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Abstract— In this work we show a study about which 
processes are related to chaotic and synchronized neural states 
based on the study of in-silico implementation of Stochastic 
Spiking Neural Networks (SSNN). Chaotic neural ensembles 
are excellent transmission and convolution systems. At the 
same time, synchronized cells (that can be understood as 
ordered states of the brain) are associated to more complex 
non-linear computations. We experimentally show that 
complex and quick pattern recognition processes arise when 
both synchronized and chaotic states are mixed. These 
measurements are in accordance with in-vivo observations 
related to the role of neural synchrony in pattern recognition 
and to the speed of the real biological process. The 
measurements obtained from the hardware implementation of 
different types of neural systems suggest that the brain 
processing can be governed by the superposition of these two 
complementary states with complementary functionalities 
(non-linear processing for synchronized states and information 
convolution and parallelization for chaotic). 

Keywords— spiking neural networks, chaotic circuits, image 
filtering, pattern recognition  

I. INTRODUCTION 

 Understanding the brain and to reach the ability to 
reproduce its amazing processing capabilities is one of the 
most challenging purposes for science and technology. 
Neural processing capabilities are of different nature such as 
body control [1], high-speed signal processing and 
classification [2], memory [3], decision-making etc. Since 
these diverse processes depend on the neural behavior, it is 
crucial to know which type of connectivity can be associated 
to each process. Some researchers support the theory that the 
brain is naturally poised near criticality at the edge between 
ordered and chaotic states [4-5]. This duality implies that the 
brain can access to a large range of complementary 
behaviors related to these two opposite states, and this could 
be a plausible explanation of the brain processing diversity.  

A feasible way to study the different brain capabilities is 
to artificially reproduce those systems by using biologically 

plausible neural implementations. In this sense, hardware   
solutions are much faster than software approaches since the 
intrinsic neural parallelism is maintained. Also, the 
stochastic processes that are present in the neural behavior 
are more naturally incorporated to the study using hardware 
than software models. From the different hardware solutions 
that can be considered, those based on the use of digital 
logic represent the more attractive way for studying neural 
systems [6] since they can be massively implemented in 
Field Programmable Gate Arrays (FPGAs) [7-8] where 
hundreds of coupled neurons can be configured in a single 
chip for its detailed study. FPGAs also present an 
appropriate configurability to quickly change and test 
different neural designs. In this study we use the circuit 
model of Stochastic Spiking Neurons inspired developed by 
the researchers in a previous work [9]. 

Understanding complex systems always entails choosing 
a level of description that retains key properties of the 
system while removing what is supposed to be nonessential. 
In this sense, spiking neural models [10-11] are bio-inspired 
descriptions that use delta functions to represent the Action 
Potentials of biological neurons. Implicitly this assumes that 
information is non-transmitted from cell to cell in the spike 
shape but on its timing characteristics. At the same time we 
assume that firing rate is the main code used in nervous 
systems [12], to what extent more complex timing codes 
exist remains a subject of considerable debate [13].  
A key property of the spike trains measured in real neural 
systems is their seemingly stochastic or random nature [14]. 
In fact, the apparent lack of reproducible spike patterns has 
been one of the principal arguments in favor of firing rate 
coding in contrast to the more elaborated timing codes. The 
stochastic nature of spike trains is in part due to the 
mechanism of synaptic transmission since each synaptic 
vesicle releases its "quantum" of transmitter from the neuron 
presynaptic terminal with a given probability. This 
probability of synaptic release is subject to change and can 
be understood as a measurement of the connection weight. 
Due to this probabilistic nature for the synapsis, a basic 
feature of neuronal communication is the lack of 
transmission reliability [13-14]. Moreover, as the number of 
channels in the membrane is reduced, the axonal membrane 
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can spontaneously and stochastically reproduce action 
potentials [15], thus generating an autonomous internal 
activity. In general, depending on the underlying neural 
activity, spike trains may present a regular or a stochastic 
behavior [13]. 

