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Abstract—This paper presents a novel mathematical model 

for the TiO2 thin-film memristor device discovered by Hewlett- 

Packard (HP) labs. Our proposed model considers the boundary 

conditions and the nonlinear ionic drift effects by using a 

piecewise linear window function. Four adjustable parameters 

associated with the window function enable the model to capture 

complex dynamics of a physical HP memristor. Furthermore, we 

realize synaptic connections by utilizing the proposed memristor 

model and provide an implementation scheme for a small-world 

multilayer neural network. Simulation results are presented to 

validate the mathematical model and the performance of the 

neural network in nonlinear function approximation. 

Keywords—Memristor; PWL window function; Small-world 

model; function approximation 

I. INTRODUCTION 

The existence of memristor—the fourth fundamental circuit 
element, was predicted by Professor Chua in 1971 to complete 
the set of basic passive devices that already included resistor, 
inductor, and capacitor [1]. The missing constitutive 
relationship between flux-linkage and electric charge was thus 
found and formulized. Five years later a broader concept, 
memristive device, was introduced by Professors Chua and 
Kang to describe a wide range of devices with pinched 
hysteretic input and output dynamics [2]. However, it was only 
after the first physical implementation of memristor in a 
nanoscale double-layer TiO2 thin-film by HP laboratory [3] 
that memristor and memristive devices started to attract 
increasing attentions from both academia and industry. Soon 
afterwards, various materials and devices demonstrating 
memristive characteristics were proposed, such as spintronic 
memristive systems [4]. 

Extensive research has been devoted to enable the 
computing and functional applications by using memristance 
(that is, memristor-resistance) as a new state variable. Novel 
attractive opportunities have been made in many systems, such 
as high-density nonvolatile resistive random access memory 
(RRAM) [5], ultra-high density Boolean logic and signal 
processing [6], reconfigurable nanoelectronic systems (e.g., 
FPGA) [7], nonvolatile VLSI computing [8], nonlinear circuit 
science (e.g., Chaos) [9], and neural inspired computing 
systems [10]. In this regard, an accurate mathematical model 

for memristors in nano-scale structure is important and 
necessary to support fast numerical analysis and computer-
aided IC design [11]. 

The initial model of the HP memristor was provided by 
Strukov et al. [3]. It is a simple model considering only the 
linear form of ionic movement, which is normally called linear 
ionic drift model. Later on, this study was enriched by a 
number of more complex memristor models that take into 
account the nonlinear effects on ionic movement and the 
behaviors at device boundaries. Joglekar proposed to employ a 
single-valued window function in the model so as to capture 
the nonlinear effects and meet the boundary conditions [12]. 
However, such an approach brings in a serious “dead-lock” 
problem, that is, no external stimulus can drive a memristor 
any longer once it reaches one of the two boundaries. This 
scenario is also mentioned as boundary lock effect. In fact, all 
of the single-valued window functions will inevitably lead to 
this situation. In view of this, Biolek et al. presented a 
boundary-lock-effect-free model by using a switching window 
function [12]. The model includes the nonlinear effects at only 
one boundary each time. Moreover, the two-valued window 
function can cause different increments and decrements 
corresponding to the excitations with the same amplitude but at 
opposite polarities, i.e., charge-induced-shift effects. Recently, 
Corinto et al. created a one-valued switching window function 
and proposed a boundary condition-based model (BCM) based 
on it [13]. Unfortunately, no nonlinear effects can be reflected 
with this memristor model. In other words, it is indeed a 
boundary-effect-free linear model.  

After studying the advantages and drawbacks of these 
existing approaches, we propose a more flexible PWL model 
by utilizing a piecewise linear window function. The PWL 
model can approximately captures all the behaviors of the HP 
memristor provided by several typical models. Besides the 
current passing through the memristor, four tunable parameters 
are introduced to characterize the window function. These 
parameters together make the PWL model transform smoothly 
between the linear and the nonlinear ionic drift cases. 

