
Combining Technical Trading Rules Using Parallel Particle Swarm
Optimization based on Hadoop

Fei Wang, Philip L.H. Yu and David W. Cheung

Abstract— Technical trading rules have been utilized in the
stock markets to make profit for more than a century. However,
no single trading rule can ever be expected to predict the
stock price trend accurately. In fact, many investors and fund
managers make trading decisions by combining a bunch of
technical indicators. In this paper, we consider the complex
stock trading strategy, called Performance-based Reward Strat-
egy (PRS), proposed by [1]. Instead of combining two classes
of technical trading rules, we expand the scope to combine
the seven most popular classes of trading rules in financial
markets, resulting in a total of 1059 component trading rules.
Each component rule is assigned a starting weight and a
reward/penalty mechanism based on rules’ recent profit is
proposed to update their weights over time. To determine the
best parameter values of PRS, we employ an improved time
variant particle swarm optimization (TVPSO) algorithm with
the objective of maximizing the annual net profit generated by
PRS. Due to a large number of component rules and swarm
size, the optimization time is significant. A parallel PSO based
on Hadoop, an open source parallel programming model of
MapReduce, is employed to optimize PRS more efficiently. The
experimental results show that PRS outperforms all of the
component rules in the testing period.

I. INTRODUCTION

TECHNICAL trading rules are widely used in the fi-
nancial markets for more than a century as technical

analysis tools for security trading. Typically, they predict the
future price trend by analyzing historical price movement and
initiate buy/sell signals accordingly. Many empirical studies
(e.g. [2]-[8]) provided supporting evidence to the significant
profitability of various trading rules.

As commented by [9], no single trading rule can ever
be expected to predict the stock price trend accurately.
In fact, many trading decisions are made by combining a
bunch of technical indicators [8]. Recently, [1] proposed
a complex stock trading strategy, called Performance-based
Reward Strategy (PRS), which combines the two popular
classes of technical trading rules - Moving Average (MA) and
Trading Range Breakout (TRB). Their experiments showed
that PRS outperforms all of the component rules for trading
the constituent stocks of NASDAQ100.

In this paper, we expand the scope of PRS to consider com-
bining the seven most popular classes of technical trading
rules in financial markets: Moving Average (MA), Trading
Range Breakout (TRB), Bollinger Bands (BBs), Relative
Strength Index (RSI), Stochastic Oscillator (STO), Moving

Fei Wang and David W. Cheung are with the Department of Computer
Science, The University of Hong Kong, Pokfulam, Hong Kong (email:
{fwang, dcheung}@cs.hku.hk) and Philip L.H. Yu is with the Department
of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam
Road, Hong Kong (email: plhyu@hku.hk)

Average Convergence/Divergence (MACD) and On-Balance
Volume Average (OBVA). For each class of trading rules,
PRS includes various combinations of the rule parameters,
resulting in a universe of 1059 component trading rules in
all. All the parameters are chosen in order to represent a
wide coverage of the parameters for each rule class ([2],
[4]). Each component rule is assigned a starting weight
which indicates its significance in trading decision. And a
reward/penalty mechanism based on component rules’ recent
performance is proposed to update their weights over time.
The trading signal of PRS is determined by the weighted
sum of component rules’ signals and two additional signal
threshold parameters.

Together with component rules’ starting weights and other
five parameters of PRS (to be discussed later), there are
altogether 1064 parameters for PRS. The optimal PRS can
be determined by searching for the set of optimal parameter
values with the goal of making profit as high as possible.
Note that the traditional gradient-based optimization tech-
niques such as Newton’s method cannot be employed here as
the profit function is non-differentiable. One possible solution
is to use stochastic optimization algorithms such as genetic
algorithm (GA) and particle swarm optimization (PSO). In
our recent work [1], we employed an improved time variant
particle swarm optimization (TVPSO) algorithm [10] with
the objective of maximizing the annual net profit generated
by PRS. Due to a much larger number of component rules,
the optimization time used in TVPSO may become very long,
say several days. To address this problem, we propose an
efficient parallel PSO based on Hadoop (an open source
implementation of MapReduce, which is a programming
model proposed by Google for parallel computation [11]).
With the underlying advanced mechanism for inter-machine
communication, processors load balancing and fault toler-
ance of Hadoop, the proposed parallel PSO speeds up the
PRS optimization significantly. See [12]-[15] for more recent
development of PSO.

The rest of this paper is organized as follows: Section II
gives details of the proposed trading strategy PRS. Section III
briefly introduces PSO and describes how PRS is optimized
with PSO. Parallel PSO based on Hadoop is then given in
Section IV. Empirical results are presented and discussed in
Section V. Section VI concludes the paper.

II. PERFORMANCE-BASED REWARD STRATEGY

Table I shows seven classes of the simplest and most
popular stock trading rules in the literature. Given such a
complex and dynamic market, it is hopeless to have a single

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3987

TABLE I
COMPONENT RULES OF PRS

Simple trading rules Numbers
a

Moving Average (MA) 130
Trading Range Breakout (TRB) 20
Bollinger Bands (BBs) 220
Relative Strength Index (RSI) 90
Stochastic Oscillator (STO) 324
Moving Average Convergence/Divergence (MACD) 140
On-Balance Volume Average (OBVA) 135
All rules 1059
a

The total number of trading rules in that class by taking different
values of parameters.

trading rule which performs the best all of the time. We thus
consider a wide range of combinations of parameter values
for each class of trading rules so as to generate a universe
of 1059 component trading rules in PRS.

