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Abstract— Echo State Networks (ESNs) were introduced to
simplify the design and training of Recurrent Neural Net-
works (RNNs), by explicitly subdividing the recurrent part
of the network, the reservoir, from the non-recurrent part. A
standard practice in this context is the random initialization
of the reservoir, subject to few loose constraints. Although
this results in a simple-to-solve optimization problem, it is in
general suboptimal, and several additional criteria have been
devised to improve its design. In this paper we provide an
effective algorithm for removing redundant connections inside
the reservoir during training. The algorithm is based on the
correlation of the states of the nodes, hence it depends only on
the input signal, it is efficient to implement, and it is also local.
By applying it, we can obtain an optimally sparse reservoir in
a robust way. We present the performance of our algorithm on
two synthetic datasets, which show its effectiveness in terms of
better generalization and lower computational complexity of the
resulting ESN. This behavior is also investigated for increasing
levels of memory and non-linearity required by the task.

I. INTRODUCTION

RESERVOIR Computing (RC) is a well-established
paradigm for designing and training recurrent neural

networks (RNNs) [1]. It unifies the guiding principles of
earlier models such as Echo State Networks (ESNs) proposed
in 2001 by Jaeger [2] and Liquid State Machines (LSMs)
proposed in the same year by Maass et al. [3]. The key
idea is to consider the overall network as composed of two
components: a recurrent reservoir and a static readout. The
reservoir is driven by the input signal to generate a rich set of
dynamic features, while the readout is trained using standard
machine learning methods on top of the features extracted
from the reservoir.

Since the two parts perform a different role, their design
can vary dramatically. In ESNs, in particular, the reservoir
is generally built from standard non-linear neurons, whose
connectivity is randomly created at the beginning of the
training process in the form of an N×N matrix W ∈ RN×N ,
where N is the size of the reservoir itself. The readout is then
constructed as a linear layer trained using ridge regression
(in the batch version) or linear adaptive filters (in the online
case). To ensure stability, the reservoir has to satisfy the echo
state property, i.e., the effect of an input on the state of the
reservoir should vanish after a certain amount of time [1].
In this case, it is said that the network has a fading memory.
Although there are several criteria for ensuring this property,
the most common is to rescale W such that its spectral
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radius ρ(W)1 is less than unity. Jaeger [2] introduced this
as an heuristic criterion, and showed it to be necessary
when using specific non-linearities in the reservoir neurons
in the case of zero input2. The spectral radius has in fact a
fundamental role in determining the dynamic regime of the
network [4], balancing between the memory capacity allowed
to the reservoir and the level of non-linearity introduced in
its computations.

The random initialization of the reservoir is at the hearth
of the success of ESNs, since it transforms the complex task
of training an RNN into a much simpler linear regression.
Jaeger identified a “good” reservoir as having, in addition to
the random connectivity, (i) a large size and (ii) sparsity of
the connections [1]. Informally, this last property translates
into a range of dynamical features as diversified as possible,
hence reducing redundancy and possibly improving gener-
alization of the system. Jaeger proposed to achieve sparsity
by choosing a degree of connectivity d, and subsequently
generating only d percent of the connections inside the
reservoir. However, choosing an optimal d introduces an
additional parameter into the design of the ESN, which
already involves several other conflicting factors. Moreover,
the random choice of the connections to be generated does
not result in general in a significant amount of improvement.
These factors probably explain the wide diffusion of consid-
ering fully-connected reservoirs, e.g. in [6], [7].

Separately from this, it is also clear that the random
initialization of the weights is sub-optimal in the context
of solving a specific problem, as detailed in the following
quote of Lukoevicius and Jaeger [1]: “it seems obvious that,
when addressing a specific modeling task, a specific reservoir
design that is adapted to the task will lead to better results
than a naive random creation”. For this reason, a wide range
of additional strategies have been devised to improve over it,
both supervised and unsupervised (for a review up to 2009,
see [1, Section 5]).