As a highly simplified abstract of brain nervous systems, an 
artificial neural network is usually developed to execute some 
complex computing tasks. Such a network is constituted by a 
number of nodes representing neurons connected by links in 
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certain structures, such as forward, feedback, fully-connected, 
single-layered, or multilayer. Nevertheless, these extensively 
studied neural network models own a common property — the 
complete connections among the neurons nearby. In fact, some 
randomness existing in brain neural networks has been 
discovered: the connections between a pair of neurons and the 
states of these neurons could change by following certain 
probabilities. Therefore, much enthusiasm has been shown on 
developing novel network model rather than the two existing 
limited network structures, i.e., the regular network and the 
random network.  

 Recent discoveries have demonstrated that the real 
biological nervous systems possess the sparse connectivity of 
complex networks as well as small-world effect and scale-free 
property [14-15] that have been observed in microscopic 
anatomical scale [16-18].  The so-called small-world model is 
generated by adding some randomness in a regular network. It 
has greater local interconnectivity than a random network but 
the average path length between any pair of nodes is smaller 
than that of a regular network. The combination of large 
clustering and short path length makes it an attractive model 
capable of specialized processing in local neighborhoods and 
distributed processing over the entire network. In this work, we 
present an implementation scheme for a small-world model 
based multiple neural network by utilizing the PWL memristor 
as synaptic connections. The findings of the study may 
promote the further development of the neural networks, 
especially in hardware realization. 

This paper is organized as follows. We first present the 
PWL model and describe its unique features in Section II. The 
validation of the proposed model is conducted in Section III 
through numerical simulations and comparison with several 
typical models. In Section IV, a SPICE realization of the 
theoretical memristor model is provided, which can be directly 
applied to numerical analysis and computer-aided IC design. In 
Section V, we investigate the usage of the PWL model in a 
small-world neural network as a case study. Finally, Section VI 
concludes the whole paper. 

II. THE PWL MEMRISTOR MODEL 

The HP memristor is a nanoscale device in a structure of 

platinum contact−titanium dioxide film−platinum contact.  In 

particular, the titanium dioxide film is divided into a TiO2 

layer with low conductivity and a TiO2-x layer of high 

conductivity. The memristive effect is achieved by moving the 

doping front, that is, the interface between the TiO2 and the 

TiO2-x layer. Let D and W be the thickness of the titanium 

dioxide double-layer film and the TiO2-x layer, respectively, 

RH and RL respectively denote the high resistance state and the 

low resistance state. The overall memristance can be 

expressed as 

( ) (1 )
L H

M x x R Rx     ,                  (1) 

where [0, 1]x represents the time-dependent relative 

doping front position, that is 

 ( ) ( ) /x t W t D .                            (2) 
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where v is the equivalent ionic mobility in 
2 1 1

Vm s 
. A 

switching piecewise linear window function ( )f   is designed 

to guarantee the boundary conditions, that is, [ ]
L H

M R R , 

and the nonlinearity in doping front movement near 

boundaries, as follows: 
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.       (7) 

where non-negative 1thi and 0thi  denotes the current 

thresholds only over which the external excitation can change 

the memristor state. Parameters 1c  and 2c  are used to 

determine the regions of the nonlinear ionic drift and the linear 
ionic drift in the form of state variable x, i.e., 

( 2 1)}{ | (0 1) cx x c x     and { | 1 2}x c x c  , 

respectively. 1g  and 2g  are the controlling parameters 

respectively reflecting the coincidence degree of the 

characteristics of 1( )f  and 2 ( )f  . 

Theoretically, the ranges of these four parameters shall 
satisfy 

1 20 1c c   , and                              (8) 

1 2, [0,1]g g  .                                   (9) 

In particular, if 1 0c   and 2 1 2 1c g g   , then 

( ) 1f x  ,                                  (10) 

which leads to the linear ionic drift model, which is too simple 

to capture some practical properties. Instead, we restrict the 

four parameters in an open interval of (0, 1)  in this work.  
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Fig. 1. The proposed PWL window function coined by (4)-(7). 

 

Fig. 1 shows characteristics of the proposed PWL window 

function. To our best knowledge, the velocity of the doping 

front movement becomes smaller as the doping front moves 

near the two boundaries than that around the middle of the 

device. In other words, the ionic drift is depressed when 

approaching device edges. In the PWL model, we use the four 

parameters to model such nonlinear effects. Especially, 

parameters 1g and 2g denote the starting points of 1( )f   

and 2 ( )f  , respectively.  To avoid the dead-lock problem at 

boundaries, 1g and 2g cannot be zero. However, such a 

constraint unavoidably causes the charge-induced-drifting 

effect due to the asymmetry of the switching window function. 