A. Signal Generation of PRS

In PRS, each component rule ri is assigned a starting
weight wi, which measures the influence of ri to the signal
generated by PRS. Consider a trading day t, each component
rule initiates a signal si,t which takes value 1, 0 and −1 if
the signal is ‘buy’, ‘null’ and ‘sell’, respectively. The signal
of PRS on trading day t is given by:

st =

1059∑
i=1

wisi,t (1)

where the sum of the all weights (
∑
wi) should be 1 so that

st is between −1 and 1.
Note that st summarizes all component rules’ prediction

on stock trend. If st is close to 1, this means most of
influential component rules suggest buy signals. On the
contrary, st nearing −1 means more influential rules suggest
sell signals. So we propose that PRS initiates a buy (sell)
signal if st is greater (smaller) than a positive (negative)
threshold, bth (sth); otherwise PRS does not initiate any
signal and investors do nothing on that day. Higher threshold
represents the strategy is more strict in buy or sell and lower
threshold represents a more tolerant strategy.

B. Reward and Penalty of Component Rules

Each component rule ri of PRS is associated with a
weight wi. It represents the influence of ri to the trading
decision making. However, these rules’ performance may
change during trading, especially over a long time period.
It is reasonable to reward a profitable component rule by
adding more weight to it and to penalize a non-profitable
component rule by deducting some weight from it, and these
weights should be updated regularly. As a result, two time
spans−memory span ms and review span rs, which are
introduced in the learning strategy (LS) in [7], are used
here. Memory span is a historical period used for evaluating
the rule performance. Review span is the time interval over
which the weights of component rules should be updated.
We set ms ≥ rs as suggested by [7].

Suppose on trading day t, we evaluate all rule’s perfor-
mance and update their weights accordingly. Let profiti
denotes the profit of rule ri from day t −ms to day t − 1.
For those non-profitable rules, we deduct their weights by a
constant:

wi = wi −
rf

N
, if profiti < 0 (2)

where N is the total number of component rules and rf is
a parameter called reward factor, controlling the amount of
reward. It is noted that wi should not be negative, so wi is
set to zero if it is below the weight threshold rf

N .
All weights deducted from the non-profitable rules are

summed to form a temporary variable W . Then we increase
the weight of those profitable rules by:

wi = wi +
W

N+
, if profiti > 0 (3)

where N+ is the number of profitable rules found in the
memory span.

Note that the sum of weights remains unchanged after
the penalty and reward. However, if most of the rules are
non-profitable and only a few rules are profitable, the above
reward/penalty approach may add too much weight to those
few profitable rules. Imagine that there are 100 rules in
which only one rule is profitable in memory span, the weight
increment of the only profitable rule is 99 times of the weight
decrement of any other rule. The reward may be too much,
especially when the rule is just profitable in a short period of
time. To avoid a huge reward, we replace Equation (2) with:

wi = wi −
(
rf

N

)(
N+

N

)
, if profiti < 0 (4)

where term N+

N guarantees that the penalty weight of any
non-profitable rule and the reward weight of any profitable
rule is capped at rfN . It is noted that when all rules are prof-
itable or all of them are non-profitable, our reward/penalty
mechanism would not be triggered as in the case there is no
need to reward or penalize any rule.

III. PARTICLE SWARM OPTIMIZATION FOR PRS

For PRS, there are 1059 starting weights (w1 to w1059),
two time spans (ms, rs), two thresholds (bth, sth), and a
reward factor (rf) to be determined, thus the search space
dimension for this optimization problem is 1064.

In the literature, Particle Swarm Optimization (PSO) is one
of the most popular optimization algorithms used to optimize
trading rules. It is a flexible, stochastic search algorithm
based on swarm intelligence, which was first introduced by
[16]. Since its inception, PSO has shown great success in
solving function optimization problems and has been widely
applied in a variety of engineering applications [17], [18].

PSO is motivated by the behavior of bird flocks in finding
food. PSO uses a swarm of particles to simulate these birds.
Each particle (bird) has a random initial position X and
velocity V , attempting to move towards the food (the solution
of the optimization). The position X of an particle is an

3988

1064-dimensional vector which represents a possible PRS
solution to the 1064-dimensional maximization problem,
where the objective (or fitness) function to be maximized
in this paper is the annual net profit (ANP) generated from
the PRS.

PSO searches the maximum fitness value by iteration. In
each iteration, PSO records the best position, pbest, for each
particle that has achieved so far, and the global best position,
gbest, that all the particles have achieved so far. At the end of
the kth iteration, PSO updates each particle’s velocity using
the following equation:

Vk+1 = λVk + c1r1(pbest−Xk) + c2r2(gbest−Xk) (5)

where λ is the inertia weight for the particle wondering in the
search space, c1 and c2 are the acceleration coefficients, and
r1, r2 are two random numbers in the range between 0 and 1
[19]. Note that the second term represents the self-cognition
of the past experience of a particle so that the particle tends
to move towards its past best position. Similarly, the third
term indicates that all particles have the social cognition to
the whole swarm and are attracted by the global best position.

After updating the velocity, each particle will move to a
new position according to:

Xk+1 = Xk + Vk+1. (6)

The particle movement will repeat iteratively until all par-
ticles converge to the optimal position or a termination
criterion is met.

