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Abstract— Local-learning-based feature selection has been
successfully applied to high-dimensional data analysis. It utilizes
class labels to define a margin for each data sample and selects
the most discriminative features by maximizing the margins
with regard to a feature weight vector. However, it requires
that all data samples are labeled, which makes it unsuitable
for semi-supervised learning where only a handful of training
samples are labeled while most are unlabeled. To address this
issue, we herein propose a new semi-supervised local-learning-
based feature selection method. The basic idea is to learn the
class labels of unlabeled samples in a new feature subspace
induced by the learned feature weights, and then use the learned
class labels to define the margins for feature weight learning.
By constructing and optimizing a unified objective function, the
feature weights and class labels are learned simultaneously in
an iterative algorithm. The experiments performed on some
benchmark data sets show the advantage of the proposed
algorithm over stat-of-the-art semi-supervised feature selection
methods.

I. INTRODUCTION

HUGH-throughput technologies now routinely produce
large data sets characterized by unprecedented numbers

of features. Accordingly, feature selection has become in-
creasingly important in a wide range of scientific disciplines.
One example where feature selection plays a critical role, is
the use of oligonucleotide microarray for the identification
of cancer-associated gene expression profiles of diagnostic
or prognostic value [1], [2], [3]. Typically, the number of
samples is less than a few hundreds, while the number of
features associated with the raw data is in the order of
thousands or even tens of thousands. Amongst this enormous
number of genes, only a small fraction is likely to be relevant
for cancerous tumor growth and/or spread. The abundance
of irrelevant features poses serious problems for existing
machine learning algorithms, and represents one of the most
recalcitrant problems for their applications in oncology and
other scientific disciplines dealing with copious features.

Numerous feature selection algorithms have been devel-
oped in the past twenty years. One famous approach is
the multi-level model proposed in [4]. This method can
automatically find a sub-space feature set that is close to the
ground-truth feature set, thus make a huge contribution in the
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NMF-based feature selection field. One of the most effective
methods for high-dimensional data analysis is the recently
proposed local-learning-based method [5]. The key idea is
to decompose an arbitrarily complex nonlinear problem into
a set of locally linear ones through local learning, and
then learn feature relevance globally within the large margin
framework. Specifically, for each sample, it first defines
the nearest neighbor from the same class as its nearest
hit (NH) and the nearest neighbor from a different class
as its nearest miss (NM). Then a margin is defined as
the difference between the distances of the sample to NM
and NH in a weighted feature space, and a feature weight
vector is learned by maximizing the margins with regard to
the feature weight vector. This method is very simple and
computationally efficient. It has been demonstrated that it can
achieve close-to-optimal solution even in the presence of one
million irrelevant features. The method has been successfully
applied to various applications [6], [7], [8], [9].

One major issue associated with the above method is
that it requires that the class labels of all training samples
are available. For many real-world applications, due to the
high cost of obtaining sample labels, only a handful of
training samples are labeled while most are unlabeled. In
the machine learning literature, this is called semi-supervised
learning [10], [11], [12], [13]. In this paper, we develop a
new feature selection method where we extend the concept
of local learning to semi-supervised learning settings. The
basic idea is to learn the class labels of unlabeled samples in a
new feature subspace induced by the learned feature weights,
and then use the learned class labels to define the margins
for feature weight learning. By constructing and optimizing
a unified objective function, the feature weights and class
labels are learned simultaneously in an iterative algorithm.
The experiments are performed on some benchmark data sets
that demonstrate the effectiveness of the proposed method.

The rest of the paper is organized as follows. In Section II,
we present a brief review of some state-of-the-art methods
for semi-supervised feature selection that we will compare
with in the numeric experiment. In Section III, we give a
detailed description of the proposed method. In Section IV,
we evaluate our method on two real-world data sets, and the
paper is concluded in Section V.