Fortunately, we can alleviate the effect to an acceptable level 

by setting 1g  and 2g  with small enough values. This is a big 

difference of our PWL model from Biolek’s model. Other 

possible solutions include controlling the external excitation 

or taking some resetting operations. 

Remarks: the window function cannot be continuous if the 
memristor model is expected to reflect the boundary conditions 
meanwhile escaping from the dead-lock problem. 

III. MODEL VALIDATION 

We verify characteristics of the proposed PWL model by 

means of typical numerical analysis in this section. In all the 

following simulations, we set 100
L

R   , 
8

10D nm


 , and 

14 2 1 1
10 m s Vv

  
 . In order to compare with other typical 

models in the same conditions, we set 
1 0

0th thv v  . 

A. Normal Operating Mode 

The normal operating mode for a memristor denotes the 

condition under which the internal state variable is always 

guaranteed within an effective range, that is, ( ) (0, 1)x t  . 

Thus, the memristor exhibits the normal memristive effects.  

Fig. 2 shows the frequency-dependent current-voltage (I-V) 

characteristics of a memristor subject to a periodic voltage 

excitation. Under the low-frequency excitation, an obvious 

pinched hysteresis loop is demonstrated. Under the condition 

with a higher frequency, however, the hysteresis loop 

collapses and the memristor degenerates into a normal resistor 

with a constant resistance state. Similar observation was 

obtained in Fig. 2(b) in [3].  

In this simulation, the excitation voltage follow the form 

of
0

( ) sin(2 )v t f t . In Fig. 2, the simulated I-V 

characteristics when
0

1f Hz and
0

10f Hz are represented 

by the dashed loop and the solid line, respectively. The 

parameters of the memristor are set 

as: 16
H

R k  , 1 0.1c  , 2 0.9c  , and
1 2

0.01g g  . 

Changing the excitation to 
2

( ) 1.5sin (2 )v t t  and 

increasing 38
H

R k  can result in the multiple-loop 

hysteresis curves similar to those in Fig. 2(c) in [3], as shown 

in Fig. 3.   
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Fig. 2. Typical current-voltage pinched hysteresis loops under 

excitation
0

( ) sin(2 )v t f . The dashed loop is for 
0

1f Hz and the 

solid line is for
0

10f Hz .  
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Fig. 3. Multiple-pinched-loop hysteresis curves under the applied 

voltage 
2

( ) 1.5sin (2 )v t t  . 

B. Special Operating Modes 

The PWL model can successfully exhibit special properties 

when a memristor is working under certain abnormal working 
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conditions, such as small RH/RL ratio and big external 

excitations. Fig. 4 and Fig. 5 present the simulation results of 

special operating modes. The simulation with dynamic 

negative differential resistance (NDR) is given in Fig. 4(a), 

where 12.5
H

R k  , 
1

0.1c  , 
2

0.9c  , and 

1 2
0.001g g  . For comparison purpose, Fig. 4(b) shows 

the result without NDR by changing the simulation setup 

to 5
H

R k  , 
1

0.1c  , 
2

0.9c  , and 
1 2

0.001g g  . The 

simulations of Fig. 4(a) and (b) indicate that the NDR is not an 

intrinsic property of memristor but depending on the device 

parameters and external excitations. Fig. 5 demonstrates that 

the PWL model can successfully model the nonlinear ionic 

drift behaviors of a physical memristor. Here, the parameters 

of the memristor are set to be: 5
H

R k  , 
1

0.2c  ,
2

0.8c  , 

and 
1 2

0.01g g  .  

Under all the above cases, the hard-switching effect can be 

observe as the doping front approaches either of the two 

boundaries ( ( ) 0x t  or ( ) 1x t  ). All these simulations are 

perfectly in line with the results in Fig. 3 (a)-(c) of [3], 

validating the accuracy of the proposed PWL model. 

-2 0 2
-1

0

1

2

3

4

5
x 10

-3

Voltage (V)

C
u
r
r
e

n
t 

(
A

)

-4 -2 0 2 4
-0.01

0

0.01

0.02

0.03

Voltage (v)

C
u
r
r
e

n
t 

(
A

)

 
      (a)                                           (b) 

Fig. 4. Memristor current-voltage curves under ( ) 3sin(2 )v t t  . 

