
 

 
Abstract— Recently, it has been shown that a probabilistic 

model based on two of the main concepts in quantum physics 
– a density matrix and the Born rule, can be suitable for the 
modeling of learning algorithms in biologically plausible 
artificial neural networks framework. It has been shown that 
the proposed probabilistic interpretation is suitable for 
modeling on-line learning algorithms for Independent 
/Principal/Minor Component Analysis, which could be 
realized on parallel hardware based on very simple 
computational units. Also, it has been shown that the 
quantum entropy of the system, related to that model, can be 
successfully used in the problems like change point detection. 
Here, it will be shown that the proposed model can be 
successfully used in other areas of applied signal processing, 
with some examples of applications in the area of power 
electronics and general classification problems.   

I. INTRODUCTION 

t is well known that the field of pattern recognition is 
concerned with the automatic discovery of regularities in 
data through the use of computer algorithms and with the 

use of these regularities to take actions such as classifying 
the data into different categories. There are many 
algorithms based on different theoretical backgrounds that 
could be used for pattern recognition in practical 
applications (see e.g. [1]). Generally, most of the 
algorithms are applied in areas like classification, 
regression or change point detection. 

In this paper we are going to present applications based 
on the recently proposed probabilistic model which was 
inspired by two of the main concepts in quantum physics 
(presented here in Sections II and III). It has been shown 
that proposed probabilistic interpretation is suitable for 
modeling of on-line learning algorithms for 
Principal/Minor/Independent Component Analysis, which 
could be realized on parallel hardware based on very simple 
computational units [2-4]. In such applications, the 
proposed concept (model) can be used in the context of 
improving algorithm convergence speed, learning factor 
choice, input signal scale robustness, and can be easily 
deployed on parallel hardware. In section IV.C it will be 
shown how we create the robust on-line algorithm for 
single PCA calculation (here it is called BACH algorithm). 
Also, we are going to show how this probabilistic model 
can be used in problems like change point detection 
(Section IV.B), which can find wide use in many areas. 
Here, we demonstrated the usefulness in several power 
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electronics examples, that are basically related to the 
problem of change point detection. Application in the area 
of classification is demonstrated in Sections IV.A 

II. QUANTUM PROBABILITY MODEL AND BORN RULE 

In quantum mechanics the transition from a deterministic 
description to a probabilistic one is done using a simple rule 
termed the Born rule. This rule states that the probability of 
an outcome (a) given a state (Ψ) is the square of their inner 
product (aTΨ)2. This section is based on a similar section in 
[5, 3]. 

In quantum mechanics the Born rule is usually taken as 
one of the axioms. However, this rule has well established 
foundations. Gleason’s theorem [6] states that the Born rule 
is the only consistent probability distribution for a Hilbert 
space structure. Wooters [7] has shown that by using the 
Born rule as a probability rule, the natural Euclidean 
metrics on a Hilbert space coincides with a natural notion of 
a statistical distance. Short review for some other 
justifications of the Born rule can be seen in [5]. 

The quantum probability model takes place in a Hilbert 
space H of finite or infinite dimension. A state is 
represented by a positive semidefinite linear mapping (a 
matrix ρ) from this space to itself, with a trace of 1, i.e.  
 H ΨTρΨ≥0, Tr(ρ) =1. Such ρ is self adjoint and is called a 
density matrix. 

Since ρ is self adjoint, its eigenvectors Φi are 
orthonormal and since it is positive semidefinite its 
eigenvalues pi are real and nonnegative pi ≥ 0. The trace of a 
matrix is equal to the sum of its eigenvalues, therefore ∑ipi 
=1. 

The equality  ρ=i pi Φi Φi
T  is interpreted as “the system 

is in state Φi with probability pi”. The state ρ is called the 
pure state if i  s.t. pi =1. In this case, ρ=ΨΨT for some 
normalized state vector Ψ, and the system is said to be in 
state Ψ.  