The chaotic fluctuation of the resting potential of neurons 
[14] can provide a possible explanation for the different brain 
processing tasks. A synchrony (asynchrony) in the activity 
should create correlated (uncorrelated) random oscillations. 
The interaction between those different types of oscillations 
would lead to opposite behaviors. 

In this paper we use a stochastic neural circuitry that 
implements a simple spiking neuron model [10] and also 
reproduces the probabilistic nature of synaptic transmissions 
[9]. In a previous work [9] we stated the basic principles of 
the hardware implementation of SNN by using digital 
circuitry. Spiking neural networks are the last generation of 
artificial neural models characterized by its bio-inspired 
nature [10]. Those models are used for medical [17-18] 
applications, prediction and forecasting [19], robotics [20], 
spatiotemporal information processing [21] or for the 
modeling of brain behavior [22-23]. For those reasons, 
spiking neural networks has been implemented in hardware 
in several studies for its faster processing [24-25]. From the 
hardware model proposed in reference [9] we study the 
different processing capabilities that can arise in neural 
systems, showing that neural ensembles present very 
different properties depending on their timing relationship. 
We study the effects of synchronized and chaotic signals and 
state that synchronized signals can be used for elaborated 
processing tasks such as pattern recognition and that 
chaotically related signals are optimum for information 
transmission and convolution and for parallelizing (and 
therefore speeding-up) different high-level tasks. 

II. METHODS 

The model in which the neural study is based is a 
variation of the binding neuron model [26-27]. The Binding 
Neuron (BN) model describes the neural functionality in 
terms of discrete events (digital pulses emulating the action 
potential of real neurons). Each input impulse is stored for a 
fixed time, similar to the tolerance interval proposed by 
MacKay [28]. Each neuron fires if the number of stored 

impulses (that represents a mean of the membrane potential) 
is equal or higher than a threshold value vth.  This model can 
be used for neural description and can be easily 
implemented using digital circuitry. The mean membrane 
potential is estimated each time T. Then, if and only if the 
mean membrane over-voltage (Vsvs-vrest) during time T is 
greater than the oscillating threshold value vth-vrest, an action 
potential at the neuron output (vo) is generated. The simple 
mechanism of the neural model can be reproduced digitally 
as shown in Fig. 1 (example for a two-input neuron scheme 
that can be generalized to the multiple input cases). In Fig. 2 
it is showed the timing diagram of inputs, outputs and 
membrane potential vs. During each time step Teval 
(Teval=256 in our experiments) the incoming pulses are 
summed up in the counter to estimate Vs for the next 
period, then Vs is compared with voltage vth-vrest (that varies 
chaotically between 0 and 255) to generate a spike signal at 
the output. All the incoming excitatory signals (ei) are 
multiplied by its weight pkj and joined using an OR gate (see 
Fig.1). Those spike trains increase the value of a digital 
counter and is captured by a register that provides at its 
output the number of incoming pulses during a certain 
period of time Teval (representing an estimation of the mean 
incoming current to the neuron and therefore the membrane 
overvoltage Vs). Signals pkj represent the probability of 
signal transmission from the jth to the kth neuron, consisting 
of binary bits oscillating with a specific switching activity 
that is proportional to the probability of synaptic 
transmission (pkj). At the same time, shunting inhibition 
signals (ij) inhibits the action of excitatory pulses by using 
NOT gates. When the estimated mean overvoltage Vs is 
over the reference voltage (vref =vth-vrest), different action 
potentials (represented by delta functions) are generated (see 
Fig. 2 for the illustration of this behavior). The mean 
membrane overvoltage (output binary number Vk of the 
digital counter) is compared with the reference signal (vref) 
representing the difference between the threshold and the 
resting voltage (vref =vth-vrest). This reference signal 
oscillates randomly to accurately emulate the variation of vth 
with respect to vrest in real biological systems. Such random 
oscillation is assumed to be much faster than the typical 
spiking activity of neurons so that for each spike generation 