In this paper we are interested in addressing both problems
by investigating a relatively unexplored area in ESN liter-
ature: online pruning of the reservoir’s connections during
training. The efficacy of pruning on large RNNs is known
since the seminal work of [8], and from the previous discus-
sion an automatic pruning criterion in the context of ESNs
would have the following advantages: (i) it would allow to
obtain optimally sparse reservoir without having to specify

1The spectral radius of a matrix A is defined as ρ(A) = maxi(|λi|),
where λi are the eigenvalues of A.

2Recent works have derived more formal bounds involving the spectral
radius itself, see [5].
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the sparsity factor a priori; (ii) this in turn would decrease
the computational cost of updating the reservoir, which is
fundamental for hardware implementations [9]; (iii) it would
help in generalizing better and obtaining less redundant
features, since the pruning process can also be guided by
the actual input signal. Additionally, pruning has also an
interesting biological foundation investigated under the field
of neuroplasticity [10]. In fact, in the human brain, synapses
grow at a constant rate until a peak is reached around the age
of 2-3 years, and are subsequently removed until their density
stabilizes in adulthood [10]. Although seemingly wasteful,
this process is part of an essential trade-off between the
required plasticity and the energy requirements of the brain
during its development. Under a very broad metaphor, we
can say that an ESN with full connectivity and randomly
generated synapses is still in its “infancy”. In this sense, it
would be beneficial to develop simple and computationally
efficient strategies for deleting the least useful connections
in an online manner, as is happening in the brain itself. In
fact, some of the earliest approaches to pruning of a fully
connected RNN originated from a biological analogy [11].

Up to now, the only work that has dealt explicitly with
the idea of pruning in ESNs is the research by Dutoit et al.
[12], that limited their investigation to the pruning of links
from the reservoir to the readout. This has the advantage
of transforming the problem into the well-studied task of
sparsification of a linear model, for which very efficient
algorithms are known [13]. Moreover, the sparsification has
also a clear theoretical justification in that it is known to
have a regularizing effect on the solution3. Pruning inside
the reservoir, although potentially more beneficial due to the
typical size of reservoirs, is instead more subtle. In particular,
two problems arise. Firstly, setting to zero an entry of a
matrix can increase its spectral radius (we show a simple
example in Section IV). Hence, this can potentially destroy
the echo state property4. Additionally, the dynamical nature
of the reservoir makes sensitivity analysis based on error
propagation and on gradient calculation hard, as is the case
in standard RNN training.

Since the main aim of this paper is detailing a working
algorithm, a theoretical analysis of the former point goes
beyond its scope. Nonetheless, for completeness we present a
brief discussion of it in Section IV, by considering a random
deletion of synapses from a reservoir. Although our reasoning
leads us to expect, in average, a decrease in spectral radius,
our experiments show that a realistic pruning criterion can
have a more complex behavior and can result in an automatic
selection of the spectral radius itself. We expect to present
an analysis of this point in a future work.

In Section III we propose our pruning strategy, which
does not require Hebbian plasticity of the weights, nor the
computation of the error gradients. In particular, we define

3Butcher et al. have investigated similar ideas [14], although in relation
to a customized architecture built on an ESN.

4For the interested reader, we note that the interplay between a network’s
dynamical regime and synaptic pruning has been partly explored in the
context of random neural networks [15].
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Fig. 1. Schema of the ESN used in our work. Fixed and trainable
connections are represented with dashed and solid lines respectively.

the significance of a synapse, and thus its relative importance,
in terms of the correlation between the states of its input
and output neurons. At fixed intervals we perform a pruning
operation, where each synapse has a probability of being
removed which is inversely proportional to its significance.
Since we require that this probability is decreasing over time,
to define it we adopt a strategy very similar to the one
used in the standard Simulated Annealing algorithm [16].
The probability evolution over time follows an exponential
profile, whose exponent is guaranteed to decrease by the
inclusion of an additional parameter, known as temperature.
Its specification allows the user to have full control over
the pruning profile, although retaining a simple modality of
configuration, as we show in our experiments.

The other Sections of the paper are organized as follows.
We present the basic notation of the ESN used in our work in
Section II. After detailing our pruning strategy, we perform
a large set of simulations in Section V. A first experiment in
Section V-A shows the efficacy of the algorithm, along with
its simplicity in configuration. The second set of experiments
in Section V-B investigate its behavior for increasing levels of
memory and non-linearity required by the task. We conclude
with some final remarks in Section VI.

