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Abstract— Real-time safety aware navigation of an intelligent
vehicle is one of the major challenges in intelligent vehicle
systems. Many studies have been focused on the obstacle
avoidance to prevent an intelligent vehicle from approaching
obstacles “too close” or ‘“too far”, but difficult to obtain an
optimal trajectory. In this paper, a novel biologically inspired
neural network methodology with safety consideration to real-
time collision-free navigation of an intelligent vehicle with safety
consideration in a non-stationary environment is proposed. The
real-time vehicle trajectory is planned through the varying
neural activity landscape, which represents the dynamic envi-
ronment, in conjunction of a safety aware navigation algorithm.
The proposed model for intelligent vehicle trajectory planning
with safety consideration is capable of planning a real-time
“comfortable” trajectory by overcoming the either “too close”
or “too far” shortcoming. Simulation results are presented to
demonstrate the effectiveness and efficiency of the proposed
methodology that performs safer collision-free navigation of an
intelligent vehicle.

I. INTRODUCTION

EAL-TIME trajectory planning of an autonomous ve-

hicle with obstacle avoidance is one of the issues in
the field of robotics that attempts to find and optimize the
path from the initial position to a destination, required for
autonomous vehicles and many other robotic applications.
The basic navigation problem for autonomous vehicles is
concerned with finding a safe and good-quality collision-free
path from an initial point to a destination.

There have been plenty of approaches proposed in terms
of autonomous vehicle navigation with obstacle avoidance
such as potential field method [1], fuzzy logic [2], [8],
sampling-based method [3],wavefront approach [4], sensor-
based techniques [5], graph-based methods [5], [6], and
neural network models [7], [8], [9], [10], [11], [12] , [13],
etc.

Pathak and Agrawal [1] proposed a kinematic model
based on potential field method for motion planning of an
autonomous mobile unicycle robot. A string of variable-sized
bubbles connecting the start point to the goal point is used for
the global planner. Li and Choi [2] proposed a path planning
with obstacle avoidance methodology of an autonomous mo-
bile robot under unknown environments by utilizing a fuzzy
logic system. The distance from a robot to obstacles and
their positions are detected by ultrasonic sensors. Rule-table
technique and fuzzy logic based angular velocity control
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algorithm are developed to find more reasonable trajectory.
Plaku et al. [3] developed a sampling-based path planning
method of an autonomous robot by a multilayered framework
in combination of a search strategy.

Luo et al. [4] proposed a real-time simultaneous trace-
guided navigation and map building (STNM) methodology
of an intelligent vehicle by integrating wavefront based
global path planner that generates a global trajectory for an
intelligent vehicle and a Modified Vector Field Histogram
(MVFH) local navigator based on the LIDAR sensor infor-
mation to guide the vehicle locally autonomously. A local
map composed of square grids is built up through the local
navigator while the vehicle traverses with limited LIDAR
sensory information.

Yazici et al. [5] developed a sensor-based approach for
multi-robot coverage navigation. Sensor-based coverage path
planning performed in narrow spaces is implemented by a
generalized Voronoi diagram (GVD)-based graph that models
the environmental information.

Graph-based approach is an efficient approach to vehicle
navigation as well [5], [6]. Luo et al. [6] developed a two-
level LIDAR-driven hybrid system for real-time unmanned
ground vehicle navigation and map building. Top level is
newly designed enhanced Voronoi Diagram (EVD) graph
method to plan a global trajectory for an unmanned vehi-
cle. Bottom level employs Vector Field Histogram (VFH)
algorithm based on the LIDAR sensor information to locally
guide the vehicle under complicated workspace, in which it
autonomously traverses from one node to another within the
planned EDV with obstacle avoidance.

Some research models integrate two methodologies to
take advantage of the various properties. For instance, a
complete sensor-based coverage path planning for the multi-
robot is achieved by taking advantage of sensor capability
and generalized Voronoi diagram graph solution [5], [6].
Wang et al. [8] successfully combined fuzzy logic and neural
networks methodologies for vehicle path planning.