 
 

Fig. 1.  Digital implementation of the Binding Neuron model. Simple 
digital blocks are considered as basic Boolean gates, a counter, a 
random number generator (for Vref) and a comparator. 
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Fig. 2.  Temporal evolution of membrane potential (vs) and the output 
(action potential) of the proposed stochastic digital neuron (Fig.1) 
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the reference voltage value is located at a completely new 
random value. To emulate such oscillations we implement 
digitally a random signal generator based on the use of 
three-coupled XNOR gates and a digital shift register [29-
30]. The generation of stochastic signals pkj that represents 
the probability of synaptic transmission between neurons is 
reproduced by digitally comparing the output of a random 
number generator and a specific binary value that has to be 
proportional to this probability. Signal pkj therefore 
measures the strength of connection between the two 
neurons and its biophysical meaning is related to the 
probability of vesicle release in the synaptic connection. 
When operated with ej through an AND gate (see Fig. 1) the 
result is a pulsed signal with a switching activity equal to 
the product of both signals (pkjej). This is the way in which 
stochastic transmissions (and thus the weights of neural 
connections) are reproduced in the digital circuitry used to 
reproduce the neural model. The digital circuit used in this 
work was implemented using a Field-Programmable Gate 
Array model Cyclone III EP3C16F484C6 from ALTERA 
Corp., and the frequency of operation (that is fixing the 
minimum possible time interval between spikes) was 
50MHz. In this work we study the behavior of spike trains 
presenting synchrony [16] or a stochastic behavior [13]. One 
of the key points of the stochastic neural model used is that 
the difference between the threshold and the resting 
potentials of neurons is variable and can be used to 
synchronize neurons. Synchronicity does not necessary 
imply a common periodic oscillation but a correlated 

oscillation (not necessary to be periodic). Detailed 
computational simulations of the default-mode brain 
network model shows that synchronized oscillation may be 
present even in distant brain regions [31]. In general, we say 
that two neurons are synchronized if they share the same 
reference voltage vref, otherwise they are chaotically related 
(de-synchronized). 

To highlight the differences that can be observed we 
show the simple examples of Fig. 3. This figure illustrates 
four systems consisting in two input neurons with 
connection with a third one (the output). Those connections 
are of inhibitory and excitatory nature depending on the 
example. One of the two input activities to the circuit is 
fixed (ai) while the other is varied (xin).  In the absence of 
synchrony between neurons we observe a nearly linear 
relationship between the output activity yout and the two 
input activities (ai and xin). This can be appreciated in Fig. 
3b. The final expression obtained is the product of the 
switching activity of xin and the probability of no-inhibition 
(1-ai). The reason of this product is that it the neuron output 
is providing the collision probability between the two 
successes (activation of xin and no inhibition). For the case 
of synchronized neurons and an inhibitory connection (Fig. 
3a) we observe that when the input xin is lower than the 
inhibition activity (ai) the excitatory signal is unable to 
activate the output since it is correlated with the inhibitory 
signal. Only if the excitation exceeds the inhibition we get 
an appreciable output activity that can be approximated as 
being linear (yout=xin-ai).  

          

ai

xin

yout
xin

ai
Synchrony

max{ 0 , xin- ai } ai

xin

yout
xin

Asynchrony

xin(1- ai)

 

       
(a)                                                                      (b)          

Fig. 3.  Basic measured differences between asynchronous and synchronous neural systems. Measurements show a non-linear relationship between 
output and input activity when the neural ensemble is synchronized in contrast to a linear relationship when the ensemble is not synchronized. In the 
figure we observe those relationships in the synchronous (a) and in the chaotic case (b). We show the cases in which there is one inhibitory and an 
excitatory signal. Since the behavior of the neural model is stochastic, the mathematical expressions can be easily obtained by applying basic 
probabilistic laws. 
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Therefore, in the synchronous case we observe an abrupt 
non-linear change between different linear states that is not 
present in the chaotic case. The dispersion observed in the 
measurements around the expected behavior are due to the 
intrinsic stochastic activity of neurons, where the firing rates 
are measured averaging in a given time period. The 
analytical expressions that are provided in Fig.3 for the 
expected neural behavior are extracted by applying basic 
probabilistic laws. 

