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Abstract—Within micro grid scenarios, optimal energy man-
agement represents an important paradigm to improve the grid
efficiency while lowering its burden. While usually real time
energy management is considered, an offline approach can be
also adopted to maximize the grid efficiency in certain contexts.
Indeed, by evaluating the energy management performance ac-
cording to the user needs, it is possible to asses which technologies
allow the overall system to operate at its best, given the expected
load level.

From this perspective, a computational framework based on
the “Mixed-Integer Linear Programming” paradigm has been
proposed in this paper as a tool to simulate the micro grid
behaviour in terms of energy consumption and in dependence
on the technology of choice. By modelling the energy production
and storage means, the pool of electricity tasks, and the thermal
behaviour of the building, suitable energy management policies
for the micro grid scenario under study can be developed
and tested in different operating conditions and time horizons.
Moreover, the forecasting paradigm has been integrated into the
framework to deal with data uncertainty, and a Neural Network
approach has been employed on purpose.

Performed computer simulations, related to a six-apartments
building scenario, have proven that the suggested framework
can fruitfully be adopted to assess the effectiveness of different
technical solutions in terms of overall energy cost, thus supporting
the decisional process occurring during the micro grid design.

I. INTRODUCTION

Smart grid technology has been conceived as the basis for
next generation power distribution infrastructures, aiming to
overcome the limits of present day power grids [1], [2]. A
large scale integration of the required technologies [3] can be
overly complex. Because of the utmost importance of electrical
energy availability, in fact, a gradual turnover is necessary. In
response to this, the small scale of the micro grid paradigm
has resulted in a more viable alternative [4]–[6].

Clearly, to integrate energy production and storage in
residential environments, an optimization scheme is required
[7]. In these regards, diverse Computational Intelligence ap-
proaches, such as Particle Swarm Optimization (PSO) [8],
Genetic Algorithms (GA) [9], Artificial Neural Networks [10]–
[12], Fuzzy Logic [13], Adaptive Dynamic Programming [14]–
[16], have proven to be effective in many case studies.

When dealing with highly constrained problems, tech-
niques as Linear Programming [17], Mixed Integer Linear
Programming (MILP) [18], [19] and Mixed Integer Non Linear
Programming (MINLP) [20] allowed to achieve performing
results. With the adoption of these techniques, the attempt

to integrate different technologies and energy resource man-
agement, taking the data uncertainty into account [21], [22]
and the thermal comfort of the users as well, appeared to be
feasible and effective.

Moreover, while the micro grid paradigm may provide the
means to lower the burden on the main grid [23], [24], it
may also support the technology turnover in the next future.
Nonetheless, the design of the micro grid still remain an open
problem [25]–[27]. A relevant aspect to study is represented by
the comparative evaluation of proper technologies for energy
generation and storage, taking the user needs and habits into
account as well as the adoption of smart energy management
policies for optimal usage of available resources.

To face this issue, a computational framework, originally
developed to manage the available resources [28] in a resi-
dential scenario, has been revised to simulate the environment
behaviour at an high abstraction level. As such, it is possible
to evaluate the performance of a micro grid, also from a
design perspective. In fact, by simulating the task execution,
the energy management and the scheduling of either tasks
and resources, an highly accurate analysis of the micro grid
performance becomes possible, thus revealing the less apparent
design flaws, and representing a major asset in the design of
Net Zero Energy Buildings [29], [30].

To evaluate the approach presented in this work, a
retrofitting problem has been modelled. It consists in the
evaluation of different technological solutions, aiming at the
improvement of the energy efficiency of an existing building.
Differently from the previous work [28], a more articulated
micro grid scenario has been considered, and thus a complex of
six apartments has been used as target. Micro Combined Heat
and Power (micro CHP) generation has also been modelled,
and included among the technologies under test. The data un-
certainty issue has also been addressed, and a neural networks
based data forecaster has been included into the framework:
solar irradiation and thermal load profiles are produced as
result of the forecasting activity. More complex micro grid
topologies will be addressed in future works.

