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Abstract—Computational Intelligence plays a relevant role in
several Smart Grid applications, and there is a florid literature
in this regard. However, most of the efforts have been oriented
to the electrical energy field, for which many contributions have
appeared so far, also facilitated by the availability of suitable
databases to use for system training and testing. Different is the
case for the water and gas scenarios: this work is thus oriented
to present the state-of-the-art techniques for these grids, from
2009 to date. In particular, the focus is on load forecasting and
leakage detection applications, that are the most addressed in
the literature and present the biggest interest from a commercial
point of view as well: the main characteristics and registered
performance for all the reviewed approaches are reported. Along
this direction, an extensive search of used databases has been
performed and thus made available to the research community.

I. INTRODUCTION

In the last years, the rapid spread and exploitation of
renewable energy resources, such as photovoltaic, resulted in
big efforts in the scientific community from a multidisciplinary
perspective. The Smart Grid paradigm has been advanced and
it is now a reality in most countries worldwide. One of the
key concept in Smart Grid studies is represented by metering,
i.e. the capability of measuring the amount of a certain
resource, available at a specific grid point. It is of fundamental
importance since it allows to obtain a comprehensive amount
of data, also in real-time.

These data are useful to extract key information to infer
knowledge about the status of the grid and therefore to
maximize the quality of the service provided through the grid
itself. Computational Intelligence techniques are often adopted
on purpose, and several different solutions have been proposed
in the literature so far. A first important distinction has to be
done among the grid type and the utility service related to
them: the three most relevant grid types are represented by
electrical energy, water and natural gas.

Nowadays, the situation is surely mature in the electrical
energy field [1]–[3], where several databases and computa-
tional intelligence approaches for diverse applications already
exist. Conversely, the water and natural gas case studies
seem to lack of appropriate databases and studies for the
development and/or improvement of suitable computational
intelligence techniques, with special reference to load fore-
casting and leakage detection applications, which can have an
immediate impact on the quality of service provided by those
grids. The water is a common good and it is important to
preserve such valuable resource, at the basis of human life.
Concerning the natural gas, the International Energy Outlook

2013 (IEO2013) [4] confirmed that, with an increase by 2, 5%
per year, nuclear power and renewable energy are the world’s
fastest-growing energy sources. However, even now the natural
gas remains an essential resource. Indeed, until 2040, the
80% of world energy will continue to be supplied by fossil
fuels and, with an increase in global consumption of 1, 7%
per year, natural gas is the fastest-growing fossil fuel in the
outlook. Increasing supplies of tight gas, shale gas, and coalbed
methane support growth in projected worldwide natural gas
use.

In order to support research and propose more and more
performing solutions in load forecasting and leakage detection
for the smart water and gas grid case studies, it is undoubtedly
relevant having a survey that can serve as useful starting point.
This motivated the authors to produce the proposed survey,
where a comprehensive collection of the recent state-of-the-art
works and related databases, from 2009 to date, is presented.
In addition to the scarcity of studies on both smart water and
gas grid, especially if compared with the electrical energy case
study, the two grids have been jointly addressed because it
is believed that achievements in each field can easily cross-
fertilize the other. This issue is surely enhanced by the similar
characteristics of the grids themselves and related common
nature of metering devices used in both grids.

One of the most relevant result of this overview, is rep-
resented by the dearth of suitable databases in the literature,
which acts as a serious bottleneck for the development of in-
novative computational intelligence techniques and approaches
for load forecasting and leakage detection. Indeed, as it will
be clearer later on, some of the databases show short data
recording period or very low sample rate, and most are
unfortunately unavailable, being therefore not useful for scien-
tific exploitation. This yields to the presence of non-standard
evaluation criteria and the inability to perform a comparison
between different approaches, since each new method has been
tested with a different database.

This is the paper outline. In Section II an overview of the
published databases for water and natural gas is presented
pointing out the different aspects. Section III presents the
state-of-the-art load forecasting techniques for both water and
natural gas grids, whereas in Section IV non-intrusive leakage
detection techniques are described. Section V concludes the
paper.