Notice that in PSO, the trade-off between global explo-
ration and local exploitation of particles is the key important
factor to PSO’s performance [19]. Therefore, we considered a
refined time variant PSO based on the work of [20] and [10],
which linearly updates λ, c1 and c2 in Equation (5) over the
iterations in order to identify better searching results. More
details can be found in these two papers and [21].

IV. PARALLEL PSO OF PRS BASED ON HADOOP

As PRS requires evaluating the performance of many
component rules at regular intervals (review span), the
computation of fitness function could thus be very time
consuming. For a large swarm size, each iteration of PSO
might take half an hour and hence the optimization time for
just one trial could take several days. To resolve this problem,
an efficient parallel PSO based on Hadoop is proposed here.

Note that in each iteration of PSO, all particles update
their velocities using Equation (5) and move to new positions
by Equation (6). After that each particle evaluates the new
position’s fitness and updates its personal best pbest if
possible. Since each particle updates itself independently
of each other, this step can then be parallelized. The only
common information shared by the swarm is the global best
gbest. For any particle which moves to a better position
that has higher fitness value than the current gbest, its new
position may be the new gbest. The new gbest is calculated
from those new position with highest fitness value than the
current gbest, and the updated gbest needs to be sent to all
particles for next iteration’s particle updating.

Hadoop is an open source project for reliable, scalable and
portable distributed computing. It implements the MapRe-
duce for parallel computing. Since MapReduce is not de-
signed for iterative programs, a new MapReduce job thus
needs to be initialized for each PSO iteration’s calculation.
In each iteration, gbest is first calculated from those possible
candidates, then a separate map function invocation is used
to update each particle. All possible new global bests are
stored on the distributed file systems for next generation’s
calculation.

A. Representation of Particle and Gbest

A particle is represented as a key/value string pair. The
key is a numerical particle ID, and the value consists of
particle’s position (pos), velocity (vel) and fitness value,
pbest’s position and pbest’s fitness value. A particle is of
the form:
id : fitness; pos; vel; pbest.fitness; pbest.pos

The gbest has the following string form:
gbest.fitness; gbest.pos

B. Grouping Particles in Hadoop

Typically, one Hadoop job is distributed into a number of
map tasks and reduce tasks which can be handled concur-
rently. In a Hadoop cluster, one machine is assigned a role
as JobTracker, and all other machines are assigned as Task-
Tracker roles. A user job is submitted to the JobTracker and
each TaskTracker is assigned one or several tasks distributed
from the job. It is common that a single machine has multi-
processors, thus each TaskTracker can handle several tasks
with multi-processors concurrently in just one machine. In
Hadoop, a map task or reduce task is handled by one Mapper
or Reducer, respectively. Each Mapper or Reducer can invoke
map or reduce function many times.

At the beginning of parallel PSO, a large number of parti-
cles are randomly generated. Suppose there are m machines
in the computing cluster, and each machine has p available
processors. The initial particles are randomly but evenly
divided into (m− 1)× p groups. All groups can be handled
concurrently because there are m−1 TaskTrackers (machines
in cluster) and each TaskTracker can run p Mappers in
parallel. Particles belonging to the same group are stored
together in a single file, in which each particle is a line of
string. Assume there are g particles in a group. An example
of a particle group is like this:
id1 : fitness1; pos1; vel1; pbest1.fitness; pbest1.pos
id2 : fitness2; pos2; vel2; pbest2.fitness; pbest2.pos
......
idg : fitnessg; posg; velg; pbestg.fitness; pbestg.pos

Note that the initial position of a particle is also its initial
pbest position. These personal bests are candidates of the
global best. They are stored together in a single file in which
each pbest is a line. Suppose the swarm size is s, this file is
of the following form:
gbest1.fitness; gbest1.pos
gbest2.fitness; gbest2.pos
......
gbests.fitness; gbests.pos

3989

C. Mapper for PSO

A Mapper takes a particle group as input. Before it invokes
the map function to update particles, the Mapper reads all
gbest candidates from the distributed file systems and finds
the largest one as gbest of current iteration. In addition to
gbest calculation, a Mapper needs to load application data,
adjust the coefficients of PSO and some other application
related preprocessing tasks. Then each Mapper reads parti-
cles from a particle group and transfers them into individual
key/value pairs. For each key/value pair, the Mapper call the
map function to update particle’s velocity and position using
Equations (5) and (6), respectively. For each particle in the
group, the fitness of its new position is evaluated and its pbest
is updated if the new position has a higher fitness than pbest.
After all particles in this group are updated, they replace the
old particle group and are stored as the next iteration’s input.

In a particle group, if some of the particles move to
better positions with higher fitness than the current gbest,
the best one from these new positions is regarded as a gbest
candidate (c gbest) for the whole swarm. Therefore, each
particle group will generate zero or just one gbest candidate
and they are stored as the next iteration’s gbest candidates.
The only common information among particles is the gbest
and it is calculated by all Mappers at the beginning of each
PSO iteration. Therefore no Reducer is needed to collect the
updated swarm information produced by Mappers.