(a)  The simulation with dynamic negative differential resistance, and 

(b) the simulation without dynamic negative differential resistance. 
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Fig. 5. Simulation governed by nonlinear ionic drift of the memristor 

under ( ) 1.8sin(2 )v t t  . 

 

 
 

In TABLE I, we summarize and compare the properties of 

several typical memristor models. Here, the drifting effect 

represents the charge-induced drifting-effect, the boundary 

lock effect stands for the dead-lock problem, and slow-down 

effect denotes the slower doping front movement or the 

nonlinear ionic drift effect. The proposed PWL model 

possesses composite advantages over all these typical models. 

What’s more, the PWL model can express all of the other 

models by properly adjusting its window function parameters. 

IV. SPICE IMPLEMENTATION OF THE PWL MODEL 

SPICE modeling is an effective method in analyzing device 

characteristics and observing electrical properties. In this work, 

a SPICE model is built up based on the theoretical equations 

given in Section II. TABLE II describes the SPICE sub-circuit. 

Applying an AC voltage source across the memristor device in 

SPICE simulation, we can obtain a footprint hysteresis loop on 

the current and voltage plane presented in Fig. 6, which is 

consistent with the simulation result of Fig. 5(b) in [12].  

 

TABLE II 

SUB-CIRCUIT  DESCRIPTION OF THE PROPOSED MEMRISTOR MODEL 

* The Memristor model with PWL window function 

.SUBCKT HMemristor Plus Minus PARAMS: 
+ Ron=100 Roff=38K R0=30K D=10N uv=10F ith1=0 ith0=0 

*********** Differential equation modeling ************ 

Gx 0 x value={I(Emem)*uv*Ron/D^2*f(V(x),I(Emem),c1,c2,g1,g2)} 
Cx x 0 1 IC={(Roff-R0)/(Roff-Ron)} 

Raux x 0 1T 

************ Memristance ************************* 
Emem plus aux value={-I(Emem)*V(x)*(Roff-Ron)} 

Roff aux minus {Roff} 

************ Flux computation********************** 
Eflux flux 0 value={SDT(V(plus, minus))} 

************************************************* 
************ Charge computation******************** 

Echarge charge 0 value={SDT(I(Emem))} 

************ PWL window function ***************** 
.func f(x,i,c1,c2,g1,g2)={stp(i-ith1)*f1(x,c1,c2,g1)+stp(-i-

ith0)*f2(x,c1,c2,g2)} 

*************** f1 ******************************* 
.func f1(x,c1,c2,g1)={IF(x<0,0,IF(x<c1,(1-g1)/c1*x+g1, 

+IF(x<=c2,1,IF(x<=1,1/(c2-1)*x-1/(c2-1),0))))} 

*************** f2 ******************************* 
.func f2(x,c1,c2,g2)={IF(x<0,0,IF(x<c1,1/c1*x, 

+IF(x<=c2,1,IF(x<=1,(g2-1)/(1-c2)*x+(1-g2*c2)/(1-c2),0))))} 

.ENDS HMemristor 

 

 

TABLE I 

COMPARISONS OF THE TYPICAL MEMRISTOR MODELS  

Effects 
Linear  

[3] 
Joglekar 

[12] 
Biolek 

[12] 

Corinto 

[13] 

PWL  

(this work) 

Drifting 
Effect 

No No Much No Less 

Boundary 

Lock Effect 
\ Yes No No No 

Boundary 
Conditions 

No Yes Yes Yes Yes 

Slow-down 

Effect 
No Yes Yes No Yes 
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Fig. 6. Simulation of the built SPICE memristor model 

 

V. A MEMRISTOR-BASED SMALL-WORLD NEURAL 

NETWORK 

A. Description of Small-world Multilayer Network 

Designing a small-world multilayer neural network begins 

with a regular multilayer feed-forward network where the 

neurons in one layer connect every neuron in its adjacent 

layers. Then, by randomly breaking one original link each 

time with a predefined probability, and freely picking up a 

new neuron from the subsequently nonadjacent layers, a new 

cross-layer link is built. Repeat this rewiring operation till all 

the original links have been considered once, and finally one 

can get a small-world model with a majority of local 

connections and some long-distance global connections.  Fig. 

