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Abstract— In this paper, we present an asymmetric stagewise
least square (ASLS) loss function for imbalanced classification.
While keeping all the advantages of the stagewise least square
(SLS) loss function, such as, better robustness, computational
efficiency and sparseness, the ASLS loss extends the SLS loss by
adding another two parameters, namely, ramp coefficient and
margin coefficient. Therefore, asymmetric ramps and margins
can be formed which makes the ASLS loss be more flexible and
appropriate for processing class imbalance problems. A reduced
kernel classifier of the ASLS loss is also developed which only
uses a small part of the dataset to generate an efficient nonlinear
classifier. Experimental results confirm the effectiveness of the
ASLS loss in imbalanced classification.

I. INTRODUCTION

IN this paper, we consider the problem of binary classifi-
cation. In classification, the quality of a classifier 𝑓(𝒙) is

measured by a problem dependent loss function 𝑙
(
𝑓(𝒙), 𝑡

)
,

where 𝑡 ∈ {±1} is the true label of pattern 𝒙. 𝑙
(
𝑓(𝒙), 𝑡

)

can also be written as 𝑙(𝑧), where 𝑧 = 𝑡𝑓(𝒙) is the margin
variable and can be used to measure the confidence of
classification. Given a training set {(𝒙𝑖, 𝑡𝑖)}𝑁𝑖=1, where each
training pattern 𝒙𝑖 ∈ ℝ

𝑑, the classifier 𝑓(𝒙) can be found
by empirical risk minimization of 𝑙(𝑧). Misclassification
error rate (0-1 loss) 𝑙0−1 = ∣∣(−𝑧)+∣∣0, where (⋅)+ denotes
the positive part and ∣∣ ⋅ ∣∣0 denotes the 𝐿0 norm, is the
most appealing loss function for classification because it
relates to the misclassification probability directly. However,
the noncontinuity and nonconvexity of the 0-1 loss make
its optimization NP-hard [1]. Therefore, researchers apply
various convex upper bounds of the 0-1 loss to alleviate this
computational problem [2], such as the hinge loss function
𝑙ℎ𝑖𝑛𝑔𝑒(𝑧) = [(1−𝑧)+]𝑞(𝑞 = 1 or 2), the logistic loss function
𝑙𝑙𝑜𝑔(𝑧) = log[1 + exp(−𝑧)], the least square (LS) loss
function 𝑙𝑙𝑠(𝑧) = (1− 𝑧)2, and the exponential loss function
𝑙𝑒𝑥𝑝(𝑧) = exp(−𝑧) (see Fig.1). These convex surrogate loss
functions are popular because of their virtues of convex op-
timization like unique optima, abundant convex optimization
tools and theoretic generalization error bound analysis [3].
However, these convex loss functions are poor approximation
to the 0-1 loss and less robust. Despite of the disadvantages
of nonconvex loss functions, various algorithms of noncon-
vex loss functions are studied in [4], [5] which prove that

Guibiao Xu and Bao-Gang Hu are with the NLPR, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China (email: {guibiao.xu,
hubg}@nlpr.ia.ac.cn).

Jose C. Principe is with the CNEL, Department of Electrical & Computer
Engineering, University of Florida, Gainesville, FL 32611, USA (email:
principe@cnel.ufl.edu).

This work was supported by NSFC grants #61075051, #61273196 and
China Scholarship Council.

nonconvex loss functions have higher generalization ability,
better scalability and better robustness. The successful appli-
cations of deep neural networks further shows the promising
future of nonconvex loss functions [6]. In [7], Yang and Hu
innovatively proposed a stagewise least square (SLS) loss
function that gradually approximates a nonconvex squared
ramp loss function by adaptively updating the targets (the
details are in Section II-B). SLS loss inherits the advantages
from both convex and nonconvex loss functions. Correntropy
loss function (C-loss) 𝑙𝐶(𝑧) = 𝛽[1− exp(− (1−𝑧)2

2𝜎2 )], where
𝛽 = 1

1−exp(− 1
2𝜎2

)
and 𝜎 is the correntropy window width,

is another nonconvex loss function that was proposed in [8].
One of the appealing advantages of C-loss is that it is more
robust to overfitting compared with other loss functions. Both
the SLS loss and the C-loss are also shown in Fig.1.

Imbalanced classification is another key problem in classi-
fication. Because all the above loss functions assume that the
class distributions and misclassification costs are balanced,
classifiers based on these assumptions tend to classify all
the patterns to be negatives1 when they run into imbalanced
datasets. The objective of imbalanced classification is trying
our best to separate positives from negatives, and it usually
costs more if we classify positives to be negatives than
otherwise. Hence, a variety of class imbalance learning
methods [9], [10] have been developed which could be
broadly divided into external methods and internal methods
[20], [21]. External methods are about data pre-processing so
as to balance the classes, while internal methods focus on al-
gorithmic modifications in order to reduce their sensitiveness
to class imbalance. MetaCost [11], one-side selection [12]