Neural network methodology plays an important role on
intelligent vehicle trajectory planning. Chang et al. [7] uti-
lized neural network technique to implement local navigator
that drives a vehicle to traverse from initial point to the
target with obstacle avoidance. Wang et al. [8] suggested
a hybrid system with fuzzy logic and neural networks for
vehicle navigation of autonomous vehicle under unknown
environments. The fuzzy system is automatically designed
to train the neural network weights. Fujii et al. [9] suggested
a multi-layered methodology for collision-free navigation
via reinforcement learning. However, the planned vehicle



motions using learning based approaches are not optimal,
particularly at the initial learning stage. Yang and Meng [10]
proposed a biologically inspired neural network approach
for real-time path planning with obstacle avoidance of a
mobile vehicle and a multi-joint robot manipulator in a non-
stationary environment. Luo and Yang [12] extended the
neural dynamics model to coverage-type motion planning
of an autonomous vehicle and this approach is applied to
solve vicinity problems of obstacles in complete coverage
navigation ( [11], [12]). However, the neural network models
described previously are only suitable for navigation in
non-stationary environments without map building. Luo and
Yang [13] recently developed heuristic algorithms based
on a biologically inspired neural network model, which
concurrently perform motion planning and map building
under unknown environments. However, this model lacks of
safety consideration while planning shortest trajectory of an
autonomous robot.

In this papers, a biologically inspired neural network
model in conjunction with the developed virtual obstacle
algorithm (VOA) and safety aware navigation algorithm is
utilized for an intelligent vehicle. The biologically inspired
neural network model [14], [15] is applied to intelligent ve-
hicle trajectory planning. Through this biologically inspired
neural network model, the planned vehicle motion in a static
environment is globally optimal although there is no explicit
optimization of any global cost functions. The optimality
of the real-time vehicle trajectory is planned through the
dynamic activity landscape of the neural network without
any prior knowledge of the dynamic environment thus it is
computationally efficient. The primary contribution of this
paper is its virtual obstacle algorithm integrated into robot
navigation system based on previous biologically inspired
neural network model. The proposed model for vehicle
trajectory planning with safety consideration is capable of
planning a real-time “comfortable” trajectory by overcoming
the either “too close” or “too far” shortcoming.

The rest of this paper is organized as follows: Section II
derives a biologically inspired neural network model. Section
IIT addresses the safety aware navigation technique and its
properties. Some simulation results are presented in Section
IV to show its performance. Finally, Section V concludes the

paper.
II. THE NEURAL NETWORK MODEL

In this paper, a biologically inspired neural network model
is derived for trajectory planning of an intelligent vehicle
[14], [15]. The topologically organized neural network with
nonlinear analog neurons is efficient for trajectory planning
with obstacle avoidance. This model resembles Dijkstra’s
algortihm in the sense of searching the lengths of the shortest
trajectories from the goal. The computational efficiency of
this biologically inspired neural network model on a graph
with N neurons is O(N) in comparison of the Dijkstra’s
algorithm of O(N?) ( [14] [15]).

The real-time collision-free vehicle motion is planned
based the dynamic activity landscape of the neural network
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and the previous vehicle position, to guarantee the goal to
be reached and the vehicle to travel along a smooth and
continuous path.

The proposed topologically organized model is expressed
in a 2D Cartesian workspace WV of the intelligent vehicles.
The position of the ith neuron in the state space S of the
neural network, denoted by a vector ¢; € R2?, uniquely
represents a position in V. In the proposed model, the
excitatory input results from the goal and the lateral neural
connections, while the inhibitory input results from the
obstacles only. Each neuron has local lateral connections to
its neighboring neurons that constitute a subset R; in S. The
subset R; is called the receptive field of the ¢th neuron in
neurophysiology. The neuron responds only to the stimulus
within its receptive field.

In the proposed model, the collision-free vehicle motion is
planned in real time based on the dynamic activity landscape
of the neural network. The dynamics of this discrete time
neural network is described as the following equations.

JES;i
e i=il i i — Gl <
J— ) T o)
Wiy {0, if i — g > r 2

where w;; are symmetric connection weights between the ith
neuron and the jth neuron; |i — j| is the Euclidian distance
from the ith neuron to the jth neuron; ¢ is the transfer
function; v and r > 0 are constants; The external input I;
to the ¢th neuron is defined as I; = F, if it is a target;
I, = —F, if it is an obstacle position; I; = 0, otherwise,
where £ > 1 € R; is a positive constant.