A measurement M with an outcome x in some set X is 
represented by a collection of positive definite matrices 
{mz}zZ such that zZ mz = 1 (1 being the identity matrix in 
H). Applying measurement M to state ρ produces an 
outcome x with probability 
  
 px(ρ)=trace(ρmx). (1) 
 

This is the Born rule. Most quantum models deal with a 
more restrictive type of measurement called the von 
Neumann measurement, which involves a set of projection 
operators ma=aaT for which aTa’=δaa’. In a modern 
language, von Neumann’s measurement is a conditional 
expectation onto a maximal Abelian subalgebra of the 
algebra of all bounded operators acting on the given Hilbert 
space. As before, aM a aT = 1. For this type of 
measurement the Born rule takes a simpler form: 
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pa(ρ)=aTρa. Assuming ρ is a pure state this can be 
simplified further to 
 
 pa(ρ) = (aTΨ)2. (2) 
 
So, we can see that the probability of the outcome of the 
measurement will be a, if the state is ρ, is actually the 
cosine square of the angle between vectors a and Ψ, or 
pa(ρ)=cos2(a,Ψ). 

III. JOYSTICK PROBABILITY SELECTOR 

In this section we will give the recently proposed, simple 
interpretation of the probability that is related to the Born 
rule [3]. Here we will assume that we are dealing with finite 
dimensional discrete variable. 

For the moment, let’s assume that we are dealing with 
discrete two dimensional variables. It can associate us with 
a coin tossing. Assume further that the two possible 
outcomes of our experiment are represented by the dummy 
variables {01} and {10}. If we represent our coin as a unit 
norm vector in the two dimensional space (we will call that 
vector JoyStick Probability Selector or JSPS), then we can 
have the following simple geometric interpretation given in 
Fig. 1. 

 
 
 Fig. 1. JoyStick Probability Selector 

 
Now, we will suggest that the probability of outcome 

{01} is equal to the cosine square of angle α1, while the 
probability of outcome {10} is equal to the cosine square of 
angle α2. It is not difficult to see that cos2(α1) + cos2(α2) = 1. 
We can see that the probability of the particular outcome of 
the experiment (in this case coin toss) is equal to the inner 
product of the unit norm JSPS and the unit norm vector 
which represents that outcome. Then, it is easy to see that 
this coincides with the Born rule interpretation for the case 
of a pure state and von Neumann measurement system. It is 
easy to see that when state (JSPS) vector collapses to one of 
the states, it is not possible to give information about the 
other state, which is consistent with some quantum 
mechanics results.  

We can check what will happen if our discrete variable is 
of the dimension 3. In that case our system can be 
represented by Fig. 2. Now, we have three possible 
outcomes of the experiment that are represented by dummy 
variables {001}, {010} and {100}. Again we have the JSPS 
vector which represents the status of our variable before we 
perform the measurement. Again, the probability of the 

outcome is given by the cosine square of the angle between 
JSPS and particular outcome vector. It is not difficult to 
check that 
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2 1cos
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This follows from the Pythagorean Theorem. For any 3-D 
vector whose norm is r we have 
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It can be easily concluded that this way of reasoning can be 
extended to any finite dimension D. 
 

 
 
Fig. 2. A 3-D example 

 
It is interesting to notice that this representation is 

actually reasonable for unimodal data (data that can be 
represented by a pure state). If the data is multi modal we 
need more complex model which is not going to be 
analyzed here. 

IV. QUANTUM PROBABILITY MODEL IN NEURAL 

NETWORKS CONTEXT  

In this section, we recapitulate some quantum 
probabilistic concepts that can be used in a neural network 
framework. We show how neural networks can be used in a 
probabilistic framework that is basically based on the Born 
rule.  