II. LITERATURE REVIEW

A number of methods have been recently proposed to
learn useful features from both labeled and unlabeled sam-
ples. Zhao et al. [14] proposed a locality sensitive semi-
supervised feature selection method by using labeled samples
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to maximize margins between data samples from different
classes, while using unlabeled samples to discover the geo-
metrical structure of the data space. Xu et al. [15] proposed
the manifold regularization-based discriminative method by
maximizing classification margins between different classes,
and simultaneously exploiting the geometry of the proba-
bility distribution that generates both labeled and unlabeled
samples. Zhao and Lu [16] presented the spectral analysis-
based algorithm by exploiting both labeled and unlabeled
samples through a regularization framework to address the
“small labeled-sample” problem.

III. PROPOSED METHOD

A. Problem Formulation

Suppose that we have a training data set X =
[x𝑖, ⋅ ⋅ ⋅ , x𝑛] ∈ ℝ

𝑑×𝑛, where x𝑖 is the 𝑖-th sample. Without
loss of generality, we assume that only the first 𝑙 data samples
are labeled, while the rest 𝑛− 𝑙 samples are unlabeled. The
known labels are organized in a 𝑙-dimensional binary vector
ŷ𝑙 = [𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑙] ∈ {+1,−1}𝑙.

The problem of feature selection is to map the feature
vector of a sample x to a new feature space by weighting
the features using a nonnegative feature weight vector w =
[𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑑]⊤ ∈ ℝ

𝑑, x �→ w ∘ x, where ∘ is the element-
wise product sign, and 𝑤𝑐 is the weight for the 𝑐-th feature.
In order to encourage the sparsity of the feature weights,
we impose the constrain

∑𝑑
𝑐=1 𝑤𝑐 = 𝛼 to the learning

of w. Moreover, we try to learn the class labels for the
samples, which are organized in a class label vector y =
[𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛] ∈ ℝ

𝑛, where 𝑦𝑖 ∈ ℝ is the class label of the
𝑖-th sample. Note that instead of learning a binary class label
vector, we relax it to the learning of a real-valued vector. We
impose the constrain 𝑦𝑖 = 𝑦𝑖, ∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙, to respect the
known labels. We consider the following two problems to
formulate the objective function to learn the feature weight
vector w and the class label vector y simultaneously.

∙ Large Margin Regularization: As with our previous
work [5], we use the margin of each sample in the
weighted feature space induced by w to regularize the
learning of w. Given a data sample x𝑖, we find its two
types of nearest neighbors, NH and NM, in the feature
space weighted by w. The margin of x𝑖 is then defined
as

𝜌𝑖(w) = 𝑑(x𝑖,NM(x𝑖)∣w)− 𝑑(x𝑖,NH(x𝑖)∣w) (1)

where 𝑑(x𝑖,NM(x𝑖)∣w) is the distance between x𝑖 and
NM(x𝑖). The feature weight vector w is learned by
maximizing the margins of the training samples with
regard to w. In the semi-supervised learning setting,
since w and 𝑦𝑖∣𝑛𝑖=𝑙+1 are both unknown, it is impossible
to find the exact NH and HM during the learning
procedure. Instead, we first estimate the probability of
a sample x𝑗 being the NH or NM of x𝑖 from the
previously learned w and y respectively. We denote 𝑝w,y

𝑖𝑗

as the probability of x𝑗 being the NH of x𝑖 given w and

y, while 𝑞w,y
𝑖𝑗 as the probability of x𝑗 being the NH of

x𝑖 given w and y. For any pair of (x𝑖, x𝑗), if 𝑦𝑖 and
𝑦𝑗 have the same sign (different signs), the probability
𝑝w,y
𝑖𝑗 (𝑞w,y

𝑖𝑗 ) is estimated via the standard kernel density
estimation:

𝑝w,y
𝑖𝑗 =

𝐼(𝑦𝑖𝑦𝑗 > 0)𝜅(x𝑖, x𝑗 ∣w)
∑𝑛
𝑘=1 𝐼(𝑦𝑖𝑦𝑘 > 0)𝜅(x𝑖, x𝑘∣w)

𝑞w,y
𝑖𝑗 =

𝐼(𝑦𝑖𝑦𝑗 ≤ 0)𝜅(x𝑖, x𝑗 ∣w)
∑𝑛
𝑘=1 𝐼(𝑦𝑖𝑦𝑘 ≤ 0)𝜅(x𝑖, x𝑘∣w)