Note that in a typical parallel PSO based on MapReduce
(MRPSO), the reduce phase is in charge of the particles
collection and the gbest updating. In this study, the Mapper
is quite different from Mappers in MRPSO. In fact, the
Mapper’s first task t1 in nature is doing the gbest updating
and task t3 is the particles collection. Be aware that finding
the gbest from candidates many times concurrently takes the
same time as doing it just once, therefore t1 does not waste
time although it is processed by all Mappers repeatedly.
In addition, the updated particles and gbest candidates are
directly accessed as input and output of Mappers, thus no
intermediate data is generated. It significantly reduces the
I/O cost of intermediate data and communication between
Mappers and Reducers, especially when the data size is huge.
Since there is no reduce phase in our proposed parallel PSO,
we can call it Map-PSO (MPSO).

Figure 1 shows the overview of a single iteration of the
proposed parallel PSO based on Hadoop which consists of
the following execution steps:

(1) Preprocessing: at the beginning of a PSO iteration, n =
(m−1)p Mappers are initiated and each Mapper reads
one particle group as input.

(2) Task t1: Mappers read gbest candidates generated from
the previous iteration and calculate gbest. At this stage,
all Mappers do the same work.

(3) Task t2: Mappers begin to update particles (update
velocity and position, evaluate new position’s fitness)
in parallel.

(4) Task t3: Updated particles are written into distributed
file systems as the next iteration’s input.

group1

gbest

candidates

c_gbest1 c_gbesth

Mapper1
t2

…

K1 V1

Kg1 Vg1

grouph

…

Kh Vh

Kgh Vgh

groupn

…

Kn Vn

Kgn Vgn

Mapperh
t1. Calculate gbest from

gbest candidate

t2. Update particles

t3. Store updated particles

t4. Store c_gbest if necessary

… …

Mappern
t2

group’1
…

K1 V’1

Kg1 V’g1

t3

… …

group’h

…

Kh V’h

Kgh V’gh

group’n

…

Kn V’n

Kgn V’gn

t4

t3

t4

c_gbestn

t3
t4

t1 t1
t1

Fig. 1. Overview of a single iteration of parallel PSO based on Hadoop.

(5) Task t4: If any particle group generates c gbest, it
is written into distributed file systems as the next
iteration’s input.

V. APPLICATION FOR NASDAQ100

A. Data

The constituent stocks of NASDAQ100, which are the 100
largest domestic and international non-financial stocks of the
NASDAQ stock market, are considered in our study. The
daily stock prices (high, low and close prices) and volume
data from 1994 to 2010 are collected from Reuters 3000Xtra.
Because not all the stocks were issued before 1994, 52 stocks
having data throughout the whole period are considered in
our experiments. The data from 1995 to 2002 is used for
training the PRS and the data from 2003 to 2010 is used for
testing the profitability of the trained PRS. It is noted that for
some component rules such as Moving Average (MA) with
nl = 250, it needs data over the past 250 days to calculate
current day’s long-period moving average. Therefore, the
data in 1994 and 2002 are reserved for data preparation in
training and testing, respectively. It is assumed that all buy
and sell trades are occurred at the close prices.

B. Optimization Set-up

As the high dimension and complexity of PRS, the swarm
size is set to 420 and the number of iterations is set to 300.
An 8 nodes cluster is built for the parallelization of PSO. A
stable Hadoop version 0.20.2 is adopted as the MapReduce
system in this study. With 42 available working processors in
cluster, the parallel PSO can achieve a speedup of 23 (see the
speedup test later). Table II gives the search space boundary
of PRS optimization. In order to avoid the data snooping bias
to any component rule in the training period, the range of

3990

TABLE II
SEARCH SPACE BOUNDARY OF PRS PARAMETERS

PRS Parameters Boundary
αi (i = 1..1059)∗ [−1, 1]

ms [150, 300] trading days
rs [20, 150] trading days
rf [0, 1]
bth [0, 0.3]
sth [−0.3, 0]

∗wi =
eαi

Σeαi .

TABLE III
PERFORMANCE OF PRS AND THE SEVEN BEST COMPONENT RULES IN

THE TESTING PERIOD

Trading rules (parameters) ANP Sharpe Payoff NT Win%
PRS 21.8% 0.94 4.40 335 52.8%

MA (nl=150, ns=125) 18.8% 1.07 3.53 531 54.4%

TRB (n=125) 16.0% 1.05 5.84 276 52.2%

BBs (n=30, k=2.3) 18.6% 1.14 4.62 627 49.8%

RSI (n=13, ob=80, os=30) 9.0% 0.60 0.81 801 70.9%

STO (n=10, m=3, ob=90, os=20) 11.6% 0.76 0.74 1401 71.7%

MACD (nl=100, ns=40, m=15) 11.4% 0.82 2.75 1674 38.5%

OBVA (nl=75, ns=50) 10.7% 0.72 1.49 2157 53.7%

α is set as [−1, 1] so that the range of w is approximately
[0.0001, 0.007]. In this paper, short selling of stocks is not
allowed so that the equity is always positive, and for each
buy or sell trade, a transaction cost of 0.1% is considered.

C. Trading Performance

After training, the optimized PRS produced the ANP
of 32.9% in the training period. It has no doubt that it
outperformed all the component trading rules in the training
period (the best component in training is MA(250, 200)
which produced an ANP of 25.1%). To have a fair assessment
of PRS, we compare the optimized PRS with the best
seven component trading rules having the highest annual net
profit (ANP) in the testing period. In addition to ANP, two
more performance measurements – Sharpe ratio (Sharpe) and
payoff ratio (Payoff) – are considered in our comparison.
Sharpe ratio was proposed by [22] and measures the return
per unit of risk. Payoff ratio is simply the average profit of
winning trades divided by average loss of losing trades. It
is widely used by traders to compare the expected return to
the amount of capital at risk. The higher the Sharpe ratio and
payoff ratio, the better the trading rule. The results are shown
in Table III. The number of trades (NT) and the percentage of
profitable trades (Win%) for each trading rule in the testing
period are also given.