The basic single layer feedforward artificial neural 
network is depicted in Fig. 3. The output of the n-th output 
unit yn (n=1, 2,, N) of a layer of parallel linear artificial 
neurons is given as 

 

      iiiy nn xw T , (5) 

 
with x(i) denoting a K-dimensional zero-mean input vector 
of the network and wn(i) denoting a weight vector of the 
n-th output unit, and i representing sampling instances iT, 
where T is a sampling period. The output vector y is defined 
as 
 

      .T iii xWy   (6) 
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In the usual interpretation, based on specific 
requirements, e.g. minimization of some cost function, 
matrix W is changed (trained) in the process of learning, 
according to some adopted learning rule.  
 Here we will give a slightly different interpretation. We 
will consider a Hilbert space H of a finite dimension. “State 
vectors” are defined by the input data vector xk and we can 
imagine that every vector xk is available in a big enough 
number of copies (clones), so that we can perform as many 
simultaneous measurements as we want. A measurement M 
with an outcome wn in some set W is represented by a 
collection of positive definite matrices Wm nn ww }{  such 

that 
nwm = wnwn

T, so 
nn ww mW = WWT, which is not 

necessarily equal to the identity matrix on H. This means 
that the sum of the probabilities of the particular outcomes 
does not have to be equal to one – in other words, 
sometimes we will work with improper discrete 
distributions. Also, measures like entropy and divergence 
will be applied to improper probability distributions, or to a 
mixture of proper and improper probability distributions. In 
the following sections, we will point out that in the adopted 
framework, this will not affect the final result. 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
Fig. 3. A layer of parallel linear artificial neurons 
 

 
Applying measurement M to state xk produces the outcome 
wn with the probability (the Born rule) 
 

    kn

def

knp xwxw ,cos| 2 , (7) 

 
regardless of the norm of the vectors wn and xk. In the 
following text, we will consider only vectors wn that have 
unit norms. This means 
 

    
2

2T

k

kn
knp
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xw
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Also, if we apply N simultaneous measurements MN to the 
state xk we obtain outcome W with the probability 
 

    



N

n
kn

def

k pp
1

|| xwxW . (9) 

 
Here, it is assumed that the outcome of each measurement 
could be different. We define the joint probability of the 

state xk and outcome W obtained by simultaneous multiple 
measurement MN on state xk, p(W, xk) as 
 

      kk

def

k ppp xxWxW |,  . (10) 

 
Now, without loss of generality, let’s assume that we are 

dealing with a random variable x that takes realizations 
from a set of observed K-dimensional zero-mean data 
vectors {xk}, k {1, …, Nsample}, which are sampled from 
some distribution in time instants t = kT where k is already 
defined and T represents the sampling period. Then, we can 
define p(x=xk | t=kT) as 
 

  




sampleN

i
i
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2

2

x

x
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where Nsample represents the overall number of samples that 
are going to be analyzed. It is interesting to note that the 
only thing that we can conclude about the p(xk) is that it is 
proportional to ||xk||2. The sum in the denominator 
represents the energy of samples that are going to be 
analyzed – we actually do not know the value of that sum at 
any, but the final moment. However, we know that it 
represents some constant. We can easily see that the 
adopted probability measure fulfils the two conditions that 
are required for the probability function f(z) (in our case 
p(z)) to be considered as a modified generalized probability 
measure [8]: 
1. For each z, 0  f(z)  1 , 
2. i f(zi) = 1.  
In this definition, orthonormality is not explicitly required 
in order that the coefficients f(zi) sum up to one. However, 
from the JSPS introduction [3], we can see that it is always 
implicitly present.  
Here, we will consider all vectors as “oriented energies” or 
 

 kk
k

k
kk 'xx

x

x
xx  , (12) 

 
where the norm of the vector ||xk||, represents the square 
root of the energy contained in the vector xk, and the 
orientation represents some unit norm vector x’k, which 
represents some pure state. In that case, we can see that the 
statistical description of our system is represented by the 
density matrix ρ  
 
  k kkkp T'' xxρ , (13) 

 
as a statistical mixture of pure states x’k, and pk=p(xk) are 
defined by (7). We have to stress that the density matrix ρ 
that is created here, does not fulfill the requirements of 
quantum mechanical postulates, since it connects the pure 
states from different time instants. However, we used this 
term here to stress the conceptual analogy with original 
definition of density matrix (although we could create a 
new term – e.g. normalized covariance matrix). We can see 
that 
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y2 yN y1 
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where C is the input signal covariance matrix. Obviously, 
the matrix ρ and the matrix C have the same eigenvectors.  