The outline follows. The problem of a simulation based
design is presented in Section II, whereas in Section III the data
forecast problem is addressed. In Section IV the scheduling
algorithm is detailed, whereas in Section V the case study is
described and the obtained results discussed. Section VI draws
the work conclusions.
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II. MICRO GRID ENVIRONMENT: SIMULATION BASED
DESIGN

The main strength of a micro grid is the ability to improve
the eco-friendliness of the residential environment, leading to
a lower energy cost from the user point of view, and to a lower
burden from the main power grid point of view. Although
different definitions of micro grid seem to coexist nowadays,
they share a few common traits that have been addressed in
the present work. Micro grids, in fact, are intended as small
scale grids, including local energy production and storage, a
limited number of building or users, and a semi autonomous
energy management system.

At the core of the grid, in fact, a task and energy resource
manager, is typically responsible for the management of the
task execution and the thermal comfort of the user. For
instance, the accurate scheduling of the energy consumption
enables the energy demand management. In fact, the adaptation
of the load to the availability of renewable energy allows to
lower the amount of energy to be purchased or, eventually, the
storage discharge. The adaptation, also, could be based on the
energy price. A dynamic tariff scheme might lower the cost
while leaving the purchased amount of energy unchanged.

Concerning the thermal demand of the building, on the
other hand, the thermal task scheduling might present some
limitations. In fact, since thermal storage has not been ac-
counted in this case, an actual demand manipulation is not
really possible. Nonetheless, depending on the heating tech-
nology of choice, thermal production may affect either elec-
trical production or consumption. For instance, micro CHP
generation typically provides electrical energy as the resulting
by-product of the heat production process. Conversely, an heat
pump leads to an additional energy demand contribution.

Although a resource manager may improve the residential
environment efficiency, electrical energy production and stor-
age, along with thermal energy production have to be properly
balanced and tailored to meet the user needs. Otherwise the
improvement margin may be low. In this perspective, whenever
an existing building has to be retrofitted with both energy
production and storage, eventually paired with a matching ther-
mal production system, both the user needs and the retrofitted
building performance are to be accounted, meaning that a
thorough analysis might be necessary.

In order to create an automated tool, that simplifies the
data computation, and that provides a better insight into energy
management for both the electrical and thermal kind, a task
energy and resource scheduling framework has been revised.
For instance, while the aforementioned framework has been
conceived to compute the optimal task execution schedule, it
also returns the details concerning the hourly energy demand,
management and cost. The revised framework can include
an arbitrary task execution schedule, along with the standard
inputs, thus simulating the energy management within a micro
grid, and providing a detailed summary of the residential
environment behaviour.

To verify the tool usefulness, a real life building has
been monitored, thus collecting the information concerning
electrical and thermal energy demands. With the collected
information as a reference, the behaviour of the residential

environment has been simulated, and several retrofitting set-
ups have been compared. Among the set-up of interest, the
presence and absence of electrical energy production and
storage have been evaluated. In addition, alternative heating
means such as gas boiler, micro CHP and heat pump have been
considered. To complete the portrait, even task scheduling and
data uncertainty have been included.

It has to be noted that, although in this case an existing
building has been monitored, the same process can be applied
even if the residential environment of interest has to be con-
structed yet. As shown in [28], the building thermal losses can
modelled quite accurately, by means of the European standards
[31]–[33]. A fairly accurate esteem of the user electrical needs
may be obtained, on the other hand, by evaluating the energy
demand of the household appliances, and modelling the typical
daily activity of the user.

III. DATA FORECASTING

The simulation of the residential environment required not
only the information concerning the electrical and thermal
demand of the building, but also the information concerning
the electrical energy production. On purpose, the available
dataset has been integrated with the profiles of solar irra-
diation, and outdoor temperature, retrieved by means of the
local meteorological station, which is part of the Regional
Meteorological-Hydrological Information System1.