NOTATION

In the rest of the paper, we adopt the following con-
ventions. Vectors and matrices are denoted by boldface
letters, which are in lowercase and uppercase respectively.
All vectors are column vectors. The notation ai denotes the
i-th element of vector a, and Aij denotes the element in the
i-th row and j-th column of matrix A. Finally, a(n) denotes
the value of a time-dependent vector at time-instant n.

II. ECHO STATE NETWORKS

We detail here the notation for a basic form of ESN, whose
schematic representation is shown in Fig. 1. We denote by
M the dimensionality of the input vector, by N the number
of neurons in the reservoir, and by P the dimensionality of
the desired output vector. At time n the reservoir is fed with
input u(n) and its state is updated according to:

x(n) = f(Wr
rx(n− 1) +Wr

iu(n)) (1)
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where Wr
r is the N ×N matrix connecting the reservoir to

itself, Wr
i is the N ×M matrix connecting the input to the

reservoir, and f(·) is the activation function of the neurons
inside the reservoir. Both matrices are randomly generated
and then rescaled according to the design requirements. Typi-
cally, Wr

r is rescaled so that its spectral radius ρ(Wr
r) is less

than unity. Note that a bias is easily considered by inserting a
constant unitary input in addition to u(n). Moreover, several
forms of additional memory can be embedded in equation
(1), as detailed in [17]. The output of the network is then
given by:

y(n) = g(Wo
rx(n) +Wo

iu(n)) (2)

where Wo
r is the P ×N matrix connecting the reservoir to

the output, Wo
i the P ×M matrix connecting the input to

the output layer, and g(·) is the output activation function
(considered as the identity function in our work, hence
g(s) = s). Equations (1) and (2) can be extended to take
into consideration additional connections, such as output-to-
reservoir or feedback connections from the output.

The connections to the reservoir are randomly generated,
hence the only free parameters to learn are in the matrices
Wo

r and Wo
i . Suppose the network is fed with an input

sequence of length S {u(1), . . . ,u(S)}, and produces the
states {x(1), . . . ,x(S)}. Denote by Y = [d(1), . . . ,d(S)]
the concatenation of all the desired outputs, by s(n) the
“extended” state s(n) =

[
u(n)T x(n)T

]T
and by A the

concatenation of all such states A = [s(1), . . . , s(S)]. The
weight matrix of minimum error and minimum norm is then
given by:

Wopt = A†Y (3)

where (·)† denotes the operation of pseudo-inverting a ma-
trix, and Wopt is the concatenation of the optimals Wo

i and
Wo

r . Equation (3) can also be augmented by a regularization
term or, as in our case, computed online using a linear
adaptive filter [18]. First-order filters such as the Least Mean-
Square are found in practice to have a poor performance,
particularly in terms of convergence speed [1], due to the
eigenvalue spread of the cross-correlation matrix of the states
x(n). For this, second-order algorithms such as the Recursive
Least-Square (RLS) are generally used. For completeness,
we detail the RLS algorithm used in our experiments in the
appendix.

We conclude this section with two final remarks. First,
we note that the initial values produced by the network in a
sequence are sometimes discarded due to their transient state,
and are denoted as dropout elements. Secondly, multiple
sequences in input can be easily handled by concatenating
the resulting matrices.

Algorithm 1: Pseudo-code for a single update step of
the pruned ESN, using the exponential cooling profile
and the online update with RLS.
Data: Input signal x(n), desired output d(n).
Compute new state of ESN with Eq. (1)
Update significance in Eq. (4)
if (n/Q)− 1 = 0 then

Compute probabilities pij according to Eq. (5)
Prune each synapse with probability pij

end
Apply RLS update step

III. PRUNING BY NODE CORRELATION

In this section we detail a simple pruning strategy that
does not require the computation of the error gradients5.
It can be seen as an “hard thresholded” version of the
standard Hebbian rule, and it is also loosely inspired to some
biologically existing processes in the brain [10]. The main
idea of Hebbian learning is that each connection in a neural
network, a synapse, has a relative importance depending on
how strongly correlated are the states of its corresponding
neurons. This correlation can be easily computed in real-
time, and it is used in Hebbian rules to adapt the synapse’s
weights. In our case, we define the significance of a synapse
at time instant n, and thus its importance, as:

sij(n) =
1

T

n∑
z=n−T

(xi(z − 1)− µ̂x)(xj(z)− µ̂x)