In the proposed context, the learning algorithm applied to 
the neural network has a basic task - to find the 
measurement system in which input data is “best 
explained”, or have the features that are specified. As an 
example, principal component analysis will search for the 
measurement (or we can say coordinate) system in which 
the input data covariance matrix is diagonal. 

V. PRACTICAL IMPLEMENTATION 

In this section it is shown how the proposed model can be 
used in various applications. 

A. Applications in simple classification problems 

Here, it will be shown how this concept can be used to solve 
some classification problems. It will be shown, how we can 
solve XOR problem using quantum Tsallis entropy [10]. 
The Tsallis entropy is defined by the following equation: 
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where q>0. 

Here we use target value as an input. In other words, we 
consider the problem as a 3-dimensional problem where the 
3rd dimension is defined by output value. Input vectors are 
defined as 
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Matrix A which describes the system in the plane z=-1 (we 
assume vectors are presented in 3-dimensional system 
x-y-z) is defined as A=a1·a1

T+a2·a2
 T, while the system in 

plane z=1 is defined as B=b1·b1
T+b2·b2

T. Then we can 
calculate the entropy of the individual systems Ea and Eb. 
Overall entropy of the unified system is calculated as 
E=Ea+Eb. Then, for any x and y coordinate, we can 
calculate how it affects the entropy of the overall system, by 
adding it to system A or system B. We will label it in such a 
way that addition of the individual point to one of the 
system creates a minimum change in the overall entropy. 
The result of such calculation is shown in Fig. 4. From the 
figure we can see that the problem is successfully solved. 
Other simple problems could be solved by this method, like 
the AND, OR classification, or the IRIS problem 
classification. For more complicated problems, we need 
refinement of the calculation of overall entropy, and it is not 
going to be addressed here. It is going to be stressed here 
that in the case of n-dimensional data, regardless of the 
number of the points that are analyzed, we need to store k 
(where k is the number of classes) matrices of dimension 
nxn.  

 
Fig. 4. XOR problem classification 

 
The logical AND problem could be solved in a similar way. 
However, since we have an unbalanced system it is 
necessary to define four subclasses and to evaluate the 
overall entropy for the four possibilities – meaning that any 
point can potentially belong to any of the four subclasses. 
The result of classification is shown on Fig. 5. 
 

 
 
Fig. 5. AND problem classification 

 
Similar method could be used in the famous IRIS 
classification problem. Taking some points as characteristic 
representatives (in this case points numbered (15-34) from 
each group) we can correctly classify the rest of the points. 
As was the case in the logical AND classification problem, 
here we have 45 subclasses, and we have to evaluate the 
entropy for 45 cases – for every point we want to classify, 
we can assume that it can belong to any of the 45 subclasses. 
Although it can look time consuming, we actually have 45 
simple independent processes that could be easily realized 
on parallel hardware, like GPU. For illustration we can use 
the following Fig. 6, where we used only attributes 3 and 4 
for classification (we can see that this classification is not 
100% correct – it is necessary to add attribute 1 too, but we 
cannot present it graphically). 
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Fig 6. Classification of IRIS data if we use only the data specified by 
attributes 3 and 4 

 

B. Applications in power electronics 

Here we will show that proposed method could be 
successfully used in several applications in power 
electronics, like in detection of high voltage induction 
motor rotor failure, detection of thyristor malfunction in 
rectifiers or power quality analysis. All problems are 
related to the problem of change point detection. 
 