II. DATABASES

In this section, the published state-of-the-art databases are
reported. Table I reports the resource type, the reference period
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TABLE I. SUMMARY OF THE DATASETS FOR WATER (W) AND
NATURAL GAS (G) IN THE STATE OF THE ART.

Contr. Res. Time Period Samples Availability

[5] W – – not public
[6] W 35,000 days – not public
[7] W&G Apr 2012 – Mar 2013 524 k* publicly avail.
[8] W 2006 – 2011 210, 336 not public
[9] W 11 Nov – 22 Dec, 2012 – not public
[10] W Apr – Jul, 2010 – not public
[11] W May 1992 – Dec 2002 125 publicly avail.
[12] W 1990 – 2000 10 not public
[13] W 1991 – 2003 ∼ 4, 380 not public
[14] G Mar 2001 – Aug 2005 ∼ 1, 611 not public
[15] G Jun 1996 – Mar 2012 ∼ 5, 752 not public

*: samples for each measured resource.

of the data collected, the number of data samples and the
database public availability for each contribution. The authors
have contacted researchers responsible for the databases cre-
ation and maintenance, in order to receive further information
about the collected data and their public availability.

To evaluate two fault diagnosis approaches, Quevedo et al.
[5] used the data acquired from the Barcelona water transport
network. The database is composed of the received real-time
data from 200 control points, which mainly include flow meters
and also some pressure sensors. No further information have
been provided by the authors and the database is not publicly
available.

In the study proposed by Cardell-Oliver [6], the water
consumption data have been collected by a wireless sensor
network. The network reaches about 11, 000 smart meters (one
per household) and the database consists of some selected
information over 35, 000 days. Unfortunately, the database
is not publicly available, nor is it likely to be released, as
confirmed by the author.

Makonin et al. [7] presented AMPds (Almanac of Minutely
Power dataset), “a dataset that contains detailed measurements
not seen in other databases”. The dataset is composed of power,
water and natural gas meter data. The energy consumption of
a single house has been recorded using 21 sub-meters for an
entire year (from April 1, 2012 to March 31, 2013) at one
minute read intervals. In detail, for natural gas metering there
were two meters: the whole-house meter (WHG) and the gas
furnace meter (FRG). For the water metering there were also
two meters: the whole-house meter (WHW) and the hot water
meter (HTW). Nevertheless, being the dataset composed of
values recorded from a single residence, it is not suitable for
load forecasting and leakage detection purposes.

Bakker et al. [8] tested their forecasting method on a
database composed of the water demand, over 6 years, of
several areas in the Southern region of The Netherlands. The
reference period goes from 2006 to 2011 with a 15-min time
step in m3/h, i.e. a total of 210, 336 values. For these reasons,
the database is really suitable for research purposes, but it is
not publicly available.

Boracchi et al. [9] used flow and pressure data collected
in two inlets as well as five pressure values, measured by
monitoring sensors right inside the pipelines. The information
have been recorded from 11th November to 22nd December
2012. The authors have not requested the database since the
recorded period is too short to test a forecasting system.

Zhu and Xu [10] tested their forecasting approach using
the urban water consumption from April to July, 2010, of a
Chinese city. Unfortunately, no further information have been
provided.

Data on the daily water consumption of Tehran, from 1991
to 2003, have been used by Tabesh and Dini [13]. Presently,
the database provided by the Tehran Water and Wastewater
Company is not publicly available and no additional informa-
tion have been supplied.

The dataset used by Nasseri et al. [11] is available and it is
composed of the monthly water demand of Tehran, from May
1992 to December 2002.

Liu and Chang [12] have employed the annual water
demand from 1990 to 2000, including urban domestic water,
rural domestic water, industrial water and agricultural water.
Despite presenting a wide time interval, both databases ( [11],
[12]) have been created from data collected over 10 years,
but a monthly or an annual water demand can not completely
fulfill the needs for a research study in smart metering and
load forecasting. For this reasons, no further information have
been requested to the authors.

A suitable database of natural gas consumption has been
used by Azari et al. [14]. The daily consumption of gas has
been recorded from 21 March 2001 to 8 August 2005, for a
total of 1611 collected data. So far, the database is not publicly
available.