Therefore, the first and crucial observation that is derived 
from the digital stochastic neural model is that both 
chaotically related and synchronized neural systems present 

a linear and a non-linear behavior respectively. In case of 
synchrony we observe that the system selects its operation 
mode between different linear states while in the case of a 
chaotic behavior we observe a simple linear transformation. 

The linear transformations minimize the information loss 
and are able to convolute chaotically-related incoming 
signals while the non-linear transformation is associated to 
more complex non-linear processing tasks like pattern 
discrimination, where the signal information is drastically 
reduced to the useful one. 

 

I NPUT I MAGE

FI LTERED I MAGE

      
                                                             (a)                                 (b)    

 
Fig. 4.  (a) Simple neural system used for image filtering, each neuron at the output layer is connected to 64 neurons of the input layer. (b) The weights 
used for the connection between the input and output layers corresponds to the delta response of the Gabor filter. Positive (negative) values represent 
excitatory (inhibitory) connections. 
 

 
(a)       (b) 

 
(b)                                      (d) 

 
(e)    (f) 

 
Fig. 5.  Switching activity of the two layers SSNN. (a) Original Lena image (input layer). (b) Output layer when λ=0.8 and b=1. (c) Output layer when λ 
=1 and b=0.5. (d) Output layer when λ =1 and b=1. (e) Output layer when λ =2 and b=0.5. (f) Output layer when λ =2 and b=1. 
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III. RESULTS 

A. Chaotic ensembles of neurons as efficient information 
processing systems 

As it has been shown, unsynchronized ensembles of 
neurons perform linear transformations to neural 
information. As a practical example, they can be used to 
implement the convolution to incoming sensory data.  

An edge-detection filter based on the use of a Gabor filter 
can be implemented using a simple feed-forward SSNN 
with only two layers (see Fig.4). Frequency and orientation 
of Gabor filters are thought to be involved in the human 
visual system, specifically in the process of feature selection 
and discrimination. A Gabor filter is composed by the 
superposition of different Gaussian kernels modulated by 
plane waves. The main characteristic of each kernel is the 
orientation (θ), the bandwidth (b), the wavelength (λ), the 
aspect ratio (γ) and the phase (φ). The output response of 
the filter must be the convolution of the input image I(x,y) 
with the function: 

      )/ˆ2cos(),(
2222 2/)ˆˆ( 

i
yx xeyxf ii (1) 

Where ix̂  and iŷ  are defined by the specific orientation i 

as: 

iii

iii

yxy

yxx




·cos·sinˆ

·sin·cosˆ


                       (2) 

Parameters x and y are referred to the position in the x-y 
plane of the image. At the same time, the value is defined 
by the bandwidth b as: 

    12/122/2ln  bb                   (3) 

For the implementation of an image filter we use a 2D 
SSNN with two layers (input neurons Îkl and output neurons 
Ôij), where sub-indexes k,l and i,j are referred to their 
respective position in the image plane. The input layer 
provides the image information (the switching activity of 
neuron Îkl is proportional to the intensity of pixel pkl of the 
image) to the output layer with a weight at the connection 
given by (1) as (Ôij;Îkl)=f(i-k,j-l). Those weights are 
implemented through the probability of synaptic 
transmission (pkj) that we were talking in the previous 
section.  

We implemented a neural system for the edge detection 
processing of a 64KB image. Each output neuron of the 
network is connected to sixty-four inputs of the image 
(pixels) following the weight distribution provided by (1) 
(see Fig. 4b) using a superposition of eight kernels with 
eight different orientations such that i=i/4 (being i an 
integer ranging between 0 and 7). 