1) Detection of high voltage inductor motor rotor failure 

Here, we recapitulate an example of rotor failure 
detection [9]. The problem under scope is how to make a 
very simple and cheap device for rotor failure detection in 
large induction motors in an early stage, in order to increase 
production availability through reduced downtime and by 
minimizing the repair cost. That simple and cheap device 
should be connected to each induction motor under 
surveillance. The main problem is how to detect the first 
sign of rotor failure during normal operation.  
 Example of total rotor failure (several cracked and 
broken rotor bars) on the motor is shown on Fig.7.  
 

 
 

 Fig. 7. The faulty cage with several cracked and broken rotor bars 
 

 In [9] it was proposed that the measure of the “behavior” 
of the motor current is Tsallis’ entropy of the recorded 
samples in the sliding window of the proper size. In this 
case, q is usually taken in the range 6-12, and xk represents 
samples of the derivatives of the stator current and p(xk) is 
defined by equation (3). The measure M of the current 
“behavior” is actually defined by the following equation 
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where E stands for expectation. In order to improve the 
method sensitivity, the derivatives of the stator current are 
used for numerical processing. The reason being that the 
rotor failure could be detected by the presence of the 
spectral components close to the 5th and 7th harmonic, 
which are much more “visible” in the derivative of the 
stator current than in the stator current itself. On the 
following Fig. 8, we can see the sinusoidal signal with 1% 
presence of the 5th harmonic, on the upper figure and 
corresponding the derivative shown on the lower figure. By 
calculating the factor M for the case without presence of the 
component close to 5th harmonic and with its 1% presence, 
change of the M of the stator current is just 20%, while the 
change of M of the derivative is close to 300% (for q=6). 

In the case that it is necessary to target some specific 
frequency “region”, it is possible to condition a signal with 
an appropriate band-pass filter and, again it is possible to 
use M as a measure of the change in “behavior”. 

 
Fig. 8. Sinusoidal signal with 1% presence of 5th harmonic (upper plot) and 
its derivative (lower plot) 

 
2) Detection of thyristor malfunction in rectifier bridge 

Three-phase controlled rectifiers have a wide range of 
applications, from small rectifiers to large High Voltage 
Direct Current (HVDC) transmission systems. They are 
used for electrochemical processes, many types of motor 
drives, large power generators excitation systems, traction 
equipment, controlled power supplies, and many other 
applications. From the point of view of the commutation 
process, they can be classified in two important categories: 
Line Commutated Controlled Rectifiers (Thyristor 
Rectifiers) and Force Commutated PWM Rectifiers [11]. 

One of the problems related to Thyristor Rectifiers is 
possible malfunctioning of one of the thyristors while the 
rest of the bridge is still working and controls the average 
output value correctly. In that case, the presence of the 
harmonics in the output voltage is bigger and causes 
problems to some equipment, while on the other side, it 
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puts a bigger stress on other working thyristors and can 
cause the malfunctioning of the whole rectifier. For that 
reason, it is necessary to detect thyristor malfunction as 
soon as possible. Here we will show that we can use the 
Tsallis entropy of the bridge voltage to detect the 
problematic thyristor. Using the measure M defined in (5) 
we can easily detect the problem, and if we have some 
additional information about synchronization, we can 
correctly identify the thyristor that causes the problem. 
Some characteristic waveforms are presented on Fig. 9. 
Corresponding M values are presented on Fig. 10 and Fig. 
11.  

  
Fig. 9. Characteristic one-period waveforms for the correct bridge (blue 
line) and the bridge with malfunctioning thyristor (red line) 

 
Fig. 10. M values for a correct thyristor bridge 

 
Fig. 11. M value for a bridge with a malfunctioning thyristor 

 
From figures 10 and 11 we can see that the problem can 
easily be detected and with some additional information we 
can detect exactly which of the thyristors is problematic.  