An additional set of profiles has been obtained through data
forecasting based on Neural Networks, and used to evaluate the
effect of data uncertainty on system performance. Two Multi
Layer Perceptrons (MLPs) yield the day ahead predictions
of solar irradiance and thermal demand, respectively. The
forecasters share a similar structure. The MLP predicting the
solar irradiance has had 73 neurons in the input layer, 36
and 24 in the hidden and output ones, respectively. The MLP
predicting the thermal needs has had 73 neurons in the input
layer, 45 in the input one, and 24 in the output layer. In
both cases, the hyperbolic tangent has been used as activation
function in both the hidden and output layers. Since a day
ahead prediction approach has been adopted, 24 samples have
been generated from the samples of the previous day. All
data have been normalized and mapped into the range [-1,
1]. The chosen performance function is the Mean Absolute
Error (MAE), whereas the gradient descent with momentum
and adaptive learning rate has been used for training. The
number of validation checks has been fixed equal to 500, and
the number of epochs has been increased accordingly.

The input is made of 3 subsets, of 24 samples each, per-
taining outdoor temperature, thermal load and solar irradiance.
An index representing the day of the year and coded through
the minus cosine function completes the input set. The training
has been carried out by means of a dataset that spanning over
two years, 2011 and 2012, specifically, whereas the testing
set spans over the first ten month of 2013. Since the output
data is composed of 24 distinct values, one for each hour of
the day, recurring prediction and error propagation have been
avoided. The Neural Networks toolbox, part of the MathWorks
MatLab2 2012a framework, has provided the environment to

1http://84.38.48.145/sol/info.php?lang=en
2http://www.mathworks.com
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create, train and use the aforementioned MLP. Future efforts
will be oriented to minimize the network sensitivity to weight
initialization and input/output data normalization.

IV. TASK AND ENERGY RESOURCE SCHEDULING

Task and energy scheduling is aimed to select an optimal
schedule, and to keep the building overall energy demand to
the minimum, while meeting the user needs. The hourly energy
demand is expressed in terms of hourly energy cost, to account
the pricing scheme applied by the provider.

If the optimal schedule is required, the framework com-
putes energy production, storage, consumption, purchase and
sale that correspond to the minimum cost, and then the optimal
schedule is returned. Nevertheless, an arbitrary schedule can
be also assigned to the framework, along with the input. In this
case the algorithm searches for the energy production, storage,
consumption, purchase and sale that correspond to the given
schedule and input, and returns the subsequent energy cost.

In the first operational mode then, the task and energy
scheduling is carried out. In the second operational mode,
conversely, the simulation of the task execution and energy
management occurs.

Both operational modes have been jointly employed to
assess in which way the data uncertainty affects the energy
management. In this case, the scheduling process has been
carried out first with forecast data as input. The simulation
process has been carried out thereafter with historical data as
input, along with the schedule obtained in the previous step.
The simulated energy allocation and the corresponding energy
cost characterize the energy management in sub-optimal con-
ditions.

The monetary balance of the energy demand of the building
is expressed as follows:

Q =

slots∑
t=1

{[
houses∑
j=1

tasks∑
i=1

(
Ej,itbj,i,t

)
+
(
Ec

t − Ed
t

)
+

−Ere
t − Egas

t + Eso
t + Ehe

t

]
Ct − Eso

t Sprice
t + Cgas

t

}
(1)

tbj,i,t is the task binary variable that has defined the activity
state (ON/OFF) of the i-th task of j-th building during the t-th
time slot. The variable Ej,i represents the energy demand of
the i-th task of j-th building in each time slot. The sum over
i and j index return the total energy demand of the assigned
tasks at the t-th time slot. The amount

(
Ec

t − Ed
t

)
represents

the energy transferred to or from the storage at the t-th time
slot. The amount Ere

t is the renewable energy production,
whereas Egas

t accounts the micro CHP energy production, if
the micro CHP is used. The variable Eso

t , accounts the sold
energy amount and Ehe

t denotes the heater electrical energy
demand, if the heat pump is used. Thus, the quantity within
brackets accounts the net energy demand at each time slot. In
conclusion, since Ct represents the energy purchase price, the
amount Eso

t Sprice
t represents the sold energy revenue, whereas

Cgas
t is the cost of non-renewable energy resources, each at

the t-th time slot. The amount within braces denotes the total
energy cost minus the total energy income, at each time slot,
that is the energy balance at the t-th time slot.