(2)

where 𝐼(𝑥) = 1 if 𝑥 is true, and 0 otherwise, and

𝜅(x𝑖, x𝑗 ∣w) = exp
(
−∥w∘x𝑖−w∘x𝑗∥22

2𝜎2

)
is a Gaussian

kernel function. For the purpose of this paper, we use
the squared Euclidean distance to measure the distance
between x𝑖 and NH or NM. Then, the margin of x𝑖 can
be computed as

𝜌𝑖(w, y) =
𝑛∑

𝑗=1

∥(w ∘ x𝑖)− (w ∘ x𝑗)∥22𝑞w,y
𝑖𝑗

−
𝑛∑

𝑗=1

∥(w ∘ x𝑖)− (w ∘ x𝑗)∥22𝑝w,y
𝑖𝑗

=
𝑛∑

𝑗=1

∥(w ∘ x𝑖)− (w ∘ x𝑗)∥22
(
𝑞w,y
𝑖𝑗 − 𝑝w,y

𝑖𝑗

)
.

(3)
Thus, the large margin regularization problem for fea-
ture selection can be formulated as the following mini-
mization problem

min
w,y

−
𝑛∑

𝑖=1

⎛

⎝
𝑛∑

𝑗=1

∥(w ∘ x𝑖)− (w ∘ x𝑗)∥22
(
𝑞w,y
𝑖𝑗 − 𝑝w,y

𝑖𝑗

)
⎞

⎠

s.t.
𝑑∑

𝑐=1

𝑤𝑐 = 𝛼,𝑤𝑐∣𝑑𝑐=1 ≥ 0 .

(4)
∙ Manifold Regularization: Besides the margin regular-

ization, we also use the manifold structure to regularize
the learning process by adopting the scheme of Local
Linear Embedding (LLE) [17]. Given a data sample x𝑖,
we first find its nearest neighbors 𝒩w

𝑖 in the weighted
feature space. We assume that x𝑖 can be reconstructed
by the linear combination of the nearest neighbors as

(w ∘ x𝑖) ≈
∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(w ∘ x𝑗) (5)

where 𝐴𝑖𝑗 ∣𝑗∈𝒩w
𝑖

is the reconstruction coefficients, with
constrains

∑
𝑗∈𝒩w

𝑖
𝐴𝑖𝑗 = 1 and 𝐴𝑖𝑗 ∣𝑗∈𝒩w

𝑖
≥ 0. Then the

manifold regularization problem in the weighted feature
space is formulated by minimizing the reconstruction
error with regard to both w and 𝐴𝑖𝑗 ∣𝑗∈𝒩w

𝑖
for all the
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training samples,

min
w,𝐴

𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥
(w ∘ x𝑖)−

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(w ∘ x𝑗)

∥
∥
∥
∥
∥
∥

2

2

𝑠.𝑡.

𝑑∑

𝑐=1

𝑤𝑙 = 𝛼,𝑤𝑐∣𝑑𝑐=1 ≥ 0,

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗 = 1, 𝐴𝑖𝑗 ∣𝑗∈𝒩w
𝑖
≥ 0, 𝐴𝑖𝑗 ∣𝑗 /∈𝒩w

𝑖
= 0,

∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛
(6)

where 𝐴 = [𝐴𝑖𝑗 ] ∈ ℝ
𝑛×𝑛
+ . Similar to LLE, we also

regularize the learning of label learning using the same
reconstruction formulation as,

min
y,𝐴

𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥
𝑦𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗𝑦𝑗

∥
∥
∥
∥
∥
∥

2

2

𝑠.𝑡. 𝑦𝑖 = 𝑦𝑖, ∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙
∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗 = 1, 𝐴𝑖𝑗 ∣𝑗∈𝒩w
𝑖
≥ 0, 𝐴𝑖𝑗 ∣𝑗 /∈𝒩w

𝑖
= 0,

∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛
(7)

By considering the problems in (2), (6) and (7) simultane-
ously, we obtain the following formulation for the learning
problem,

min
w,y,𝐴

⎧
⎨

⎩
−

𝑛∑

𝑖=1

⎛

⎝
𝑛∑

𝑗=1

∥(w ∘ x𝑖)− (w ∘ x𝑗)∥22
(
𝑞w,y
𝑖𝑗 − 𝑝w,y

𝑖𝑗

)
⎞

⎠

+ 𝛽
𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥
(w ∘ x𝑖)−

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(w ∘ x𝑗)

∥
∥
∥
∥
∥
∥

2

2

+𝛾

𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥
𝑦𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗𝑦𝑗

∥
∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

𝑠.𝑡.