In the thesis by Pang [15], the tests have been executed
using a dataset of daily natural gas demand from January 1996
to March 2012. The data have been supplied by the GasDay
Lab at Marquette University, and, presently, are not publicly
available.

III. LOAD FORECASTING

Nowadays, the estimation of the future demand of a specific
resource is at the foundation of distribution systems. Improve-
ments in forecast reliability result in designing more suitable
network and in more efficient management decisions, thus
reducing the wastes. In the following section the recent studies
about the forecasting methods of demand and consumption of
water and natural gas are reported. For each referred work,
the main information are shown in Table II, such as the
computational intelligence technique and the evaluation criteria
adopted therein.

A. Water

Bakker et al. [8] realized a model that forecasts the short-
term water demand. For each 15 minutes time step a new
48-h forecast is calculated moving forward the vector with
forecasted water demand. The model uses three main phases
to forecast the water demand: first of all, the average water
demand for the next 48-h is forecasted; then, the normal water
demand for each single 15-min time step is forecasted; finally,
if applicable, extra sprinkle water for the individual 15-min
time steps are forecasted. The datasets of water demand are
collected over six different areas in the period 2006-2011.
Each dataset consists of the demand per 15-min time step
in m3/h over a period of six years (210,336 values). The
first year, 2006, has been used to adapt the model factors;
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TABLE II. SUMMARY OF THE EXISTING CONTRIBUTIONS IN THE STATE OF THE ART AND THEIR RELATIVE PERFORMANCE.

Contr. Res. Technique Evaluation Criteria Performance

[8]* W Adaptive MAPE - RRMSE - R2 1.44,%5.12% − 2.01%, 8.21% − 0.658, 0.803
[8]** W Adaptive MAPE - RRMSE - R2 3.35%, 10.44% − 4.85%, 16.71% − 0.905, 0.987
[10] W QPSO-RBF ANN MSRE 2.14%
[11] W EKF-GP NMSE - R2 0.23, 0.76
[12] W GM(1,1) Max RE - MRE −19.50%, 13.85%
[12] W RBF ANN Max RE - MRE 2.29%, 2.01%
[13] W Fuzzy (weather) MSE - NMSE - R2 - MAPE 0.042, 0.465, 0.760, 7.63%
[13] W Neuro-Fuzzy (weather) MSE - NMSE - R2 - MAPE 0.008, 0.069, 0.931, 2.85%

[14]+ G ANN RE 1.5% − 6.8%

[14]++ G ANN RE 0.33% − 1.86%
[15] G MWS RMSE - MAPE - wMAPE –

*: 24-h time step, **: 15-min time step, +: daily prediction, ++: monthly prediction

the remaining years, 2007 to 2011, have been used to evaluate
the approach. In Table II the maximum and minimum overall
model performance are reported, given as relative error (RE),
mean absolute percentage error (MAPE), relative root mean
squared error (RRMSE) and determination coefficient (R2),
commonly known as Nash-Sutcliffe efficiency coefficient [16].

Zhu and Xu [10] combined quantum particle swarm op-
timization (QPSO) algorithm [17] with RBF neural network
in order to develop a forecasting method for urban water
consumption. RBF neural network is a forward neural network
with three layers: input, hidden and output. The neural function
is a radial basis function, defined as Ri = exp(− ‖ x− ci ‖2
/2σ2

i ), i = 1, 2, . . . L. Here L is the number of hidden
layer unit, ci is the center of basis function, and σ is the
width of gaussian function of the i-th hidden layer. Quantum
particle swarm optimization algorithm integrates the improved
quantum evolutionary algorithm (QEA) into the particle swarm
optimization (PSO). The system performance has been eval-
uated on a database composed of water consumption and
meteorological data from April 1 to July 10, 2010. The time
range of Apr-June 2010 is used as training set to forecast the
urban water consumption of July 1-10. The evaluation criteria
are the relative error (RE) and the mean square relative error
(MSRE); the achieved results are shown in Table II. Moreover,
as compared with RBF and PSO-RBF neural networks, the
experimental results have shown that the QPSO-RBF neural
network achieves better performance in terms of both conver-
gence speed and forecast accuracy.