Such a monetary balance is complemented by the con-
straints binding together the unknowns of the equation. For
instance, all the constraints already presented in [28] remains
unchanged, with the only exception of the set referred to as
“energy constraints”, which presents the Egas

t addendum, as
follows:

0 ≤
houses∑
j=1

tasks∑
i=1

(
Ej,itbj,i,t

)
+
(
Ec

t − Ed
t

)
+

−Ere
t −E

gas
t + Eso

t + Ehe
t ≤ PMAX

t

t : 1 ≤ t ≤ slots . (2)

V. MICRO GRID CASE STUDY EVALUATION

To evaluate the suggested task scheduling framework as
a design and evaluation tool, a real life scenario has been
monitored, and modelled, by means of collected data also used
as a reference. The aim has been the evaluation of the energy
demand of the building, and the assessment of the performance
enhancement, over both energy demand and user cost, achieved
by different technological configurations.

With respect to the previous work [28], in order to better
portrait a micro grid environment, a complex of six apartments
has been considered. In addition, micro CHP generation has
been also included in the evaluation process. Although the pro-
posed scenario may not be particularly complex, the evaluation
process can be easily extended to more variegated micro grid
structures.

The simulation has been carried out by means of the Math-
Works MatLab 2012a environment. The MILP solver, namely
GLPK, has been employed by means of the Opti Toolbox 2.05
interface [34]. The MatLab environment is hosted on a Laptop
PC, based on the Intel Core i7 CPU series, with 8GB of RAM,
and running on the Microsoft Windows 8 64-bit OS.

A. Operating Assumptions

As mentioned above, the present work is aimed at assessing
how, and to what extent, a computational framework for energy
management, like the one here described, can contribute to
the micro grid design procedure, being aware that other issues
play an important role in such a procedure (i.e., the purchase
cost of each technological solution, the maintenance cost, the
user habits in interacting with them and so on) which are not
included within the framework itself.

In this perspective, then, some operating assumptions have
been made. Since the selection of a technological set-up
depends on subjective needs and tastes, the comparison among
different set-ups is not aimed to find an absolute best. Also, the
variety of technical means available nowadays is too vast to be
covered in the current manuscript in its entirety, thus, without
loss of generality, only a restricted pool of technologies has
been considered.

On the other hand, it is clear that a comprehensive analysis
of simulation results, also from the perspective of data uncer-
tainty impact, should cover an extended time frame. However,
if the simulation of the micro grid behaviour is presented over
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an entire year for instance, the analysis of the results would
require a proper statistical characterization. An approach like
this, although more appropriate from a theoretical point of
view, has been deemed not really useful to the understanding of
the suggested evaluation scheme, at this stage of development.
Thus in order to ease the reader comprehension of the different
aspects of the proposed methods, without loss of generality, the
simulation has been intentionally restricted to a single day.

B. Simulation Scenario set-up

The actual building is located in Montecarotto, near Jesi
(AN). As said, the structure hosts six apartments that share
a centralized heating system. The monitoring system records
several parameters concerning the building. Among the col-
lected data, the pieces of information of interest are mainly the
electrical energy demand of the apartments, and the thermal
production of the entire building.

The energy consumption, at each hour, is presented in Fig.
1, for each of the six apartments. In each plot, each stem with a
dot on top has been used to represent the actual consumption,
whereas the stems with a circle on top have been used to
represent the model counterpart.
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Fig. 1. Electrical needs: real and model profiles

The thermal demand is presented in Fig. 2, to report the
entire requirement of the building, at each hour, assuming that
a single thermal generator has been used.

To satisfy the thermal demand different configurations have
been evaluated:

• a gas heater: electrical neutrality case,

• a micro CHP generator: additional electrical produc-
tion,
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Fig. 2. Thermal needs: historical and forecast profiles

• a heat pump: additional electrical consumption.