In Table III, the seven trading rules are the best Moving
Average, Trading Range Breakout, Bollinger Bands, Relative
Strength Index, Stochastic Oscillator, Moving Average Con-
vergence/Divergence and On-Balance Volume Average rules
having the largest ANP in the testing period, respectively.

TABLE IV
STOCK PROFIT SUMMARY OF PRS AND THE SEVEN BEST

COMPONENT RULES IN THE TESTING PERIOD

Trading rules Summary Profitable Non-profitable All stocks
(Parameters) stocks

a
stocks

a
(Profit ratio)

b

PRS No.Stocks
c

44 8 52(84.6%)
Net Profit 20.22 -0.27 19.95

MA No.Stocks 34 18 52(65.4%)
(150, 125) Net Profit 15.89 -0.45 15.44

TRB No.Stocks 41 11 52(78.8%)
(125) Net Profit 12.15 -0.25 11.90
BBs No.Stocks 39 13 52(75.0%)

(30, 2.3) Net Profit 15.44 -0.33 15.11
RSI No.Stocks 43 9 52(82.7%)

(13, 80, 30) Net Profit 5.40 -0.26 5.14
STO No.Stocks 46 6 52(88.5%)

(10, 3, 90, 20) Net Profit 7.47 -0.16 7.31
MACD No.Stocks 37 15 52(71.2%)

(100, 40, 15) Net Profit 7.51 -0.40 7.11
OBVA No.Stocks 38 14 52(73.1%)

(75, 50) Net Profit 6.75 -0.24 6.51
a

Profitable stock means the stock whose final equity is more than
its initial equity and vice versa.

b
Profit ratio = (number of profitable stocks) / (total number of
stocks).

c
No.Stocks is the number of stocks. Net Profit is in million
dollars.

The parameters of each trading rule are given in the paren-
theses. Among all simple trading rules, the MA (nl=150,
ns=125) is the highest profitable rules, and we can also
observe that the best MA, TRB and BBs are much better
than the best RSI, STO, MACD and OBVA in terms of
both profit and risk. It is also notable that RSI and STO
perform poorly even though their Win% are high. One reason
may be that they earn little in many winning trades but
lose too much in some losing trades. When compared with
simple trading rules, the annual net profit of PRS is much
higher than the best seven trading rules in the testing period.
However, the Sharpe ratio and payoff ratio of PRS are not
the best. This is mainly because PRS is optimized without
considering risk. Nevertheless, PRS can generally take the
advantage of combining component rules and make more
profit by scarifying a little bit more risk.

Table IV gives more details about the 52 stocks’ profits
(each stock is assigned an initial equity $100,000) of PRS
and the seven best component rules in the testing period.
The annual net profit (20.22 million) of profitable stocks
generated by PRS is higher than any of the seven rules.
Although the loss (−0.27 million) of nonprofitable stocks
generated by PRS is not the smallest (−0.16 million), it is
acceptable for trading especially when PRS earns a lot from
most of the stocks in the market (84.6% profit ratio). It shows
that PRS can generate significant profit (44 stocks with 20.22
million net profit) from those profitable stocks and recover
from those few nonprofitable stocks (8 stocks with −0.27
million loss).

D. Parallel PSO Set-up

To investigate the speedup of proposed parallel PSO based
on Hadoop, performance experiments are run on the China

3991

National Grid (CNGrid) point at the University of Hong
Kong. An 8 nodes cluster is setup for the parallelization
of PSO. A node is assigned as the master node and the
other 7 nodes are assigned as slave nodes. Each node has 16
Intel(R) Xeon(R) CPU (E5540@2.53GHz) and 16 Gigabytes
main memory. As the running of PRS evaluation needs a
large main memory size, we allow each slave node to run
6 Mappers simultaneously at most and each Mapper was
assigned 2 GB memory. Therefore, there are at most 42
processors running in parallel in the cluster. A stable Hadoop
version 0.20.2 is used and all programs are written in Java
programming language. For PSO, a swarm of 420 particles
is used for optimization, and these 420 particles are divided
into 42 particle groups evenly so that the 42 processors can
update all groups concurrently.

E. Running Time Estimation

From the experiments for single node PSO, an individual
PRS evaluation may take about 3 to 8 seconds (different
with the length of review span of PRS), and the average
is approximately 4 seconds. As Hadoop needs to initiate a
new job for each PSO iteration’s computation and all data
in memory will be lost after the old job is finished, there
are some preprocessing steps such as reading data for each
Mapper in a new iteration. The preprocessing may take about
6 seconds for each Mapper. However, serial PSO just needs
to do the preprocessing work once and store these necessary
data in the main memory for the following iteration. Serial
PSO can only update each particle one by one, it may take
about 1680 seconds to update 420 particles in one iteration.