𝑑∑

𝑐=1

𝑤𝑙 = 𝛼,𝑤𝑐∣𝑑𝑐=1 ≥ 0,

𝑦𝑖 = 𝑦𝑖, ∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙,
∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗 = 1, 𝐴𝑖𝑗 ∣𝑗∈𝒩w
𝑖
≥ 0, 𝐴𝑖𝑗 ∣𝑗 /∈𝒩w

𝑖
= 0,

∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛
(8)

where 𝛽 and 𝛾 are the tradeoff parameters.

B. Optimization

We use an alternative optimization strategy to solve (8).
The three variables are optimized in turn in an iterative
algorithm.

1) Optimizing w: When w is optimized, we fix both y
and 𝐴, remove a term irrelevant to w, and the following
optimization problem is obtained,

min
w,y,𝐴

⎧
⎨

⎩
𝑓(w) = −

𝑛∑

𝑖=1

𝑛∑

𝑗=1

∥(w ∘ x𝑖)− (w ∘ x𝑗)∥22
(
𝑞w,y
𝑖𝑗 − 𝑝w,y

𝑖𝑗

)

+ 𝛽
𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥
(w ∘ x𝑖)−

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(w ∘ x𝑗)

∥
∥
∥
∥
∥
∥

2

2

=
𝑑∑

𝑐=1

𝑣𝑐 × 𝑤2
𝑐

⎫
⎬

⎭

𝑠.𝑡.
𝑑∑

𝑐=1

𝑤𝑙 = 𝛼,𝑤𝑐∣𝑑𝑐=1 ≥ 0.

(9)
where

v =

𝑛∑

𝑖=1

⎛

⎝−
𝑛∑

𝑗=1

∣x𝑖 − x𝑗 ∣2
(
𝑞w,y
𝑖𝑗 − 𝑝w,y

𝑖𝑗

)

+𝛽

∣
∣
∣
∣
∣
∣
x𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗 ∘ x𝑗

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠ ,

(10)

∣x∣2 is the element-wise squared vector of vector x, and 𝑣𝑐 is
the 𝑐-th element of v. The Lagrange function of this problem
is

ℒ =

𝑑∑

𝑐=1

𝑣𝑐𝑤
2
𝑐 −

𝑑∑

𝑐=1

𝛿𝑐𝑤𝑐 + 𝜖

(
𝑑∑

𝑐=1

𝑤𝑐 − 𝛼
)

(11)

where 𝛿𝑐 ≥ 0 is the Lagrange multiplier for the 𝑐-th constrain
𝑤𝑐 ≥ 0, while 𝜖 ≥ 0 is the Lagrange multiplier for the
constrain

∑𝑑
𝑐=1 𝑤𝑙 = 𝛼, By setting the derivative of ℒ with

regard to 𝑤𝑐 to zero, we have

∂ℒ
∂𝑤𝑐

= 0⇒ 𝑣𝑐𝑤𝑐 + 𝛿𝑐 + 𝜖 = 0

⇒ 𝑤𝑐(𝑣𝑐𝑤𝑐 + 𝛿𝑐 + 𝜖) = 0
(12)

Using the (Karush-Kuhn-Tucker) KKT condition 𝑤𝑐𝛿𝑐 = 0
[18], [19], [20], we have

𝑤𝑐(𝑣𝑐𝑤𝑐 + 𝜖) = 0 (13)

We can obtain the solution for 𝑤𝑐 for the following two
cases:
∙ Case I, If 𝑣𝑐 = 0: 𝑤𝑐 = 0;
∙ Case II, If 𝑣𝑐 ∕= 0: 𝑤𝑐 = − 𝜖