3) Power quality analysis 
The quality of electric power has become an important 

issue for electric utilities and its customers. As a result, 
power quality (PQ) study is gaining interest. Degradation in 
quality of electrical power is normally caused by 
power-line disturbances such as voltage sag/swell with and 
without harmonics [12]. Momentary interruption, harmonic 
distortion, flicker, notch, spike and transients, are causing 
problems such as malfunctions, instabilities, short lifetime, 
failure of electrical equipment and so on. In a realistic 
distribution system, in order to improve power quality, 
these disturbances need to be identified before appropriate 
mitigation action can be taken. In this paper we will 
consider some of the disturbances that occur frequently, 
like sag, swell, flicker or presence of harmonics. On the 
following figures (Fig. 12-16) we can see the characteristic 
waveform of signals and the calculated value M (based on 
(17)). It is clear that there is a characteristic signature of all 
disturbances which can be separated by classification 
algorithms (e.g. similar to method explained in section 
V.A).  

 
Fig. 12 Pure sinusoidal signal (upper part) and the value M (lower part) 

 
Fig. 13 Sinusoidal signal with harmonics in one part (upper part) and the 
value M (lower part) 
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Fig. 14 Sinusoidal signal with sag in a part (upper part) and the value M 
(lower part) 

 
Fig. 15 Sinusoidal signal with a swell (upper part) and the value M (lower 
part) 

 
Fig. 16 Sinusoidal signal with flicker (upper part) and the value M (lower 
part) 

C. Robust on-line algorithm for PCA calculation 

In this section, we will propose a new algorithm for the 
extraction of the single principal component. We will call it 
the BACH algorithm. It is based on minimization of the 
BACH divergence [13]. Bach divergence is defined as 
 

     




 

2bb
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For illustration, we will assume that we have 
16-dimensional input signal x sampled from uniform 
distribution. Our learning rule is given as  
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where b is a positive real number. Here, we select b=0.025. 
Without going into details, we can remove term 
((xTx)b-(yTy)b) , so the BACH learning rule can be 
represented as 
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We can see that it represents modification of the famous 
Oja learning rule [14], which is, as we are going to see from 
the illustration example, robust to change of the input signal 
energy level, which significantly simplifies selection of the 
learning rate. In the Fig. 17, we can see the behavior of the 
BACH (solid line) and Oja’s algorithm for the “nominal” 
energy level.  
 

 
 
 Fig. 17 Experimental results for BACH PCA algorithm (16-dimensional 
input, 4-dimensional output) 

 
We can see that both algorithms behave similarly. However, 
if we decrease the input energy 100 times, and keep 
learning rates unchanged, we can see (Fig. 18) that 
convergence speed of the BACH algorithm is only slightly 
affected by the input signal energy change, while Oja’s 
algorithm becomes very slow. Although it is not going to be 
presented here, it can be said that the BACH algorithm will 
not be significantly affected, even in the case when the 
input energy is decreased by several order of magnitude 
(e.g. billion times). 
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Fig. 18. Experimental results for BACH PCA algorithm (input signal 
energy decreased 100 times) 

VI. CONCLUSION 

In this paper we used the recently proposed probabilistic 
model based on the Born rule and its simple geometrical 
representation, named JoyStick Probability Selector. It has 
been shown that the proposed model could be useful in 
several areas of applied signal processing. It has been 
shown that the proposed model accompanied with related 
entropy functions could be used for a generation of simple 
classification methods that are not computationally 
intensive. Also, on several examples from the area of power 
electronics, it has been shown that the model is useful for 
contraction of the methods for change point detection. It is 
demonstrated how the proposed model could be used for 
development of a robust on-line learning algorithm for 
single PCA computation.  

It should be noticed that application to general 
classification problems still requires creation of the method 
for class representative points selection (which is analogous 
to support vectors). This is currently under investigation.  
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