For MRPSO, 42 Mappers are initiated at the beginning
of an iteration. Then all Mappers do preprocessing work in
parallel and the time is about 6 seconds. After preprocessing,
Mappers take single particle as input and update it. Once
the updating of a particle is done, the Mapper takes another
particle which is not updated to update it until all particles are
updated. Because all Mappers work concurrently, the running
time in map phase is given by:

timemap =
420(particles)× 4(seconds)

42(Mappers)
+ 6(seconds)

= 46(seconds)
(7)

The intermediate data created by Mappers are then passed to
Reducers for each particle’s gbest updating. The computation
load of Reducers (finding gbest from a small number of
possible gbest candidates) is very small and the running time
is less than 1 second.

As mentioned above, the MPSO divides particles into 42
groups and there are 10 particles in each particle group.
The Mapper updates particles in one group serially, thus
the average updating time for one particle group is 40
seconds. Remember there is no reduce phase in MPSO,
thus the preprocessing in Mapper includes the calculation
of gbest. However, it takes less than 1 second and hence the
preprocessing time is still estimated as 6 seconds. As a result,
the total running time for a Mapper to update 10 particles

is 46 seconds. Since there are 42 processors to run the 42
Mappers simultaneously and the running time is nearly the
same, one iteration may only take 46 seconds in MPSO,
which is the same as MRPSO.

The above estimation is based on the ideal circumstance
that the communication between nodes, the I/O cost and
the initialization of Mappers and Reducers are zero time
consuming. Therefore, the real running time must be longer
than the ideal case. It seems that MRPSO and MPSO spend
the same time for one PSO iteration’s updating, but it is
notable that MPSO does not emit intermediate data and there
is no communication between Mappers and Reducers as no
Reducers exists in MPSO. These advantages of MPSO may
help to save a lot of time in optimization.

F. Speed-Up Performance

Figure 2 shows the running time of MPSO, MRPSO and
serial PSO for one PSO iteration. The swarm size is 420 and
the dimension is 1064. The time is the average of times spent
for 10 iterations. The running time of serial PSO is 1671.5
seconds, which is very close to the ideal running time – 1680
seconds. However, the actual running times of MPSO and
MRPSO are 72.7 and 95.8 seconds, respectively. Although
both of them are larger than the ideal running time – 46
seconds, MPSO is better than MRPSO as expected. MPSO
saves 23.1 seconds when compared with MRPSO, which is
a 24 percent improvement. The speedup ratios of MPSO and
MRPSO in a 42 processors cluster are thus 22.99 and 17.45
respectively, indicating that MPSO has a better speedup ratio
than MRPSO.

72.7

95.8

1671.5

1

2

4

8

16

32

64

128

256

512

1024

2048

MPSO MRPSO Serial PSO

R
u

n
in

g
 t

im
e

/s
e

co
n

d
s

Fig. 2. Running time of one iteration (420 particles, 1064 dimensions)

The main improvements of MPSO can be summarized as
below:

1) No intermediate data are emitted by any Mapper. If
the intermediate data are too much to fit in memory,
they are first stored on the hard disk of local machine
and then fetched by Reducers. The I/O cost will be
significant if there are too much intermediate data.
Therefore MPSO reduces the I/O cost especially when
the PSO dimension is very high and hence too much
intermediate data are emitted.

3992

2) Less communication between nodes in the cluster. In
MRPSO, the intermediate data emitted by different
Mappers are passed to Reducers on different cluster
nodes, which may be very time consuming if the
intermediate data are too much. For MPSO, the gbest
candidates generated by Mappers are stored in the
distributed file systems, which means they are dis-
tributed on the cluster nodes. The loading of gbest
candidates in the preprocessing of Mappers will trigger
the data transfer between machines. However, there
are at most 42 gbest candidates after each iteration
and it is very fast to read them from the distributed
file systems. Consequently, MPSO reduce the inter-
machine communication in cluster.

3) Saving time in intermediate data’s sorting and the
initialization of Reducers. In Hadoop MapReduce, the
intermediate data are sorted before being passed to Re-
ducers. In addition, the startup of Mappers and Reduc-
ers need time as well. MPSO avoids time consuming
in intermediate data sorting and Reducers startup.

VI. CONCLUDING REMARKS

In this paper, a complex stock trading strategy, namely
performance-based reward strategy (PRS), is proposed for
stock trading. Unlike the previous complex trading strate-
gies, a comprehensive universe of simple trading rules are
taken as the components of PRS. Seven popular simple
trading rules: Moving Average, Bollinger Bands, Relative
Strength Index, Stochastic Oscillator, Moving Average Con-
vergence/Divergence and On-Balance Volume Average are
selected as the component rules of PRS. For each type
of simple trading rules, we take different parameter values
to get a number of various rules representing that rule
class’s performance in a wide range. Therefore there are
1059 component rules for PRS. The signal of individual
component rule is multiplied by a weight assigned to this rule
and the trading signal of PRS is determined by the weighted
sum of component rules’ signals. Considering the dynamic
stock market, a reward/penalty mechanism is proposed to
update component rules’ weights over time. All component
rules are evaluated at a regular time interval, then a good
rule is rewarded by increasing its weight and a bad rule is
penalized by deducting some weight from it.

To decide the best set of starting weights of component
rules and some other parameters of PRS, a time variant
Particle Swarm Optimization (TVPSO) is used to optimize
PRS. The optimization of PRS is a very time consuming
job since it involves a large number of component rules
and training data. In this regard, the TVPSO is parallelized
with Hadoop based on an open source implementation of
MapReduce to speedup the optimization. Unlike the typical
MapReduce PSO, the proposed parallel PSO with Hadoop
lets the Mappers to access particles directly from distributed
file systems and calculate gbest without initiating any Reduc-
ers. It significantly cuts down the I/O cost as no intermediate
data is created and reduces the data transfer among cluster
nodes. The experimental results show that the proposed

parallel PSO has better speedup ratio than MRPSO and it
indeed saves a lot of time for the optimization of PRS.