𝑣𝑐
. By substituting it to the

constrain
∑𝑑
𝑐=1 𝑤𝑐 = 𝛼, we have

𝑑∑

𝑐=1

𝑤𝑐 = 𝛼⇒ −
∑

𝑐:𝑣𝑐 ∕=0

𝜖

𝑣𝑐
= 𝛼⇒ 𝜖 = − 𝛼

∑
𝑐:𝑣𝑐 ∕=0

1
𝑣𝑐

(14)
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Thus the solution for 𝑤𝑐 is

𝑤𝑐 = 𝛼
1
𝑣𝑐∑

𝑐′:𝑣𝑐′ ∕=0
1
𝑣𝑐′

(15)

2) Optimizing y: To optimize the class label vector y,
we fix w and 𝐴, remove irrelevant terms, and obtain the
following optimization problem with regard to y,

min
y

𝛾
𝑛∑

𝑖=1

∥
∥
∥
∥
∥
∥
𝑦𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗𝑦𝑗

∥
∥
∥
∥
∥
∥

2

2

= 𝛾
∥
∥y(𝐼 −𝐴)⊤∥∥2

2

𝑠.𝑡. 𝑦𝑖 = 𝑦𝑖, ∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙

(16)

where 𝐼 is a 𝑛×𝑛 identity matrix. Since it is constrained that
for any labeled samples x𝑖∣𝑙𝑖=1, its learned label 𝑦𝑖 should
be identify to its known label 𝑦𝑖, we only need to solve
the class labels for the unlabeled samples x𝑖∣𝑛𝑖=𝑙+1. To this
end, we separate the class label vector to two sub-vectors
y𝑙 and y𝑢, y = [y𝑙 y𝑢], where y𝑙 = [𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑙] contains
the labels of the labeled samples, while y𝑢 = [𝑦𝑙+1, ⋅ ⋅ ⋅ , 𝑦𝑛]
contains the labels of the unlabeled samples. Moreover, we
also denote matrix 𝑄 = (𝐼−𝐴)⊤ and separate it in a similar

way, 𝑄 =

[
𝑄𝑙
𝑄𝑢

]
where 𝑄𝑙 contains the first 𝑙 rows of 𝑄 and

𝑄𝑢 contains the remaining rows. By substituting y𝑙 = ŷ𝑙, we
rewrite the problem in (16) as

min
y𝑢

{

𝑔(y𝑢) = 𝛾

∥
∥
∥
∥[ŷ𝑙 y𝑢]

[
𝑄𝑙
𝑄𝑢

]∥∥
∥
∥

2

2

= 𝛾 ∥ŷ𝑙𝑄𝑙 + y𝑢𝑄𝑢∥22
}

(17)
Its solution can be obtained by setting the derivative of 𝑔
with regard to y𝑢 to zero,

∂𝑔(y𝑢)
∂y𝑢

= 2𝛾 (ŷ𝑙𝑄𝑙 + y𝑢𝑄𝑢)𝑄
⊤
𝑢 = 0

⇒ y𝑢 = −ŷ𝑙𝑄𝑙𝑄
⊤
𝑢

(
𝑄𝑢𝑄

⊤
𝑢

)−1
(18)

3) Optimizing 𝐴: To solve the reconstruction coefficients
in 𝐴, we fix w and y, remove the term irrelevant to 𝐴, and
obtain the following optimization problem,

min
𝐴

𝛽
∑

𝑖

∥
∥
∥
∥
∥
∥
(w ∘ x𝑖)−

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(w ∘ x𝑗)

∥
∥
∥
∥
∥
∥

2

2

+ 𝛾
∑

𝑖

∥
∥
∥
∥
∥
∥
𝑦𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗𝑦𝑗

∥
∥
∥
∥
∥
∥

2

2

𝑠.𝑡.
∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗 = 1, 𝐴𝑖𝑗 ∣𝑗∈𝒩w
𝑖
≥ 0, 𝐴𝑖𝑗 ∣𝑗 /∈𝒩w