7 shows a diagram of a multilayer feed-forward neural 

network, where some short connections in the original regular 

network are cut off (dashed lines), then an equal amount of 

long connections are generated (red solid lines), leading to a 

small-world multilayer network model.    

OutputInput

 
Fig.7. Small-world multilayer neural network 

 

More specially, we set the network connection matrix as W, 

and W
l
 (l=1,2,3...5) denotes the connection sub-matrix 

between the lth layer and the (l+1)th layer. Hence, the 

connection matrix of the original regular network W can be 

written as         





























000000

00000

00000

00000

00000

00000

5

4

3

2

1

W

W

W

W

W

W ,         (11) 

in which a zero means no connection exists between the 

corresponding layers. After the rewiring operation, the 

connection matrix of the resulting small-world multilayer 

network can be got as 
1' 3 4 5 6

1 1 1 1

2' 4 5 6

2 2 2

3' 5 6

3 3

4' 6

4

5'

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

W E E E E

W E E E

W E E
W

W E

W

 
 
 
 

   
 
 
  
 

,         (12) 

where W
l’  

represents the reconnection sub-matrix between the 

lth layer and the (l+1)th layer, and 
l

lE

represents the sub-

matrix between two nonadjacent layers, with 

 1,2,3,4l ,  3, 4, 6l . 

B. Synaptic Connection Implementation Based on the 

PWL Memristor  

 
Fig.8. Block diagram of a small-world neural network with 

memristor bridge circuits. 

 

The small-world model was proposed for the purpose of 

more practically reflecting a real brain neural network. Better 

software performance, e.g., faster learning or convergence 

speed, has been the research focus [18]. However, the 
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corresponding physical implementation has not been discussed 

in literature. That is mainly because of the fact that the small-

world network model cannot reduce the total number of 

connections. Thus, by using traditional hardware realization 

schemes for synaptic circuits, the small-world neural network 

also faces the scalability problem like other neural network 

models. This situation actually hinders its potential 

applications in practice. Fortunately, the emerging memristor 

in nanoscale structure may provide an opportunity for the 

analog implementation of the small-world neural networks.  

Fig.8 shows a block diagram of small-world neural 

networks with memristor-based synaptic circuits. The 

surrounding ellipses represent several neuron layers and all of 

the synapses are contained in the round corner rectangle. In 

this study, we propose to use the PWL memristor in a bridge 

architecture to realize the electric synapse inspired by [19]. 

Such a synapse is presented in the center rectangle which 

takes charge of weight programming and weighting operations. 

It is consisted of four identical PWL memristors (denoted 

by M1, M2, M3, and M4). Assume that the signal from the 

presynaptic neuron is inI  (positive or negative), through a 

memristor-based synaptic circuit, the output voltage 

between is calculated by  

2 4

1 2 3 4

( )
AB in

M M
V I

M M M M
  

 
,           (13) 

and then transmitted to a postsynaptic neuron. If 

2 1 4 3
/ /M M M M , the synaptic weight is positive, if 

2 1 4 3
/ /M M M M , the synaptic weight is negative, and if 

2 1 4 3
/ /M M M M , there is a zero weight. The capability 

of realizing these three types of weights by using only one 

synaptic circuit makes it a promising candidate for electric 

synapse.  Set  100
L

R      and 20
H

R k  , the 

multiplication factor obtained from the synaptic circuit falls in 

[-0.99 0.99]. More detailed description can be found in our 

extended paper [20]. 

During weight-setting and weight-updating procedure, a 

big programming current is applied to set these memristors 

into corresponding resistance states. While weighting 

processing, the signal to be weighted is converted into a 

proper input excitation smaller than the threshold of the 

memristor. So it would not change the set memristance 

accidentally. In the following experiments, we set the 

threshold as 0.5 mA.  

Note that, as shown in Fig.8, the memristor-based synaptic 

circuit units are originally built up and connected with neurons. 