The empirical results demonstrate that our proposed MPRS
has very good profitability in the testing period. The annual
net profit generated by PRS is higher than all the component
rules. Regardless of the performance fluctuation of the com-
ponent rules, PRS is able to learn good rules from them and
outperforms all of them.

In this paper, the optimization of PRS is done in terms of
the annual net profit. However, the risk is another important
consideration in stock trading and it is often required to
strike a balance between return and risk in investment. Some
previous works have optimized trading rules in terms of
a risk-adjusted return measure. Therefore, it is worth to
optimize PRS based on some risk-adjusted measures and
to test its performance in the out-of-sample data set. This
interesting work will be studied in the future.

APPENDIX: PARAMETER VALUES OF PRS COMPONENT
RULES

A. Moving Average (MA)
In MA, there are two averages of stock prices over two moving

windows of nl days and ns days as follows:

Avgt,nl =
1

nl

t∑
i=t−nl+1

pi, Avgt,ns =
1

ns

t∑
i=t−ns+1

pi

where nl > ns, t is the current trading day and pi is the close
stock price on day i.

The signal generation of MA is simple. Consider a trading day
t, MA initiates buy (sell) signal if the short-period moving average
Avgt,ns is above (below) the long-period moving average Avgt,nl.
The two parameters of MA are set as: nl = 15, 20, 25, 30, 40, 50,
75, 100, 125, 150, 175, 200, 250; ns = 1, 2, 5, 10, 15, 20, 25, 30,
40, 50, 75, 100, 125, 150, 175, 200.

B. Trading Range Breakout (TRB)
Trading Range Breakout is also called Channel Breakout. It

calculates the highest and lowest close price of past n days as
follows:

Ht,n = max(pt−1, pt−2, ..., pt−n), Lt,n = min(pt−1, pt−2, ..., pt−n).

The highest and lowest prices form a running channel (trading
range) for each day’s stock price and the trading signals are invoked
by the stock price’s breakout from the channel. A buy signal is
generated when pt > Ht,n and a sell signal is generated when
pt < Lt,n, otherwise a null signal is generated. The only parameter
of TRB is set as: n = 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70,
75, 80, 90, 100, 125, 150, 175, 200, 250.

C. Bollinger Bands (BBs)
Bollinger Bands is a volatility indicator that considers the fluc-

tuations of stock prices. For trading day t, BBs calculates an n-day
moving average of past close prices Avgt,n, which is the middle
band. An upper band and lower band are k times standard deviation
above and below from the middle band, respectively. The upper
and lower bands form a price channel. Essentially, a buy signal is
generated when the close price fall below the lower band, and a sell
signal is generated when the close price is above the upper band,
otherwise a null signal is generated. The parameters of BBs are set
as: n = 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100,
125, 150, 175, 200, 250; k = 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,
2.3, 2.4, 2.5.

3993

D. Relative Strength Index (RSI)

The Relative Strength Index is a very popular over-
sold/overbought indicator which measures the velocity and mag-
nitude of directional price movements. An n-day RSI of a trading
day t is calculated as follows:

RSI = 100− 100

1 +Avg.U/Avg.D

where Avg.U is the average of all up price moves and Avg.D
is the average of all down price moves in an n-day period. Note
that RSI oscillates between 0 and 100. There are many different
ways to generate trading signals from RSI. Typically, a trading rule
based on RSI emits a buy signal when RSI rises back above the
oversold threshold os, and a sell signal when RSI falls back below
the overbought threshold ob. The parameters of RSI are set as: n =
11, 12, 13, 14, 15, 16, 17, 18, 19, 20; ob = 80, 75, 70; os = 20,
25, 30.

E. Stochastic Oscillator (STO)

The Stochastic Oscillator is another momentum indicator which
is also very popular with traders. The calculation of STO involves
the high, low and close prices in an n-day look-back period. The
STO on trading day t is given as follows:

STO = 100

(
pt − plowest

phighest − plowest

)
where plowest and phihgest are the lowest low and highest high
prices in the look-back period, respectively. Similar to RSI, STO is
between 0 and 100.

The STO is usually smoothed with a m-day moving average to
form the fast %K. The fast %K is then smoothed with another m-
day moving average to form the fast %D. Various kinds of signal
generation methods are proposed and used in practice. Typical
method includes an oversold and overbought thresholds. Buy signal
is generated when fast %D line is below the oversold threshold os
and accompanied with that the fast %K line rises above the fast
%D line. Sell signal is generated when fast %D line is above the
overbought threshold ob and accompanied with that the fast %K
line falls below the fast %D line. The four parameters of STO are
set as: n = 5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 200, 250; m
= 3, 7, 11; ob = 80, 85, 90; os = 10, 15, 20.

F. Moving Average Convergence/Divergence (MACD)

The MACD indicator is a combination of two exponential
moving average (EMA) of close price. An n-day EMA on day
t is calculated as follows:

E.Avgt,n = αpt + (1− α)E.Avgt−1,n with α =
2

1 + n
.