In Fig. 5 it is showed the switching activity of the two 
2D layers of the network when processing the Lena's image. 
At the input layer we have the original image of Lena (Fig. 
5a) and at the output layer we obtain the filtered image for 
different weight values associated to different parameters of 
the Gabor filter. We show the effect of five different filters. 
For each filter we use =0.5 and =0 and different values of 
 and b (bandwidth). Exactly we use  =0.8 and b=1 for Fig. 
5b, =1 and b=0.5 for Fig. 5c,  =1 and b=1 for Fig. 5d,  
=2 and b=0.5 for Fig. 5e and finally =2 and b=1 for Fig. 5f. 
We can appreciate the effect of changing  and bandwidth 
through all the figures. From all the parameters, the one 
with =1 and b=1 (Fig. 5d) presents the better edge 
detection capability. For the implementation of this filter a 
total of 222 synapses are used (more than four millions of 
synapses). Using similar methodologies, any kind of linear 
filtering can be built using a simple feed-forward neural 
network. 

B. Synchronized systems are able to recognize 
patterns while chaos parallelize and speeds-up the process  

Pattern recognition is a fundamental brain process 
consisting in a reaction to an external stimulus when it is 
within a relevant range. Some works suggest that this 
process is only explained using the action potential timing 
as codification methodology [32] since the analogue pattern 
match is done in a time scale of the order of dozens of 
milliseconds and biological neurons are oscillating at only 
100Hz. These are the results observed in different studies 
related to visual pattern analysis and pattern classification 
carried out by macaque monkeys and fixing the time 

b
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(b) 

Fig. 6.  (a) A simple circuit scheme for pattern classification. (b) 
Measured activity of the proposed system when using 32 neural 
ensembles. Due to the effect of parallelization, the intrinsic variability 
of the stochastic process is minimized. 
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response in just 20-30ms [33-34]. Since the firing rate of 
neurons are usually below 100Hz, a coding of analogue 
variables by firing rates is traditionally considered to be 
dubious for pattern recognition. Although the timing 
codification proposed by Hopfield explains the fast pattern 
recognition developed by real neural systems, its physical 
implementation requires a high spatiotemporal precision 
with which neurons need to be wired up and the learning 
process of such coding could be quite complex.  
Other studies demonstrate that when odor-evoked action 
potentials in honeybee antennal lobe neurons are 
pharmacologically desynchronized (without interrupting 
neural activity) fine olfactory discrimination is interrupted 
[35-36]. This empirical evidence links directly neuronal 
synchronization to pattern recognition. Here we suggest that 
synchronized systems (that presents the ability of switching 
between ON and OFF states), are responsible of the pattern 
recognition process by simply using a firing rate coding, and 
that this process is quick enough to explain the fast pattern 
recognition observed in the biological experiments [33-34].  

 In Fig. 6a we show a neural scheme where different 
synchronized neuron ensembles (G1, G2,,…,Gn) are 
configured to recognize the point in which the input stimuli 
x is near a reference activity a. Each neural ensemble 
inhibits the activity of an output neuron that is stimulated 
with an external signal 'b'. The output activity of each 
synchronized ensemble vanishes only when x=a, thus 
allowing the output neuron to reach its maximum activity 
(b). If the stimuli (x) is not in the neighborhood of a then all 
the ensembles (that are not synchronized between them) 
inhibits the activity of the output neuron. The result is a 
Gaussian-like response of the output with respect the input 
(see the measurements shown in Fig. 6b). Note the 
differences in signal fluctuation between this figure and Fig 
3 due to the difference in the neural network size (3 neurons 
vs. more than one hundred for the neural system used to 
generate Fig. 6b). The massive use of neural ensembles 
decrease the variability of the response as is shown in 
Fig.6b. The system response is quite fast since only three 