σ̂2
x

(4)

where T is a time-interval chosen a priori, and µ̂x and σ̂x are
the empirical estimations of the mean and standard deviation
of the neuron states. For simplicity, we suppose these two
quantities to be equal for all neurons. Relaxing this constraint
did not provide significant increases in performance in our
simulations. Eq. (4) is similar in spirit to the classical Pearson
correlation coefficient used in statistics for defining the level
of linear correlation between random variables. We use
sij(n) to define a probability that a synapse is removed as:

pij(n) = exp

{
−|sij(n)|

t(n)

}
(5)

where t(·) is a positive, monotonically decreasing function
of n, to take into account the fact that the probability of
removing a synapse should be maximal in the beginning of
learning (what is called a critical phase in RNN literature
[19]) and decreases afterwards. Since this is inspired from
the Simulated Annealing algorithm [16], we adopt the cor-
responding terminology and call t(n) the temperature of the
system. Every Q time instants, we prune each synapse with a

5In the following, we restrict ourselves to the deletion of redundant con-
nections inside the reservoir, although everything we say extends naturally
to the pruning of other connections in the network, such as input-to-reservoir
links.
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probability given by (5). In our experiments, the exponential
profile for t(n) worked very well:

t(n) = α(n/Q)−1t0 (6)

where t0 is the initial temperature, to be chosen a priori, and
α is called the scaling factor. Concretely, the temperature
is scaled by a factor α at every “pruning step”, given by
(n/Q) − 1. Using this profile, it is intuitively clear that the
scaling factor α will balance between number of connections
and final testing accuracy. In particular, we expect a sufficient
amount of pruning leading to better generalization, and
an excessive amount of pruning leading to a deterioration
of the performance. We note that many other choices are
possible for the cooling strategy [20]. The pseudocode for a
single update step of the ESN with our pruning algorithm is
summarized in Algorithm 1.

Our strategy is partly task-dependent, in that it depends
on the input elements of the sequence, although not directly
on the output values (since we do not consider in this
work feedback connections from the output layer)6. In the
classification of [1], it can be considered as an “unsupervised
local method”. This property is important since the reservoir
can in some situations be shared between multiple tasks.
Moreover, it allows its use with both batch and online
learning algorithms (as the ones described in Section II).
However, since the strategy is online in nature, in our
experiments we always preferred an online algorithm for
training, although very similar results can be obtained in the
former case. We also note that our pruning algorithm does
not change the computational complexity of training an ESN,
since the summation term in Eq. (4) can be computed for all
synapses with a single outer product.

IV. PRUNING AND THE ECHO STATE PROPERTY

Pruning a single connection in the reservoir is equivalent
to setting to zero an entry in Wr

r . This setting has already
been partly explored in the context of spectral graph theory
[21]. Differently from it, however, the reservoir’s matrix is
not required to be non-negative, hence this operation can
potentially increase its spectral radius. In some specific sit-
uations, this can be shown to disrupt the echo state property
[1], [5]. As a simple example, consider the 2×2 matrix given
by:

A =

[
1 1
1 −1

]
which has ρ(A) =

√
2. Deleting the element A22 leads to a

new matrix A′ with increased spectral radius ρ(A′) = 1+
√
5

2 .
Still, we should expect that a series of pruning operations

on the reservoir leads, in average, to a decrease of its spectral
radius. To understand this, consider the following informal
reasoning. The sequence of pruning operations defines a
sequence of matrices converging to the zero matrix 0 (the

6Although the actual output can influence the choice of the scaling factor,
which in turn influences the final number of connections.
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Fig. 2. Average behaviour of the spectral radius under pruning.

one in which all connections have been removed). Since
ρ(0) = 0, by the continuity of the spectral radius with respect
to the matrix weights, and since we are generating matrices
that are less and less dense, we expect the spectral radius
of the series can decrease in average, despite each pruning
operation has a probability of increasing it.