Similar to MA, there are a long-period exponential moving
average E.Avgt,nl and a short-period exponential moving aver-
age E.Avgt,ns. The MACD is the difference between these two
exponential moving averages, which is given by:

MACD = E.Avgt,ns − E.Avgt,nl

Another m-day EMA of the MACD which is called the MACD
signal, is calculated for the signal generation. A buy signal is
emitted when the MACD line crosses above the MACD signal
line from the below, and a sell signal is emitted when the MACD
line crosses below the MACD signal line from the above. The
parameters of MACD are set as: nl = 20, 25, 30, 40, 50, 100;
ns = 5, 10, 15, 20, 30, 40; m = 7, 9, 11, 13, 15.

G. On-Balance Volume Average (OBVA)
As a volume based trading rule, OBVA is the same as MA except

that it calculates MA with stock volume instead of stock price.
Although the two parameters of OBVA are the same as MA, their
values are a little bit different: nl = 5, 10, 15, 20, 25, 30, 40, 50,
75, 100, 125, 150, 175, 200, 250; ns = 1, 2, 5, 10, 15, 20, 25, 30,
40, 50, 75, 100, 125, 150, 175, 200.

REFERENCES

[1] F. Wang, P.L.H. Yu, and D.W. Cheung, Combining technical trading
rules using particle swarm optimization, Expert Systems with Applica-
tions, vol. 41, pp. 3016-3026, 2014.

[2] W. Brock, J. Lakonishok and B. LeBaron, Simple technical trading
rules and the stochastic properties of stock returns. Journal of Finance,
pp. 1731-1764, 1992.

[3] R. Gencay, The predictability of security returns with simple technical
trading rules. Journal of Empirical Finance, vol. 5, pp. 347-359, 1998.

[4] R. Sullivan, A. Timmermann and H. White, Data-snooping, technical
trading rule performance, and the bootstrap. Journal of Finance, pp.
1647-1691, 1999.

[5] L. Kestner, Quantitative Trading Strategies: Harnessing the power of
quantitative techniques to create a winning trading program, McGraw-
Hill Professional, 2003.

[6] M. Austin, G. Bates, M. Dempster, V. Leemans and S. Williams,
Adaptive systems for foreign exchange trading. Quantitative Finance,
vol. 4, pp. 37-45, 2004.

[7] P. Hsu and C. Kuan, Reexamining the profitability of technical analysis
with data snooping checks. Journal of Financial Econometrics, vol. 3,
pp. 606-628, 2005.

[8] R. Pardo, The Evaluation and Optimization of Trading Strategies,
Wiley, 2008.

[9] M. Pring, Technical analysis explained: the successful investors guide
to spotting investment trends and turning points, McGraw-Hill, 1991.

[10] A. Ratnaweera, S. Halgamuge and H. Watson, Self-organizing hi-
erarchical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Transactions on Evolutionary Computation, 8(3),
pp. 240-255, 2004.

[11] J. Dean and S. Ghemawat, MapReduce: Simplified data processing on
large clusters. Communications of the ACM vol. 51, 107-113, 2008.

[12] M. Panella and G. Martinelli, Neurofuzzy networks with nonlinear
quantum learning, IEEE Transactions on Fuzzy Systems, vol. 17, no.
3, pp. 698-710, Jun. 2009.

[13] R.E. Precup, R.C. David, E.M. Petriu, S. Preitl and M.B. Radac,
Novel adaptive gravitational search algorithm for fuzzy controlled
servo systems, IEEE Transactions on Industrial Informatics, vol. 8,
no. 4, pp. 791-800, Nov. 2012.

[14] M.Z. Ali, K. Alkhatib and Y. Tashtoush, Cultural algorithms: Emerging
social structures for the solution of complex optimization problems,
International Journal of Artificial Intelligence, vol. 11, no. A13, pp.
20-42, Oct. 2013.

[15] S.K. Saha, S.P. Ghoshal, R. Kar and D. Mandal, Cat swarm opti-
mization algorithm for optimal linear phase FIR filter design, ISA
Transactions, vol. 52, no. 6, pp. 781-794, Nov. 2013.

[16] J. Kennedy and R. Eberhart, Particle swarm optimization. In Proceed-
ings of the Proceedings of IEEE International Conference on Neural
Networks, Piscataway, NJ, vol. 4, pp. 1942-1948, 1995.

[17] J. Robinson and Y. Rahmat-Samii, Particle swarm optimization in
electromagnetics. IEEE Transactions on Antennas and Propagation,
vol. 52, pp. 397-407, 2004.

[18] A. Briza and P. Naval Jr, Stock trading system based on the multi-
objective particle swarm optimization of technical indicators on end-
of-day market data. Applied Soft Computing, vol. 11, 1191-1201, 2011.

[19] Y. Shi and R. Eberhart, A Modified Particle Swarm Optimizer. In
Proceedings of 1998 IEEE International Conference on Evolutionary
Computation, vol. 1, pp. 69-73, 1998.

[20] Y. Shi and R. Eberhart, Empirical study of particle swarm optimization.
In Proceedings of 1999 IEEE International Conference on Evolution-
ary Computation, vol. 3, pp. 101-106, 1999.

[21] A. Banks, J. Vincent and C. Anyakoha, A review of particle swarm
optimization. Part I: background and development. Natural Computing,
vol. 6, pp. 467-484, 2007.

[22] W. Sharpe, Mutual fund performance. Journal of Business, pp. 119-
138, 1966.

3994