𝑖
= 0,

∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛

(19)

It can be observed that the reconstruction coefficients for
each data sample are independent, thus we can solve the

coefficients for every data sample individually. For the 𝑖-th
data sample, the problem is

min
𝐴𝑖𝑗 ∣𝑗∈𝒩w

𝑖

⎧
⎨

⎩
𝑔(𝐴𝑖𝑗 ∣𝑗∈𝒩w

𝑖
) = 𝛽

∥
∥
∥
∥
∥
∥

w ∘ x𝑖 −
∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(w ∘ x𝑗)

∥
∥
∥
∥
∥
∥

2

2

+𝛾

∥
∥
∥
∥
∥
∥
𝑦𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗𝑦𝑗

∥
∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥
∥
𝝃𝑖 −

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗𝝃𝑗

∥
∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥
∥

∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗(𝝃𝑖 − 𝝃𝑗)

∥
∥
∥
∥
∥
∥

2

2

=
∑

𝑗,𝑘∈𝒩w
𝑖

𝐴𝑖𝑗
(
(𝝃𝑖 − 𝝃𝑗)

⊤(𝝃𝑖 − 𝝃𝑘)
)
𝐴𝑖𝑘

⎫
⎬

⎭

𝑠.𝑡.
∑

𝑗∈𝒩w
𝑖

𝐴𝑖𝑗 = 1, 𝐴𝑖𝑗 ∣𝑗∈𝒩w
𝑖
≥ 0

(20)

where 𝝃𝑖 =

[√
𝛽(w ∘ x𝑖)√
𝛾𝑦𝑖

]
. Apparently, this problem can be

solved as a Quadratic Programming (QP) problem [21], [22],
[23].

The pseudo-code of the proposed algorithm is summarized
in Algorithm 1.

Algorithm 1 Learning algorithm of the semi-supervised
local-learning-based feature selection.

Input: Training data damples x1, ⋅ ⋅ ⋅ , x𝑛;
Input: Class labels for the first 𝑙 samples in ŷ𝑙;
Input: Parameters 𝛼, 𝛽 and 𝛾.
Initialize the feature weight vector w0;
Initialize the neighborhood reconstruction coefficient ma-
trix 𝐴0;
Initialize the class label vector y0𝑢 for the unlabeled sam-
ples;
for 𝑡 = 1, ⋅ ⋅ ⋅ , 𝑇 do

Update vector v𝑡 as in (10) by fixing w𝑡−1 and y𝑡−1;
Update feature weight vector w𝑡 from vector v𝑡;
Update class label vector y𝑡𝑢 of unlabeled samples as in
(18) by fixing 𝐴𝑡−1;
Update neighborhood reconstruction coefficient matrix
𝐴𝑡 as in (20) by fixing w𝑡 and y𝑡;

end for
Output: Feature weight vector w𝑇 .

IV. EXPERIMENTS

We evaluate the performance of the proposed algorithm
on two real world data sets.

A. Experiment I: Face Recognition

In the first experiment, we use the face image data set
downloaded from the CMU Pose, Illumination, and Expres-
sion (PIE) database [24]. Since our algorithm currently can
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Fig. 1. Feature weights learned from the face image data set.

only deal with binary classification problems, we randomly
select the images of two persons from the database. For each
person, there are 170 images with various combinations of
pose, illumination, and expression, and each images is of
32 × 32 pixels. We randomly select 50 samples for each
person as labeled samples, while leaving the remaining 120
samples as unlabeled.

Fig. 1 presents the feature weights learned from the face
image data set. It is interesting to see that the learned
feature weights when mapped back to a two-dimensional
image also has a face pattern. Some regions important for
face recognizing, such as eyes and contour of a face, are
highlighted, while the regions that may be irrelevant to face
recognition, such as the lower left and right corners and
cheeks, are assigned with small weights.
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Fig. 2. Predicted class labels of the face image data set.

Our algorithm is able to learn feature weights and class
labels simultaneously. Fig. 2 reports the predicted labels of
unable samples as well as their true labels. We can see that
the predicted labels are consistent with the true class labels.
All positive samples obtain class label larger than zero, while
all negative samples obtain class label smaller than zero,
indicating that all of the unlabeled samples are predicted
correctly.