To check this intuition, we performed the following exper-
iment. We generated a 100× 100 matrix with weights taken
from a normal Gaussian distribution, and scaled it so that its
spectral radius matches a desired value, as it is a standard
practice in ESN initialization. Then, we iteratively set to 0
a randomly chosen element of the matrix, until 10% of the
connections were removed. The results of this experiment,
averaged over 100 runs, are presented in Fig. 2 for 4 different
initial spectral radii. The decreasing trend of the spectral
radius is clearly visible for each initial choice. Hence, in
practice there only exists a slight probability that the network
looses stability after a random pruning operation whenever it
is started very close to the so-called “edge of stability” [1],
the boundary between stable and unstable regime.

However, as we show in Section V-B, the actual behavior
of a pruning algorithm as the one we detailed in Section III
can be more complex. In particular, in some situations in
our experiments the spectral radius increases after removing
a given number of connections, and it stabilizes close to
unity. We expect to present in a future work the theoretical
aspects that connect the spectral radius of the matrix with
the evolution of the pruning process. Although the reservoir
never lost stability in our experiments, at this point we cannot
present a formal result for ensuring it, neither in the random
case nor in the case of our specific algorithm, unless tracking
the spectral radius in the initial stages of pruning. Note that
this stability problem is partially avoided if we drop the
constraint on online learning, since in this case it is possible
to check the final spectral radius simply prior to the final
training process.

V. EXPERIMENTAL RESULTS

A. 10-th Order NARMA series

We start by comparing an unpruned ESN with a pruned
version on the classical 10-th order NARMA system shown

1208



TABLE I
EXPERIMENTAL RESULTS FOR THE 10-TH ORDER NARMA SERIES

(MEAN AND STANDARD DEVIATION).

Architecture MSE

Standard ESN 0.00179± 0.0001

Pruned ESN 0.00177± 0.0001

in [18]. Despite our pruning procedure does not results in
a significant decrease in error in this case, we decided to
include it in this section because it represents a standard
experiment in this context, and it allows us to investigate the
general behavior of the algorithm, which was found consis-
tent on all the other experiments we performed. The next
subsection will then show how the algorithm can eventually
enhance (even in a significant way) the performance of the
network. Following the original setup, we used a reservoir of
100 elements with tanh(·) nonlinearities in the nodes. The
input-to-reservoir matrix is initialized with full connectivity
and weights extracted uniformly from the set {−0.1, 0.1}.
The reservoir weights are extracted from a normal Gaussian
distribution, and then Wr

r is rescaled to have a spectral
radius of 0.9. A standard RLS filter is used for training with
forgetting factor 0.995. Some additional Gaussian noise with
variance 0.001 is injected into the state update to ensure
numerical stability [18]. Using these settings, we found
that the RLS has an equivalent performance with respect
to a regularized offline training using ridge regression. We
generated 20 sequences of 1500 elements each, and tested the
system using a 10-fold cross validation over the sequences
(i.e., each training fold contains 18 sequences). We prune
the network every 100 time instants, and for simplicity we
set T = Q = 100. The parameter α in (6) is found by
performing an additional 3-fold cross validation over the
training sequences on the following range: [0.1, . . . , 0.9],
while the initial temperature is fixed at t0 = 0.3. This last
choice has a relatively small influence on the results, and very
similar performance were found for other values of t0, and
other sizes of the reservoir. The mean squared error averaged
over the folds is shown in Table I, along with ±1 standard
deviation.

As hinted previously, we see that the introduction of the
pruning operation does not affect performance, although it
does not improve it either in this experiment. However, we
will use it to show some characteristics of his behavior. First
of all, we note that the resulting reservoirs using pruning
can be significantly smaller in terms of connections than the
original version, which is a highly desirable characteristic
for computational requirements and possible hardware im-
plementations. In Fig. 3 we show the decrease in the number
of connections, averaged over the 10 folds. We see that, with
respect to the full reservoir, we are able to prune more than
half of the original connections (the average final number
of connections being ≈ 4800). The trend in Fig. 3 reflects
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Fig. 3. Evolution of the reservoir density after each pruning operation.
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Fig. 4. Validation error for each choice of the scaling factor.

closely the choice of the temperature function, with a high
number of connections deleted in the first iteration, a fewer
number deleted in the following iterations, and a stabilization
around iteration 6, i.e., around time instant n = 600, when
the temperature is very close to 0. Moreover, the pruning
operation introduces only a small perturbation in the spectral
radius of the final network, which was found to be around
0.87. This behavior is expected since the original value of
0.9 was already close to an optimum [18].