Concerning the gas heater, a 90% efficiency has been
considered. Regarding the micro CHP, the thermal efficiency is
assumed to be 50%, whereas the electrical efficiency amounts
to 35%. Concerning the heat pump, a coefficient of perfor-
mance (COP) equal to 3.4 has been considered, while its input
power amounts to 4kW.

A photovoltaic plant is also included, and related solar
irradiation data, for one single day, are presented in Fig. 3.

 0  6 12 18 24
0

100

200

300

400

500

Solar Irradiation Profiles

Time (hh)

In
c
id

e
n

t 
e

n
e

rg
y
 (

W
h

/m
2
)

 

 

predicted

historical

Fig. 3. Solar irradiation: historical and forecast profiles

In the current scenario, a photovoltaic panel of 20 square
meters and 20% efficiency, has been deemed sufficient to
satisfy the electrical needs of the building. Also, a storage
system with 5kWh capacity and 2kW power has been assumed
sufficient to cover most of the system needs.

Concerning the electrical energy rates, being the current
model based on an Italian scenario, a two-tiered energy tariff
scheme has been used. During the peak hours, from 8am
to 7pm a gross unitary price of 0.21e per kWh has been
assumed. During the off-peak hours a gross unitary price rated
0.15e per kWh has been used. The gross selling price, on the
other hand, has been rated 0.095e per kWh.

Concerning the gas rate, a tariff of about 0.62e per
standard cube meter has been assumed. Also the conversion
factor from standard cube meter to kWh has been assumed
equal to 10.7. The data have been provided by the Regulatory
Authority for Electricity and Gas (Aeeg) 3.

Notably, for the sake of simplicity, a yearly average has
been used to define the actual energy rates, and the corre-
sponding values have been reported.

3Aeeg homesite: http://www.autorita.energia.it/it/inglese/index.htm

1698



C. Results evaluation

By means of the proposed computational framework, on the
other hand, it is possible to esteem, not only the actual demand
peak, but also its occurrence within the day, as presented in Fig.
4, and even to evaluate the number of occurrences for different
demand levels, as suggested by the histogram in Fig.5.
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Fig. 4. Task load: hourly purchase
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Fig. 5. Task load: demand level occurrences

The occurrences of each consumption levels, in particular,
may be used, to size the nominal power of the solar energy
plant and storage.

Also, by simulating the task execution, the expected energy
cost has been computed. The cost of the energy required to
execute only the tasks has amounted to 3.30e. Conversely,
when a gas boiler is also included, the total cost rise to 8.60e.

When a micro CHP generator is used, in place of a simple
boiler, the additional electrical energy sustains the internal
demand, thus reducing the amount of energy acquired from
the grid (Fig. 6). In addition the electricity surplus is sold to
the grid (Fig. 7), reducing the overall cost to the user while
providing the required heat. For instance, in this case, the total
cost to the user amounts to 6.00e.

As a mean of comparison, when an heat pump is used
instead, the energy demand of the building has been aggra-
vated. Nonetheless, since the energy cost amounts to 6.50e,
cost wise the performance of the heat pump is close to the one
of a micro CHP.

The next evaluation phase has been carried out by including
the energy local production and storage in the system.

In this case, the energy cost required by the task execution,
without thermal demand, drops to 1.74e whereas, when a gas
boiler is also included, the total cost has amounted to 7.08e.
In fact, the joint benefit of local energy production and storage
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Fig. 6. Task load with chp: hourly purchase
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Fig. 7. Task load with chp: sold energy

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

500

1000

1500

2000

2500

3000

3500

Time (hh)

E
n

e
rg

y
 L

e
v
e

l 
(W

h
)

Per Slot Acquired Electricity

Fig. 8. Task load with hp: hourly purchase

is able to lower the purchased amount of energy, as revealed in
Figs. 9 and 10. As a result, the cost shows little to no increase
during peak hours, when the energy price is high (Fig. 11).
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Fig. 9. Task load with solar production and storage: hourly purchase

When a micro CHP generator is included, the system
becomes much independent from the grid. In this case the
combined production of the solar plant and the micro CHP, has
been enough to cover the entire electrical demand, at the point
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Fig. 10. Task load with solar production and storage: hourly storage level
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Fig. 11. Task load with solar production and storage: hourly cost expressed
in euro (e)

that energy sales occurred at almost every hour, as presented in
Fig. 12. No energy is acquired from the grid, nor the storage is
discharged. Thus, the total cost of the energy resources, which
amounts to 5.00e , is entirely due to the fuel.