synaptic steps are involved in the process (thus being in 
accordance with the fast responses observed in real neural 
systems). The dispersion of the Gaussian function depends 
on the number of synchronized ensembles (the sigma value 
decreases as the number of ensembles increases). A 
measurement of the timing activity is shown in Fig. 7 where 
we represent the neural behavior before (input=0) and after 
(input=1) the sensed stimuli is within the desired range. A 
total of 32 neural ensembles are used in the experiment. 
Before the detection, the 32 ensembles present an 
appreciable activity and the output neuron is unable to 
switch. After the transition the ensembles activity 
practically vanishes and the output neuron immediately 
starts to fire about two time steps after the transition (just 
indicating the presence of the desired pattern). A time step 
represents the fastest neural oscillation period, therefore 
implying a recognition speed of the order of 20ms if the 
frequency of operation is of the order of 100Hz for real 
neural systems. This is in accordance with the in-vivo 
measurements [33-34]. 

The circuit of Fig.6a (adapted only for 1D signal and 
Gaussian discriminations) is easily generalized to higher 
dimensions and non-Gaussian patterns by superposing 
different Gaussian (kernels) functions.  

The circuit shown in Fig. 6 is only an example of how a 
classifier can be implemented by combining synchronized 
and desynchronized systems. Probably there are many other 
configurations that can implement a similar computation but 
the concept is that, pattern classifiers with a few synaptic 
connections and with a simple training methodology (in this 
case, external signals are used to configure the network) can 
be implemented by using synchronized neural ensembles. 
Note that in Fig. 6a the different neural ensembles are not 
synchronized between them since they must completely 
inhibit the output neuron (a pure synchronized system 
would fail in a complete inhibition of the output neuron 
when the stimuli are out of the desired range of detection). 
Therefore, the existence of chaotically-related neural 
ensembles is necessary for a proper parallelization of the 
pattern recognition process. 

IV. CONCLUSION 

Using a digital stochastic neural model we implemented 
different neural systems incorporating hundreds of neurons 
for its study under different conditions of synchrony. The 
measurements show that neurons are unique processing 
elements that are able to change its functionality drastically 
depending on the correlations among spike trains (see 
results shown in Fig. 3). Simple processes such as image 
convolution are perfectly implemented by pure chaotic 
systems. In addition, complex processes such as pattern 
recognition can be associated to the relationship between 
both synchronized and de-synchronized groups of neurons. 
Synchronized ensembles are able to “choose” between 
different states due to its non-linear behavior (see results of 
Fig.3a and Fig.3c). The un-correlation between the 
synchronized neural ensembles seems to improve the 
complex processes by parallelizing them (and thus speeding 

 
 

Fig. 7.  Evaluation of the time response of the pattern recognition 
system, a low number of synaptic transmissions is needed to 
recognize if the incoming signal is within the desired range. 
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up the process). As a consequence of that, it has been 
demonstrated that firing rate codes cannot be discarded to be 
involved in the pattern recognition process since the 
proposed mixed system (with both chaotic and ordered 
neural ensembles such as the one shown in Fig.6a) is able to 
recognize patterns using a low number of synaptic steps, 
thus explaining the fast pattern recognition process observed 
in the mammalian cortex.  
The experimental implementations are in accordance with 
different in-vivo experiments in which pattern 
discrimination is interrupted when neurons are 
pharmacologically desynchronized [35-36]. In this work we 
also show a biologically realistic stochastic neural model 
that can be implemented in hardware by using digital gates. 
The proposed implementation has the advantage of 
operating with a high speed of operation (in the 
measurements shown the circuit was operating at 50MHz 
although much higher frequencies can be achieved by 
current digital technologies). As is shown, these systems can 
be used to experiment with large neural systems composed 
by thousands of neurons. This is in contrast with other 
FPGA implementation [38] where only a maximum of 20 
Spiking Neurons can be implemented in a medium size 
FPGA.  
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