Nasseri et al. [11] developed a hybrid model based on
the combination of Genetic Programming (GP) and Extended
Kalman Filter (EKF) to predict the monthly water demand
in Tehran. To reveal the ineffective parameters during the
mathematical modeling, the finalized GP formula is updated
using the Mathematical Sensitivity Analysis (MSA). This
screening leads to achieve the best formula possible with
less mathematical complexity. The Extended Kalman Filter is
applied to infer latent variables. The available dataset includes
monthly water consumption in Tehran from 5/1992 to 12/2002.
The system has been trained using 70% of the original dataset;
the remaining data (30%) have been used for verification.
The criteria used to evaluate the results are the normal mean
square error (NMSE) and the determination coefficient (R2).
The obtained results are reported in Table II.

Liu and Chang [12] presented a comparative study between
two forecasting models: the grey forecast GM(1,1) model and
the RBF neural network model. In the former one, the model
creates a function relationship, first-order linear dynamic,

between water demand and time using the water demand of
the past years to forecast the water demand in the future years.
In the latter one, a 3-layer forwarding neural network has been
used. The annual water demand data of Yangquan from 1990 to
1997 has been used as initial sequence. The resulting forecast
model for the GM(1,1) is:

x̂(k + 1) = 415922.61 exp(0.0518k)− 393339.77

where x̂(k + 1) indicates the forecasted value for the sample
k + 1. For the neural network 13 water demand forecast
factors as input have been selected, and the total annual water
consumption is the output. The water demand in 1998-2000
has been used as validation data. The maximum relative error
(Max RE) and the mean relative error (MRE) have been
adopted as evaluation criteria between the approaches. The
achieved results are reported in Table II.

Tabesh and Dini [13] modelled the short-term demand of
water in Tehran using Sugeno fuzzy and neuro-fuzzy inference
system (ANFIS). The dataset is composed of water data
consumption and meteorological data, and the system has been
developed using three different model of data partitioning:
two random and one non-random approaches. In any kind of
approach, the 60% of the set has been used for training, the
15% for validation and the remaining 25% for testing. In the
non-random approach the set has been partitioned according
to the time progression, whereas a random selection has been
used for the others approaches. The used meteorological data
were the daily average temperature and the relative humid-
ity. The results have been evaluated using the mean square
error (MSE), the normal mean square error (NMSE), the
correlation coefficient (R2) and the mean absolute percentage
error (MAPE). In the fuzzy approach the best data have
been obtained by the model that includes the last year water
consumption, with a MSE of 0.042, a NMSE of 0.465, a R2

of 0.760 and a MAPE of 7.63%. In the neuro-fuzzy approach,
the best performance have been obtained for three different
combinations. The first model includes the last day, the last
week and last year consumption. The second one contains
all the single last week days consumption, and the last week
consumption. The third one includes the same values of the
previous model with the addition of the last years consumption.
The MSE values are included within 0.007−0.009, the NMSE
within 0.064 − 0.074, the R2 within 0.926 − 0.936 and the
MAPE within 2.83%− 2.87%.

923



B. Gas

In order to predict the daily and monthly gas load con-
sumption, Azari et al. [14] used an approach based on artificial
neural networks. For the daily gas load consumption, an
artificial neural network with two hidden layer and fifteen
nodes in each hidden layer has been used. The input vector
is composed of 29 elements: meteorological parameters, gas
consumption data for the previous five days, and the mete-
orological parameters forecasting for prediction day. For the
monthly gas load consumption, an artificial neural network
with one hidden layer and seven nodes in the hidden layer
has been used. The input vector is composed of 3 elements:
monthly effective temperature for the previous and predicted
month, and gas load consumption for the previous month. The
daily gas consumption data as well as the meteorological data
from 21 March, 2001 to 8 August, 2005, overall 1611 pieces
of data, have been used to train the network and to evaluate
the performance. 90% of the data are used for training, and the
rest for validation. The obtained results are ported in Table II.