E if ¢ is the target
—F if 7 is an obstacle
0 otherwise

I; = ) 3

Transfer function g may be any monotonically increasing
function ( [14] [15]). A piecewise linear function is selected
as the transfer function as follows.

0 <0
glz) =4 Bz z€l0,1] , “4)
1 z>1

where, 5 > 0 is a positive constant.

Therefore, each neuron has only local lateral connections
in a small region [0, ro]. It is obvious that the weight w;; is
symmetric, i.e., w;; = wj;. Usually, 7o is selected as 1o = 2.
The receptive field of the ith neuron is represented by a
circle with a radius of ry. The ¢th neuron has only eight
lateral connections to its neighboring neurons that are within
its receptive field.

The proposed network characterized by equation (1) guar-
antees that the positive neural activity is able to be prop-
agated to all the state space, but the negative activity only
stays locally. Therefore, the goal globally attracts the vehicle,
while the obstacles only locally avoid the collision.



The activity landscape of the neural network dynamically
changes due to the varying external inputs from the goal and
obstacles and the internal activity propagation among neu-
rons. The optimal vehicle path is planned from the dynamic
activity landscape, and the previous vehicle location. The
vehicle will move to the neuron with maximal neural activity,
which is addressed in the following sections of Navigation
and Vector-driven Algorithms (Algorithm 2 and Algorithm 3
in the next sections).

After the current location reaches its next location, the
next location becomes a new current location. The current
vehicle location adaptively changes according to the varying
environment.

The locations of the obstacles may vary with time, such
as moving obstacles. The activity landscape of the neural
network dynamically changes due to the varying external
inputs from the target and obstacles and the internal activity
propagation among neurons. For energy and time efficiency,
the vehicle should travel a shortest path and make least
turning of moving directions. For a given current vehicle
location in S (i.e., a location in W), denoted by L., the
next vehicle location L,, (also called “command location™)
is obtained by

L, = argmax (x(m, n)) € {Ng|(m,n)},

m,n

(&)

where k is the number of neighboring neurons of the L.th
neuron (k=8), i.e., all the possible next locations of the
current location L. Variable x(m, n) is the neural activity of
the jth neuron. After a vehicle reaches its next location from
current location, the next location becomes a new current
location (if the found next location is the same as the current
location, the vehicle stays there without any movement). The
current vehicle location adaptively changes according to the
varying environment. The computational complexity depends
linearly on the state space size of the neural network, which
is proportional to the workspace size. The number of neurons
required is equal to N = N; x N,, where N, and N, are
the discretized size of the Cartesian workspace. Each neuron
has at most eight local connections. Thus the total neural
connections are 8. For the proposed bio-logically inspired
neural network model, the computational complexity of the
proposed algorithm is O (V). Workspace size and rules to be
used will mainly affect the computational complexity.

III. THE SAFETY AWARE NAVIGATION ALGORITHM

This section addresses the obstacle enlargement algorithm
associated with the proposed bio-inspired neural network
model. The algorithm contains three portions: Initialization
portion, Obstacle Enlargement portion and Navigation por-
tion.

A workspace populated with unstructured obstacles is
shown in Fig. 1A, in which there are six set of obstacles.
Assume that the workspace is decomposed of cells and
the map is cell representation for the autonomous vehicle
navigation. In order to obtain virtual obstacles, the obstacles
are enlarged by enclosing with virtual obstacles illustrated in

936

Fig. 1B. After enlargement of obstacles, the the autonomous
vehicle navigation is performed to plan safer trajectory by
an autonomous vehicle.

25 7T o
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Fig. 1. The illustration of obstacle enlargement for virtual obstacles. A: The

original workspace with obstacles; B: The workspace with virtual obstacles.

The Initialization Algorithm portion: The initialization
algorithm is shown in Fig. 2.

Set starting point to a central neuron
Set external input of the goal as I, = F
Set all neural activities as zero

Fig. 2. The Initialization Algorithm.

The Obstacle Enlargement (OE) Algorithm portion:
This algorithm mainly relies on the vehicle’s on-board range
sensors. The obstacles populated in workspace in the pro-
posed model is assumed to be known. Cell representation is
utilized in this paper for environmental information. Once
a cell (grid) represented for obstacles is detected by the
onboard sensors of the vehicle as a neuron, its neurons are
to be marked as I; = —F in Fig. 3.

