JA
εnA

0 ,εnA
u
(u) =

1
NA

NA

∑
nA=1
|⟨ψA

εnA
0 ,εnA

u
(T )|ψtargetA⟩|2,

JB =
1

NB

N

∑
nB=NA+1

JB
εnB

0 ,εnB
u
(u) =

1
NB

N

∑
nB=NA+1

|⟨ψB
εnB

0 ,εnB
u
(T )|ψtargetB⟩|2.

(23)

Then we design the SLC algorithm (Algorithm 2) for binary
QEC using the gradient flow method to approximate an optimal
control strategy u∗ = {u∗m(t)}.

B. Numerical examples

We consider two-level quantum systems. For two similar
classes of members in an inhomogeneous quantum ensemble,
the Hamiltonians can be described as

HA
ε0,εu

(t) =
1
2

gA
0 (ε0)σz +

1
2

gA
u (εu)(u1(t)σx +u2(t)σy),

HB
ε0,εu

(t) =
1
2

gB
0 (ε0)σz +

1
2

gB
u (εu)(u1(t)σx +u2(t)σy).

(24)

Assume gA
0 (ε0) = ε0 with distribution dA

0 (ε0), gA
u (εu) = εu with

distribution dA
u (εu), gB

0 (ε0) = ε0 with distribution dB
0 (ε0), and

gB
u (εu) = εu with distribution dB

u (εu).

Suppose the distributions of ε0 and εu for class A are
dA

0 (ε0) = Φ(
ε0−µA

0
σA

0
) and dA

u (εu) = Φ( εu−µA
u

σA
u

), respectively,

where Φ(x) =
∫ x
−∞

1√
2π exp(− 1

2 ν2)dν is the distribution func-
tion of the standard normal distribution. We may choose some

Algorithm 2. SLC for binary QEC

1: Set the index of iterations k = 0
2: Choose a set of arbitrary controls uk=0(t) = {u0

m(t), m =
1,2, . . . ,M}, t ∈ [0,T ]

3: repeat (for each iterative process)
4: repeat (for each member in training subset DNA , nA =

1,2, . . . ,NA )
5: Compute the propagator Uk

εnA
0 ,εnA

u
(t) with the con-

trol strategy uk(t)
6: until nA = NA
7: repeat (for each member in training subset DNB , nB =

NA +1,NA +2, . . . ,N )
8: Compute the propagator Uk

εnB
0 ,εnB

u
(t) with the con-

trol strategy uk(t)
9: until nB = N

10: repeat (for each control um(t) (m = 1,2, . . . ,M) of the
control vector uk(t))

11: δ k
m(t) := ∇JN(uk

m) and compute ∇JN(uk
m)

12: uk+1
m (t) = uk

m(t)+ηkδ k
m(t)

13: until m = M
14: k = k+1
15: until the learning process ends
16: The optimal control strategy u∗(t) = {u∗m(t)} =
{uk

m(t)}, m = 1,2, . . . ,M

equally spaced samples in the ε0 − εu space. For example,
we may choose the intervals of [µA

0 − 3σA
0 ,µA

0 + 3σA
0 ] and

[µA
u −3σA

u ,µA
u +3σA

u ], and divide them into NA
ε0
+1 and NA

εu
+1

subintervals, respectively, where NA
ε0

and NA
εu

are usually pos-
itive odd numbers. Then the number of samples for class A
is NA = NA

ε0
NA

εu
, where εnA

0 and εnA
u can be chosen from the

combination of (εn0
A

0 ,εnu
A

u ) as follows
εnA

0 ∈ {ε
n0

A
0 = µA

0 −3σA
0 +

(2n0
A−1)3σA

0
NA

ε0
, n0

A = 1,2, . . . ,NA
ε0
},

εnA
u ∈ {ε

nu
A

u = µA
u −3σA

u +
(2nu

A−1)3σA
u

NA
εu

, nu
A = 1,2, . . . ,NA

εu
}.

(25)
A similar expression to (25) defines the samples for class B.
We use the performance function as defined in (22) with wA =
wB = 0.5. Now we use Algorithm 2 to find the optimal control
strategy.

The parameter settings are listed as follows: wA =wB = 0.5,
the initial state for each member of the quantum ensemble
C0 = (1,0)T , i.e., |ψ0⟩= |0⟩, and the target state for members
belonging to class A CtargetA = (1,0)T , i.e., |ψtargetA⟩= |0⟩; the
target state for elements belonging to class B CtargetB = (0,1)T ,
i.e., |ψtargetB⟩= |1⟩; The ending time T = 8 (in atomic units)
and the total time duration [0,T ] is equally discretized into Q=
800 time slices with each time slice ∆t =(tq−tq−1)|q=1,2,...,Q =
T/Q = 0.01; NA

ε0
=NA

εu
=NB

ε0
=NB

εu
= 5; the learning rate ηk =

0.2; the control strategy is initialized as uk=0(t) = {u0
1(t) =

sin t,u0
2(t) = sin t}.

In the training step, we use J(u) as the performance
function which represents the measure of weighted accuracy
for QEC. After we apply the optimized control u∗ to the inho-
mogeneous quantum ensemble, we use fidelity to characterize
how well every member is classified. The fidelity between the
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Fig. 3. Learning performance of binary QEC: (a) evolution of performance
function JA and JB; (b) the learned optimal control for QEC.

final state |ψA
ε0,εu

(T )⟩ of a member belonging to class A and
the target state |ψtargetA⟩ is defined as follows [4]

F(|ψA
ε0,εu

(T )⟩, |ψtargetA⟩) = |⟨ψA
ε0,εu

(T )|ψtargetA⟩|. (26)

A similar representation can be defined for the final state
|ψB

ε0,εu
(T )⟩ of a member belonging to class B and the target

state |ψtargetB⟩. It is clear that the accuracy of QEC can be
calculated with

ζ = J(u) = 1
2 (E[J

A]+E[JB])
= 1

2 (E[F
2(|ψA

ε0,εu
(T )⟩, |ψtargetA⟩)]

+E[F2(|ψB
ε0,εu

(T )⟩, |ψtargetB⟩)]).
(27)

In the numerical example, we let µA
0 = µA

u = 0.85, µB
0 =

µB
u = 1.15, 3σA

0 = 3σA
u = 3σB

0 = 3σB
u = 0.05. The learning

control performance is shown in Fig. 3. As shown in Fig. 3,
the learning algorithm converges quickly after about 8000 steps
of iterations and finds an optimized control for the coherent
control step of binary QEC. Applying the learned control to
300 randomly selected testing samples (150 for class A and
150 for class B), the mean value of fidelity for the testing of
class A is 0.9976 and for class B is 0.9985.

These results show the SLC approach is effective for
the binary QEC problem and can achieve a high level of
classification accuracy.

V. CONCLUSIONS

In this paper, we present a systematic classification ap-
proach for inhomogeneous quantum ensembles by combining
an SLC approach with quantum discrimination. The classi-
fication process is accomplished via simultaneously steering
members belonging to different classes to different correspond-
ing target states (e.g., eigenstates). Numerical experiments are
carried out to test the performance of the proposed approach
for the binary classification of two-level quantum ensembles.
All the numerical results demonstrate the effectiveness of the
proposed approach for quantum ensemble classification.
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