Next, we are interested in showing that the algorithm is
robust to the choice of the temperature configuration. In Fig.
4 we plotted the average validation error obtained for each
value of α considered in the inner cross-validation. The red
lines denote the final error obtained by the ESN, with an
interval of ±0.0001 shown with dashed lines. We see that the
error is practically constant in this interval, for values of α
ranging from 0.1 to 0.6. Then, the error starts to increase for
α > 0.6. Probably, when the temperature is not decreasing
fast enough, the algorithm is pruning also a large number
of useful connections. However, there is a wide range of
configurations of the scaling factor that results in the same
testing error, providing a good robustness to the user’s choice.

Regarding the number of connections, we show in Fig. 5
their final number in the reservoir. The numbers are averaged
over the same validation folds and choices of the scaling
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Fig. 5. Resulting number of connections for each choice of the scaling
factor.

factor considered in Fig. 4. Moreover, we also plotted a
quadratic interpolation of the points, shown with a dashed
black line. As we were expecting, the final number of
connections is a monotonically decreasing function of the
scaling factor.

B. Extended Polynomial

In the second set of experiments, our aim was to show
that our pruning algorithm can additionally enhance the
generalization capabilities of the network. Moreover, we
wanted to investigate how the requirements of the task, in
terms of both memory and non-linearity, affects the pruning
operation, and vice-versa. To this end, we use the extended
polynomial detailed in [7]. The input to the system consists
in one random number extracted from a uniform distribution
over [−1,+1]. The output is then defined as:

y(n) =

p∑
i=0

p−i∑
j=0

ciju
i(n)uj(n− d) (7)

where the coefficients cij are randomly distributed over the
same distribution as the input data, and the two parameters
p and d control the requirements of the task. In particular,
increasing p has an effect on the order of the polynomial,
hence augmenting the resulting non-linearity. Conversely,
increasing d results in polynomial with higher delays, and
thus higher memory requirements. We choose a reservoir
similar to the one of Section V-A, but we increased the
reservoir’s size to N = 250. After some tests, we also
increased the forgetting factor of the RLS to 0.998.

Following [7], we start by increasing the power of the
polynomial from 1 to 9 by steps of 2, keeping fixed the
delay at d = 1. The cooling factor α is not validated in this
experiment, but is fixed at α = 0.95, which was found to be
an effective value for all the configurations. The MSEs of
the pruned and unpruned ESNs are shown in Fig. 6. We see
that the pruned version has a sustained gain in accuracy, and
the gap remains constant for all configurations of the original
polynomial. Thus, the pruning algorithm seems robust to an
increase in the non-linearity implicit in the task.
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Fig. 6. MSE of the networks for increasing non-linearity of the task.
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Fig. 7. MSE of the networks for increasing memory of the task.

Subsequently, we investigated the performance when in-
creasing the delay of the polynomial from 1 to 9, keeping
fixed the power at p = 1. By cross-validating, we saw that
the best value for the scaling factor α was to be lowered
to 0.3 for d > 3. In Fig. 7 we see the resulting MSEs
of the networks, with a trend which closely follows that
of the previous experiment, hence confirming the usefulness
of the approach also for increasing levels of memory. It is
interesting to observe that pruning had to be lowered for high
levels of long-term memory of the reservoir, a finding which
is very similar to the one detailed in [12].

Finally, the third set of experiments involved increasing
simultaneously the power and the delay of the polynomial.
In this case, α was set to 0.3 for d = p > 3 and subsequently
lowered to 0.2 for d = p = 9. The results of the experiment,
which are in line with the previous, are shown in Fig. 8.