This specific configuration also exemplifies a case of design
with unexpected dynamics. Although the electrical energy
storage, the solar power plant and the micro CHP have been
tailored to satisfy the user needs, thus accounting the maximum
demand of the user, their interaction has resulted in energy over
production. As a consequence, the energy storage has become
unnecessary, meaning that, in a real life environment, there will
be no additional benefit to compensate for the extra costs and
the extra energy consumption. In addition, the over reliance
on micro CHP fuel, with a fixed price, has limited the benefits
of energy consumption management.
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Fig. 12. Task load with solar production, storage and micro CHP: hourly
energy sale

Conversely, when a heat pump is used, independence from
the grid cannot be achieved, as revealed in Fig. 13. In this
case, nonetheless, the energy storage proves to be particularly

effective (Fig. 14). Although no energy is sold to the grid, the
cost of the energy acquired from the grid has amounted to
4.74e, thus further improving the saving, even with respect to
the micro CHP case.

The comparison of the micro CHP case and the heat pump
case, therefore, suggests that resource neutrality guarantees
enhanced efficiency and savings. If the energy surplus is used
locally, the purchase of unnecessary resource is avoided. From
a budgetary perspective, since energy resources have an high
purchase price and a low selling price, better saving can be
achieved. Also, from the efficiency point of view, since the
less energy is transferred through the grid in both direction,
there are lower transportation losses and costs.
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Fig. 13. Task load with solar production, storage and heat pump: hourly
energy purchase
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Fig. 14. Task load with solar production, storage and heat pump: hourly
storage level

Although the benefit provided by energy production from
renewable energy sources is greatly improved by the presence
of energy storage, additional improvement can be achieved, by
means of a proper task scheduling, which can be considered
complementary to the energy storage. The selection of the
execution time is left to the scheduler in this case. In particular,
for the execution time of each task, a time shift equal to ±1
hour, with respect to original schedule, is allowed.

The energy demand of the execution of the tasks, without
thermal demand satisfaction, is further lowered to 1.51e from
1.74. A similar improvement is achieved when a gas boiler is
used to satisfy the thermal demand, with a cost of 6.86e while
originally equal to 7.08e . Not surprisingly, when the micro
CHP is used, no further improvement is achieved, given the
energy surplus, thus proving the design limits of this specific
configuration. On the other hand, when an heat pump is used,
a further reduction is obtained in the electricity cost, leading
to 4.52e bill.
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Certainly, in the current scenario, pertaining the task
scheduling, the improvement margin is limited by the reduced
shift allowed to the execution time. Also, the effect of an
almost fixed price, which is based on a two tiered tariff, is
evident. By comparing Figs. 14 and 15, it is possible to observe
that the improvement has been achieved by delaying the energy
purchase till off peak hour. The purchase delay, clearly, is
affected by the storage capacity and, also, by the entity of
the allowed time shift.
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Fig. 15. Task load with task scheduling, solar production, storage and heat
pump: hourly storage level

Indeed, when the task scheduling is accounted, it allows
the inspection of either the energy tariff, the user habits or
both over the performance of the resource management. A
less apparent contribution, that affects the scheduling perfor-
mance, appears when data forecasting is included. Since actual
scheduling requires information concerning future, and thus
forecast data is used, the scheduler robustness to prediction
error has been evaluated.

By submitting the forecasted data as an input to the
scheduler, the task agenda is computed by the framework. The
obtained schedule, paired with historical data to compose the
input data set, has been then submitted to carry out a simulation
of the task execution and energy management and evaluate the
actual energy management performance.