Pang [15] investigated the introduction of exogenous
weather inputs in the original GasDay1 forecast model. Using
the proposed Multiple Weather Stations (MWS) model the
accuracy of forecasts experiences a significant improvement.
The introduction of new instruments has improved the forecast
by capturing more characteristics for the model, with both
heating and non-heating purposes. The MWS model had
improvements in terms of root mean square error (RMSE),
mean absolute percent error (MAPE) and weighted mean
absolute percent error (wMAPE) in the “shoulder months”
for all the testing data sets. Overall, the new model improved
the RMSE by about 5% and improved the MAPE by about
4%, comparing to the existing method. For the winter months,
the forecasting accuracy is very similar. In the “shoulder
months” and summers, the MWS model is superior to the
existing method on average by about 7% in terms of RMSE.
The tests have been executed using time series data from
January 1996 to March 2012, keeping the last year of data
as testing set. The dataset has been provided by the GasDay
Lab at Marquette University and the National Oceanic and
Atmospheric Administration.

IV. LEAKAGE DETECTION

As mentioned in Section I, the availability of suitable
databases allows a faster progression for different aspects of
load forecasting and leakage detection. Concerning the smart
metering, the main aspect is the capability of analyzing the
data collected by the monitoring sensors (i.e. wireless sensor
network) and detecting unexpected events in the shorter possi-
ble time, namely leaks due to pipe breakage. Therefore, non-
intrusive techniques, that use only the measurements provided
by the sensors network, are reported in the following section.

A. Water

Whittle et al. [18] presented the WaterWise platform, wire-
less sensor network based, able to detect and localize leaks,
and identify the areas of risk in the network. The platform
is structured in three main layers: on-line wireless sensor
network (WSN), Integrated Data and Electronic Alerts System

1http://www.gasday.com/web/

(IDEAS), and Decision Support Tool Modules (DSTM). The
sensors provide both hydraulic parameters (pressure, flow,
hydrophone) and water quality information (pH, conductivity,
temperature). The data from the WSN are collected and
specific analysis can be executed, such as forecasting the
water demand. The main aspect proposed by WaterWise is
the detection and localization of leaks or bursts, analyzing
the pressure transients [19]. To detect the transient event
the system uses two approaches: wavelet decomposition or
time-domain statistical analysis. The localization is performed
by a graph-based search algorithm. The methods for non-
intrusive detecting and locating transient pipe burst events
have been presented by Srirangarajan et al. [19]. Transient
in real-time pressure measurement gives the ability to detect
events such as leaks, pipe burst and system operations (such
as valve opening/closing). The authors applied a multiscale
wavelet analysis, both wavelet coefficients and Lipschitz ex-
ponents, that provides additional information about the nature
of the signal feature detected, and can be used for feature
classification. The time information about the arrival time of
the pressure drop in different measurement points allows to
estimate the location of the burst, in combination with a graph-
based localization technique. The algorithm has shown good
performance in leakage detection, and presented an average
localization error of 37, 5m.

Boracchi et al. [9] proposed a combination of two change-
point methods to detect the time instant when leakage occurs.
At first, the minimum night flow is analyzed to obtain an
estimation of the started day. Then, the exact time when
the leakage has occurred is obtained using the information
about pressure measurements and network model. The pro-
posed method avoids the approximation of the pressure mea-
surements over a large time interval. The method has been
tested using real data collected from 11th November to 22nd

December 2012 of a big European city. The data have been
measured by two inlets where flow and pressure are measured
as well as five pressure monitoring sensors right inside. The
tests have been executed with both artificially induced leakages
and real leakages.

In order to detect meaningful activities from the real-
word smart metering, Cardell-Oliver [6] presented a new
approach. Using automatic collected measurement, selected
from a network of over 11,000 smart meters over 35,000
days, the method is able to identify activities extracting use-
ful features. A new unsupervised learning method has been
proposed, which combines rule-based activity labels and k-
means clustering. The recognized activity classes are defined
by a subset of logic rules that characterized the set of days
on which an activity occurs. The activity classes are: empty
days, continuous days, peak days and normal days. In addition,
clustering is adopted to verify that the category of normal days
does not conceal other activities.