The forming of small-world multilayer networks rewire some 

connections, i.e., reconnecting a presynaptic neuron’s output 

from a postsynaptic neuron to another. But the new connection 

is still realized through the same synaptic unit as the original 

one. Therefore, the rewiring does not change the total 

number of connections and would not bring scaling 

problem.   

C. Small-world Multiplayer Neural Network for 

Function Approximation 

One of the important applications of a feed-forward 

multilayer neural network is nonlinear function 

approximation. Here, the function to be approximated is given 

by 

 

7.0)10sin(1.0)sin(4.0)(  xxxf  .     (14) 

Since there are several local minimums, the network is 

supposed to have qualified ability to get out of the local 

minimums to achieve satisfactory approximation results. 

The neural network under investigation is constituted by 

seven layers with one neuron in the input layer, one in the 

output layer, and five in each of the five hidden layers. The 

activation function of the neurons is Sigmoid function. By 

applying the generating principle described in Section V-B to 

all original local connections except the last hidden layer and 

the output layer with a predefined rewiring probability p, we 

get a neural network with small-world topology.  

The memristor synaptic weight is set and updated based on 

the BP learning rule while training procedure. The weight 

modification between the neuron j in the (l-1)th layer and 

the neuron i in the  lth
 
layer is determined by 

     ijijij Olwlw   )1()( ,            (15) 

where is the learning rate,   is the momentum factor, iO  

is output of the neuron i. 
j

 , the local gradient of the neuron j 

in the lth
 
layer, is calculated for the output layer and the others 

in different ways, which is expressed by 

( ) (1 )

(1 )

j j j j

j
j j ji i

i

T O O O

O O w
 

  








 .              (16)   

The top portion of (16) is for the output layer, and the 

bottom one is used for the other layers. And 
j

T  denotes the 

target value. 

In order to verify the superior performance of the small-

world neuronal networks and figure out the optimal structure, 

we conducted a series of simulations on Matlab by setting 

0.95  , 25.0 , and initial weighs as random values falls 

in [-0.5 0.5]. Fig.9 shows the approximation speed (iteration 

times) of different network structures, i.e., the smallest 

iteration number for reaching the predefined approximation 

error 0.0001. Each drawn point is the average value of 100 

times runs. It can be observed that the small-world 

networks (0<p<1) need much less iteration times than the 

regular neural network (when p=0), which demonstrates its 

advantage in processing speed. Furthermore, when 

0.1p  , the network has the fast approximation speed.    
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Fig. 9. The relationship between iteration and rewiring probability. 

 

Let the maximum allowable iteration times be 10,000, as 

previously mentioned for each p, we performed the simulation 

for 100 times, where the effective approximation times, i.e. 

error < 0.0001 within 10,000 iterations, is presented in Fig.10. 

It can be found that the small-world networks have higher 

accuracy rate than the regular network. A satisfactory 

approximation result with 0.1p  is shown in Fig.11 in 

which every drawn point is a mean value of 100 times 

repeated simulations. Therefore, the effectiveness of the 

proposed small-world network is thus verified. 
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Fig. 10. The effective approximation number in 100 times 

simulations under varying rewiring probability. 
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 Fig.11. Simulation for function approximation, 0.1p  . 

VI. CONCLUSION 

This paper presents a novel mathematical model of the HP 

memristor by designing a PWL window function with four 

tunable parameters. This model: (a) can represent all of the 

other compared models by adjusting the parameters; (b) It can 

reflect the most practical behaviors among the compared 

models and avoid serious issues like in linear and Joglekar 

model; (c) It considers the thresholds, which is not found in 

the other models, but is significance for practical applications. 

Numerical simulations and comparisons validate the accuracy 

and demonstrate advantages of the proposed model. In the 

second part, a new kind of small-world neural network using 

the proposed memristor in a bridge circuit as synaptic circuits 

is proposed. Simulation results for a nonlinear function 

approximation verify the superior performance of small-world 

networks over the original regular neural networks in 

approximation speed and effect, as well as indicate the 

effectiveness of the proposed scheme.  

This work may provide a reference to physically realize the 
small-world neural networks and promote the development of 
neuromorphic computing. Future work will include refining the 
model when more experimental data is available. More effects 
will be devoted to the investigation of the memristor-based 
small-world networks, including the rewiring strategy 
improvement, the rewiring probability selection, and the 
topology design. 
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