Loop
Find obstacle areas with [; = — F
by onboard sensors of the vehicle
if (the current central neuron is an obstacle cell
then
Flag as obstacle cell and I; = —F



if (adjacent neuron is either an unvisited point
with I; = E) then
Flag its adjacent neurons as virtual
obstacles I, = — F
end if
end if
Set the current neuron to neighboring neuron
End loop

Fig. 3. The Obstacle Enlargement Algorithm.

The Autonomous Navigation (AN) Algorithm portion:
The goal globally attracts the vehicle in the entire state space
through neural activity propagation, while the obstacles have
only local effect in a small region to avoid collisions. The
Autonomous Navigation (AN) algorithm is shown in Fig. 4.
Based on the previously addressed OE algorithm, the vehicle
applying the AN algorithm generates safer trajectory with
safe distance from obstacles.

Loop
Find unvisited neighboring neuron
with largest activity
if (neighboring neural activity <= current neural
activity) then
Flag as visited and external input as zero
if (neighboring neuron is either visited
or with smaller activity) then
Flag it as deadlock
end if
end if
if (neighboring neurons are all visited) then
Flag it as visited
end if
Set the central neuron to neighboring neuron
End loop

Fig. 4. The Autonomous Navigation Algorithm.

IV. SIMULATION STUDIES

Simulation studies are performed in this section to vali-
date the effectiveness and efficiency of proposed real-time
safety aware autonomous vehicle trajectory planning model
based on a bio-inspired neural network model in conjunction
with an obstacle enlargement algorithm. In this section, the
proposed approach is first applied to a typical double U-
shaped case. Then, the bio-inspired neural network model of
the autonomous vehicle in a room-like with multiple doors
environment is studied.

A. Trajectory Planning in a Double U-shaped Environment

To illustrate safety aware trajectory planning, the proposed
model is first applied to a double U-shaped test scenario.
In most situations, a small and manoeuverable autonomous
vehicle may be considered as a point vehicle in comparison
with the size of the vehicle and its maneuvering possibilities
to the size of the free workspace. Practically, a vehicle in
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traffic planning in large cities or a tank in field military
operations may be regarded as point vehicles.

The proposed bio-inspired neural network model navigates
an autonomous vehicle in the double U-shaped environment
shown in Fig. 5. The workspace has a size of 40 x 40,
which is topologically organized as a grid-based map. The
parameters are selected as follows: v = 3; £ =200 and § =
0.01. Initially, the starting point is located at S(15,6) and the
vehicle moves toward the designated goal at G(15,27). The
double U-shaped workspace is shown in Fig. 5A.

All the neural activities are initialized to zero. In Fig. 5A,
the vehicle starts moving from S(15,6), and it is able to move
to the goal G(15,27). By means of the incoming sensory
knowledge, the vehicle is smoothly capable of planning a
reasonable trajectory illustrated in Fig. 5A. The dynamic
activity landscape of the neural network when the vehicle
reaches the goal G(15,27) is shown in Fig. 5B. The neural
activity of the goal has very large value represented by peak
whereas the neural activities of obstacles are represented by
valley with negative values.
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Fig. 5. The illustration of trajectory planning in a double U-shaped
workspace . A: The workspace with obstacles; B: The neural activity

landscape of the neural networks.

To plan a safer collision-free trajectory in the same double
U-shaped case, the obstacles represented by squares are en-
larged. The obstacles in Fig. 6A are enlarged by the proposed
Obstacle Enlargement algorithm described previously. The
double U-shaped test scenario with enlarged obstacles to



construct virtual obstacles is illustrated in Fig. 6A, in which
the obstacles are indicated by black squares and virtual
obstacles are represented by light-colored squares.

The workspace has the same size of 40 x 40, which
is topologically organized as a grid-based map with same
parameters as above. Initially, the starting point is located
at S(15,6) and the vehicle moves toward the designated
goal located at G(15,27) in Fig. 6A. The dynamic activity
landscape of the neural network when the vehicle reaches
the goal G(15,27) is shown in Fig. 6B.