We also show the reconstruction coefficient matrix in
Fig. 3. It can be seen that by learning it in a weighted
feature space, we can learn a discriminative reconstruction
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Fig. 3. Reconstruction coefficient matrix learned from the face image data
set.

coefficient matrix to represent the manifold structure. It is
not only smooth, but also discriminative. A sample is only
constructed by its neighboring samples from the same class.
This is an evidence that the local-learning-base method can
sense the class conditional neighbors effectively.

B. Experiment II: Diffuse large B-cell lymphoma outcome
prediction

In the second experiment, we compare the proposed
method against several semi-supervised feature selection
method. The Diffuse Large B-Cell Lymphoma (DLBCL)
gene expression data set [25] is used in this experiment. This
data set contains the gene expression data of 69 samples, and
for each sample, there are 5,469 features corresponding to
5,469 genes. In this data same, there are 48 positive samples
and 21 negative samples. To conduct the experiment, we split
the entire data in to ten folds randomly, and each fold is used
as labeled samples in turn, while the remaining nine folds
as unlabeled samples. The target is to predict the label of
unlabeled samples. To measure the prediction performance
of the prediction, we employ the Receiver Operating Char-
acteristic (ROC) [26], [27] and recall-precision curves [28],
[29] as performance metrics.

We compare our method to two state-of-the-art semi-
supervised proposed by Zhao et al. [14] and Xu et al. [15].
Moreover, we also include the supervised local-learning-
based feature selection method proposed by Sun et al. [5].
To adapt this algorithm to the partially labeled data set, we
only use the labeled samples. The ROC and recall-precision
curves are given in Fig. 4. From this figure, we can see that
Zhao et al. [14]’s method is inferior to all other methods. This
is not surprising because it relies on a precise local structure
defined in the original feature space. However, in this data
set, most of the original features are noisy, which leads to a
unreliable estimate of local structure. Xu et al. [15]’s method
is better than Zhao et al. [14]’s method. Although it also
relies on the local structure defined in the original feature
space, it learn the feature weights and the classifier jointly.
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Fig. 4. ROC and recall-precision curves on the DLBCL data set.

Benefiting from the discriminative ability of the classifier,
it can also learn a discriminative feature weight vector. It
is obvious that the proposed method outperform the other
methods in most cases. Differently from these two methods
which explore the local data structure via the original feature
space, the proposed method learn the data structure and the
class labels in the weighted feature space. This is the main
reason that it beats the other methods. It is also interesting to
note that Sun et al. [5] also obtain comparable performed as
Xu et al. [15]’s method, although it only used the labeled
samples. This is because that it uses the margin defined
in the weighted feature space to refine the feature weights.
However, it still cannot beat the proposed method, due to the
fact that it cannot explore the data structure by only using

the labeled samples.

V. CONCLUSION

In this paper, we extend the local-learning-based feature
selection to semi-supervised learning problem. We proposed
to learn the feature weight, the labels of unlabeled samples
and the data structure jointly. By doing this, we can learn the
margin for each data sample, and thus the local-learning can
be performed in the partially labeled data set. The encourag-
ing performances demonstrate the advantage of the proposed
method over other semi-supervised feature selection method.

REFERENCES

[1] R. Kohavi and G. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[2] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[3] P. Pudil, J. Novovicova, and J. Kittler, “Floating search methods in
feature selection,” Pattern Recognition Letters, vol. 15, no. 11, pp.
1119–1125, 1994.

[4] Q. Sun, P. Wu, Y. Wu, M. Guo, and J. Lu, “Unsupervised multi-level
non-negative matrix factorization model: Binary data case.” Journal of
Information Security, vol. 3, no. 4, 2012.

[5] Y. Sun, S. Todorovic, and S. Goodison, “Local-Learning-Based Feature
Selection for High-Dimensional Data Analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1610–
1626, 2010.

[6] N. Koutsouleris, S. Borgwardt, E. M. Meisenzahl, R. Bottlender, H.-
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