Fuzzy Inductive Reasoning (FIR) has been applied, by Sanz
et al. [20], to detect and localize leak in the water network. The
approach uses the pressure values provided by two sensors,
located in two different areas of the District Metered Area,
Nova Icària, in Barcelona. Fuzzification, qualitative modeling,
qualitative simulation and defuzzification are the four main
stages of the proposed method. Using simulated data the fuzzy
models for leakages and non-faulty scenarios are created. Each
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model is compared with the real data and the best one is
chosen. The proposed approach isolates correctly the leakages
and presents a good precision, better than achieved by Quevedo
et al. [21].

A correct pressure management in water distribution net-
works can help to reduce leakages and pipe breaks due to
sections at high pressure. Nicolini [22] presented a method
based on genetic algorithms (GA) in order to minimize both
pressure reducing valves (PRVs) and water losses. The method
addresses the problem using a single-object GA first, for
model calibration, and then a non-dominated sorting GA for
optimization. The approach has been evaluated on a real
distribution network with remarkable results.

B. Gas

Murvay and Silea [23] realized a survey of the state-of-the-
art gas leakage detection and localization techniques. All the
possible approaches are reported, but only the approaches that
can be used in the automatic monitoring scenario are described
below.

A first method of non-intrusive leakage detection is based
on the negative pressure wave. When a leak is present in a
pipeline a pressure wave is generated, from the location of the
leakage point, and propagates both upstream and down stream
[24]. This wave is called rarefaction or negative pressure wave
and can be measured by pressure transducer. By analyzing the
collected pressure measurements, for example using a support
vector machine approach [25], the leakage can be detected.
Moreover, comparing the arrival times of the pressure wave to
the two opposite transducers, referring to the leak position, the
location of the leak can be easily identified. If a transducer is
closer to the leak, then it receives the pressure wave before the
other, and can be used to detect the leak location with good
precision.

A fast leakage detection method is the Pressure Point
Analysis (PPATM) [26]. The approach is based on the prin-
ciple that the pressure inside pipeline drops if a leak occurs.
Continuous measurement of the pressure in different points
along the pipeline are required for this technique. These
measurements are used to compute, by means of statistical
analysis, a threshold. When the mean value of the pressure
measurements decreases under this thresholds, the presence of
a leak will be declared.

Gas leaks can also be detected using statistical analysis,
without the need of a mathematical model. Working with
multiple sensors along the pipeline that measure pressure
and flow, the system generates a leak alarm only in case of
anomalous changes in the encountered pattern. Zhang and Di
Mauro [27] improved the methods introducing leak threshold,
which is set after a tuning period. During this period, there
must be no leaks and the parameter variance has to be analyzed
for different operating conditions. This tuning process needs
to be done over a long period of time and it is required in
order to reduce false alarms. The presence of a leak during the
tuning period will affect the initial condition and the erroneous
behaviour will be considered as normal. Only if the leak grows
in size enough to go beyond the set threshold, then it will be
detected.

V. CONCLUSION

The authors collected the state of the art of databases
and computational intelligence techniques (specifically load
forecasting and leakage detection) for water and natural gas.
As shown in Table I, further information have been requested,
for both the gathered data in the database (e.g. sample rate and
type) and the database availability. Regarding the databases,
the survey highlights two shortcomings: they either have
limited availability or lack of appropriate data. For example,
the database presented by Makonin et al. [7] is available and
has a good reading time interval, 1 minute, of both water and
gas demand. But it refers to measurement in a single house. In
contrast, the database proposed by Bakker et al. [8] presents
both a good reading time interval and appropriate data, but
the database is not publicly available yet. Furthermore, it is
difficult to make an objective comparison between the methods
presented in Section III. Firstly, the approaches have to be
tested using a common database. Secondly, for both water
and gas references, as shown in Table II, there is a significant
dissimilarity between the adopted evaluation criteria.

The authors are confident that the spread of innovative
monitoring systems, which are more and more often based on
low-power wireless devices [28] [29], will ensure a facilitation
for collecting large amount of data, as partially shown in [6],
and creating suitable and publicly available databases. This
will enable a fair and comprehensive evaluation of already
proposed computational intelligence solutions for smart water
and gas grids, as well as the development of new ideas from
the research community.
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