In comparison of the regular trajectory planning results
in Fig. 5, the trajectory generated in Fig. 6A with virtual
obstacles is safer and more “comfortable” than the one
generated in Fig. SA without virtual obstacles. The dynamic
activity landscape of the neural network when the vehicle
reaches the goal G(15,27) is shown in Fig. 6B. The neural
activity of the goal has very large value represented by peak,
and the neural activities of obstacles are represented by valley
with negative values.
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Fig. 6.  The illustration of trajectory planning in a double U-shaped
workspace with safety consideration. A: The workspace with virtual ob-
stacles; B: The neural activity landscape of the neural networks.

B. Trajectory Planning in a Room-like Environment

To validate the effectiveness of the proposed model, the
proposed model is applied to a room-like test scenario, where
there were some obstacles, especially, doors, placed in the
known workspace. The workspace is shown in Fig. 7A,
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where S(2,3) indicates the starting point and the squares
represent the obstacles.

The neural network consists of 40 x 40 topologically
organized neurons, where all the neural activities are ini-
tialized to zero. The room-like workspace populated with
obstacles is topologically organized as a grid-based map
with the following parameters: y=3; FE=200 and (5=0.01.
Initially, the starting point is located at S(2,3) and the vehicle
moves toward the designated goal located at G(37,37) in
Fig. 7A. There are several doors in the workspace. The
vehicle traverses in the workspace guided by the proposed
bio-inspired neural network model. The planned trajectory
is close to the wall and doors. The vehicle traverses to pass
through four doors indicated by D-1, D-2, D-3 and D-4 in
Fig. 7A. There is no negative neural activity that propagates
to the other neurons. The planned vehicle trajectory in Fig.
7A has the shortest path from the starting position to the
goal. This bio-inspired model is able to deal with moving
obstacles as well [12], [13].

The dynamic activity landscape of the neural network
when the vehicle reaches the goal G(37,37) is shown in
Fig. 7B. The neural activity of the goal has very large value
represented by peak, while the neural activities of obstacles
are represented by valley with negative values.
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Fig. 7. The illustration of trajectory planning in a room-like workspace .
A: The workspace populated with virtual obstacles; B: The neural activity
landscape of the neural networks.



The safety aware navigation is taken into consideration by
virtual enlarged obstacles in the environment. The obstacles
are enlarged by the previously modeled Obstacle Enlarge-
ment algorithm illustrated in Fig. 8A, in which the virtual
obstacles are depicted in grey-colored cells. The vehicle
driven by the proposed bio-inspired neural network model
with the following parameters: v=3; £=200 and $=0.01, and
virtual obstacle algorithm is navigated along a smooth trajec-
tory, which constantly retains safer and more “comfortable”
distance from four doors indicated by D-1, D-2, D-3 and D-
4 in Fig. 8A. The dynamic activity landscape of the neural
network when the vehicle reaches the goal G(37,37) is shown
in Fig. 8B, in which there are more valley areas due to the
virtual obstacles. The neural activity of the goal has very
large value represented by peak, and the neural activities of
obstacles are represented by valley with negative values.

Compared with the regular trajectory planning results in
Fig. 7 , the trajectory generated in Fig. 8A with virtual
obstacles is safer and more “comfortable” than the one
generated in Fig. 7A without virtual obstacles. particularly,
when the vehicle passes through, there are safer distance
as buffered space to plan a smooth trajectory with safety
consideration.

Virtual Obstacles =%
Wall

Obstacles

Obstacles

o
=3

Obstacles

o
o

fh

o
~

] ”Hm \HW”
‘.‘\I“\Hm” \H[” ' “\\/

///\‘ 1
40
30 ' v/
20 N

Fig. 8. The illustration of trajectory planning in a room-like workspace
with virtual obstacles. A: The workspace populated with obstacles; B: The
neural activity landscape of the neural networks.
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V. CONCLUSIONS

In this paper, a novel biologically inspired neural network
model with safety consideration for the real-time vehicle tra-
jectory planning with clearance from obstacles is proposed.
The optimality of the real-time vehicle trajectory planning in
a non-stationary environment is in the sense of a continuous,
smooth and safe collision-free trajectory toward the goal. The
real-time vehicle safe aware trajectory is planned through
the varying neural activity landscape. The proposed model
is capable of planning a real-time “comfortable” trajectory
away from obstacles. The effectiveness and efficiency have
been demonstrated through simulation studies that the pro-
posed model is capable of performing collision-free and safe
navigation of an intelligent vehicle.
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