The final number of connections for every reservoir con-
sidered thus far is shown in Fig. 9, where we show as a
reference the original number of connections with a dashed
black line. We see that the actual setting of p, d does not
influence the final size, which is normal since our method
does not depend explicitly on the desired output. The pruning
strategy is extremely useful in removing synapses in all the
situations, deleting more than 90% of their initial number
whenever the scale factor is set to 0.95. Even in the worst
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Fig. 8. MSE of the networks for increasing non-linearity and memory of
the task.
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case (α = 0.2 for p, d = 9), the final number of connections
is ≈ 50% of the original one. Hence, our method seems
highly robust in the case of different levels of non-linearity,
while less pruning is required when increasing the long-term
memory requested to the network.

An interesting final point is to compare our pruning
strategy with random pruning of the reservoir during ini-
tialization. In Fig. 10 we show the error obtained by the
random pruning strategy in the case that was found most
favorable to it, i.e. p = 5, d = 1. We see that, in the best
setting, with random pruning we are able to prune only 60%
of the reservoir’s connections, whilst there is a significant
gap in performance with respect to our pruning strategy
(denoted as “correlation-based” in Fig. 10). Moreover, as
we analyzed in the previous section, the behavior of our
strategy is more consistent when varying its parameters,
while random pruning performance deteriorates rapidly when
changing the sparsification factor.

C. Effect on the Spectral Radius

Before concluding the experimental section, we observe
that our algorithm can result in a complex behavior with
respect to the evolution of the spectral radius, which is
not necessarily a decrease as is expected with a random
deletion of the synapses. As an example, let us consider the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Sparsification Factor [%]

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

 

 

Random Sparsification

Correlation−based Sparsification

Fig. 10. Comparison between random pruning and our pruning strategy,
in the setting most favorable to random pruning.
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Fig. 11. Evolution of the spectral radius. We show the average over the
different folds, together with the individual evolution over two representative
folds.

experiment using the extended polynomial with d = p = 1.
In Fig. 11 we plot the mean evolution of the spectral radius
(the dashed blue line), averaged over the testing folds, along
with the evolution in two particulars folds. The folds were
chosen since they represented the most “extremes” behaviors.

We can see that, although the average evolution is toward
a decrease of the original spectral radius, with an extreme
of a final ρ = 0.2 in fold 2, in rarer cases we can witness
an increase, as in fold 5 where the spectral radius assessed
itself slightly lower than 1. Moreover, we can see that for
a set of iterations the network had a spectral radius greater
than unity [1]. This automatic tuning of the spectral radius
is an interesting phenomenon which has been observed in
several other supervised design strategies for reservoirs [6],
that we plan to study in more detail in future works on the
subject.

VI. CONCLUSION

In this paper we presented an algorithm for deleting
connections in a randomly generated reservoir of an Echo
State Network (ESN). The resulting ESN has always higher
or comparable performance, but a smaller density of con-
nections, resulting in lower computational and hardware
requirements. We are currently working on combining our
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pruning strategy with other existing approaches, such as
those described in [6] and [12]. Moreover, we are interested
in developing additional criteria, possibly leading to the
direct pruning of neurons, or which are based on small
neighborhoods of each synapse. Finally, we aim at proving
some strict criteria to ensure the echo state property, and to
fully automate the final pruning process.
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APPENDIX
RECURSIVE LEAST-SQUARE ALGORITHM

At time instant n, denote by s(n) the extended state
s(n) =

[
u(n)T x(n)T

]T
, by y(n) the desired scalar output

(the extension to multi-valued output being straightforward),
and by W(n− 1) the current, available value of the output
weights. The error is computed as:

e(n) = y(n)−W(n− 1)s(n)

Denoting by λ the forgetting factor of the filter, a gain vector
is computed as:

g(n) = P(n− 1)s(n)
{
λ+ sT (n)P(n− 1)s(n)

}−1
where P(n − 1) is an approximation of the inverse of the
cross-correlation of the input, and is updated as:

P(n) = λ−1P(n− 1)− g(n)sT (n)λ−1P(n− 1)

Finally, the weights are updated according to:

W(n) = W(n− 1) + e(n)g(n)
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