In this case, the first test has been carried out ignoring the
thermal energy management problem. Thus, only the electrical
energy management required by the tasks has been evaluated.
During the scheduling phase, the expected cost based on
forecasted data amounts to 1.14e. When the resulting agenda
is used to execute the assigned task, the actual energy cost has
risen to 1.53e . The difference is due to the prediction error. In
comparison, when the scheduling is carried out by providing
historical data as input, thus obtaining the theoretical optimum,
the computed cost amounts to 1.51e.

In the second test, a gas boiler is included to account the
thermal energy, the expected cost has been equal to 6.24e ,
the actual cost being 6.88e and the optimum result being
6.86e. In this case, in particular, since the thermal demand
does not affect the electrical energy management, the absolute
error matches the previous result.

Concerning both the micro CHP set-up, and the heat pump
set-up, albeit the absolute error is different, the same trend
has been obtained. The corresponding cost values is reported
in Table I in order to provide the means to directly compare
the different inspected cases.

TABLE I. MONETARY BALANCE FOR THE DIFFERENT THERMAL
PRODUCTION TECHNOLOGIES IN PRESENCE OF DIVERSE ENERGY

MANAGEMENT STRATEGIES

Thermal Production Technologies

Heat
production

absent

Boiler
(Fuel)

Micro chp
(Fuel)

Heat pump
(Electricity)

No optimization applied 3.30e 8.60e 6.00e 6.50e
Energy production and storage 1.74e 7.08e 5.00e 4.74e

Energy production, storage
and task scheduling 1.51e 6.86e 5.00e 4.52e

Energy production, storage
and task scheduling w/

forecasting

expected: 1.14e 6.24e 4.50e 3.73e
real: 1.53e 6.88e 5.03e 4.53e

optimal: 1.51e 6.86e 5.00e 4.53e

The comparative analysis of results above, suggests which
technology can be most efficiently used in the building sce-
nario under test, taking the energy and task management into
account, and in presence of historical or forecasted data. This
proves the effectiveness of the adopted methodology for micro
grid design purposes, being aware of the limitations already
explained above, which will be likely addressed in future
developments.

VI. CONCLUSION

Although energy efficiency has been improved by means
of an optimal resources management, in a proper design of the
residential environment is also paramount to tailor the system
features, in order to meet the user needs and habits, and thus
to increase the margin of efficiency improvements.

With this in mind, a task and energy resource scheduling
algorithm, already proven to be effective in smart home energy
cost reduction, has been revised in order to obtain a more
comprehensive computational framework for micro grid design
purposes. By simulating the environmental scenario evolution
over time, and by monitoring energy production, consumption
and management, it has been possible to assess the efficiency
of the micro grid environment under study, determined in terms
of energy cost resulting from the task execution and building
thermal regulation.

On purpose, rather than modelling a single apartment, as
done in previous works, a reference dataset has been collected
by monitoring a real life building made of six apartments.
Thus, modelling the task schedule for each apartment in the
building, and the total thermal demand, different retrofitting
scenarios have been evaluated and compared with the per-
formance of the overall energy system not supported by any
optimization solution.

The analysis of the performed results revealed that both
the energy storage and the task scheduling share the ability to
manipulate the electrical energy demand profile. As such, not
only they complement different energy production technolo-
gies within the overall energy system, but also they are able
to jointly concur to the improvement of the overall energy
management, and thus to the micro grid efficiency.

Moreover, the application of the suggested simulation
framework resulted in a major asset in the design of a micro
grid environment. The simulation framework allowed the punc-
tual investigation of the different energy management aspects
in a simulated environment. The uncovered aspects may reveal
hidden dynamics and problems, such as in the micro CHP case,
that might have remained undetected otherwise. At the same
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time, they may support a punctual comparison of different
micro grid designs, for a given environmental scenario.

While the results appear to be more than promising, it
is also clear that several aspects require further efforts and
development. As future work, additional technologies shall
be included in the evaluation pool, and their performance
evaluated. Moreover, in order to support the analysis of the
results of multiple simulations, a set of statistical indices
shall be defined and assessed. Thereafter, the extension of the
evaluation over a long term period shall be carried out.
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