1In this paper, we use +1 (positive) to represent the minority class and
-1 (negative) to represent the majority class.
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Fig. 1. Loss functions in classification (𝜎 = 0.5 for C-loss).
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TABLE I

THE METHODS FOR SVMS TO DEAL WITH IMBALANCED CLASSIFICATION

No. Method Principle
1 Active Learning [17] Use active learning to balance the classes

2
Granular SVM-Repetitive
Undersampling (GSVM-RU) [18] Use granular computing theories to undersample the negatives

3 Different Error Costs (DEC) [19] Apply different misclassification costs to different classes
4 Margin Calibration [20] Combine margin compensation with DEC

5
Fuzzy SVM-Class Imbalance
Learning (FSVM-CIL) [21] Assign different fuzzy-membership values to different classes

6
Total Margin-based Adaptive
Fuzzy SVM (TAF-SVM) [22] Incorporate fuzzification and DEC into total margin-based SVM

7 Proximal SVM with DEC (PSVM-DEC) [23] Apply DEC to proximal SVM
8 Kernel Boundary Alignment (KBA) [24] Adjust the class boundary by adaptive conformal transformation
9 Scaling the Kernel Function [25] Use the prior knowledge obtained in a primary training to conformally rescale the kernel function

10 Kernel-Target Alignment [26] Use kernel-target alignment to measure the degree of agreement between a kernel and a learning task
11 SMOTE with Different Costs (SDC) [27] Combine SMOTE with DEC
12 Hybrid Kernel Machine Ensemble (HKME)[28] Combine discriminative SVM with one-class SVM
13 One-Class SVM [29] Only use the positives to train a recognition-based one-class SVM
14 Asymmetric SVM (ASVM) [30] Maximize the class-margin and core-margin simultaneously
15 z-SVM [31] Orient the trained decision boundary of SVM by 𝑧

and SMOTE [13] are typical external methods. Cost-sensitive
learning [14] and asymmetric surrogate loss [15] are mainly
used in internal methods. Support vector machines (SVMs)
[16] are popular classifiers because of their remarkable gen-
eralization performance. But their performance is also greatly
reduced when they are applied to imbalanced datasets for the
reason that the negatives push the decision boundaries closer
to the positives [9], [24], [27]. Table I systematically lists
the ways for SVMs to deal with imbalanced classification.
All of them try to apply data pre-processing, cost-sensitive
learning, or both to recover the decision boundary skewness.

For the aforementioned SLS loss, it also gives equal
penalties to all the training patterns. Intuitively, it is sensitive
to class imbalance (see Fig.3(c)). As the SLS loss is convex
within each stage and finally approximates the squared ramp
loss (see Fig.1), it naturally combines the merits of convex
and nonconvex losses. Thus, it is hopeful to extend the
SLS loss to imbalanced cases so that its application is
expanded. In this paper, we combine the ideas of DEC
[19] and Margin Calibration [20] and propose an asym-
metric stagewise least square (ASLS) loss function which
is also a kind of asymmetric surrogate loss [15]. On one
hand, we apply different penalties to different classes which
is widely used in imbalanced classification. On the other
hand, positives usually lie further from the ideal boundary
because of the problem of sampling and training data ratio
[27], balanced margins may hinder class imbalance learning
methods from totally recovering the boundary bias, which
is the bias introduced by the model. Thus, we place larger
positive margin than negative margin in order to further help
recover the boundary bias. Experimental results show that
the boundary bias can be effectively recovered if we apply
this ASLS loss in the imblanced datasets. In addition, we also
develop a reduced [32] kernel classifier of ASLS loss in order
to further improve the scalability as well as the training and
testing speed. Experiments on several benchmark datasets
confirm the effectiveness of the reduced kernel classifier of
ASLS loss.

The rest of the paper is organized as follows: Section II

presents the ASLS loss function; in Section III, we use ASLS
loss to build both linear and kernel classifiers. Illustrative
examples and experimental results are given in Section IV.
Finally, Section V summarizes the whole paper.

II. ASYMMETRIC STAGEWISE LEAST SQUARE LOSS

A. Least Square Loss

Firstly, we briefly introduce the LS loss and its properties
so as to make clear that why the SLS loss is introduced. The
LS loss 𝑙𝑙𝑠(𝑧) = (1− 𝑧)2 is the simplest convex loss which
possesses the computational advantage, and it is popular
in regression problems. But due to the differences between
regression and classification problems, its shortcomings are
obvious when it is applied to classification problems:

1) In regression problems, LS loss is the optimal loss
function when the noise in the dataset is Gaussian
noise. However, in the classification scenario, 𝑡 is
clamped onto two discrete values -1 and +1. As a
result, Gaussian distribution is no longer proper to
describe the residue variable 𝜀 = 𝑡 − 𝑦 (𝑦 = 𝑓(𝒙)).
From Fig.2(a), we can easily see that 𝜀 tends to be
large. Thus, the resulting classifier may be poor in
performance.

2) Different from other loss functions, LS loss is not
monotonically decreasing and it even penalizes the
patterns with large margins 𝑧 > 1 which, from the
perspective of statistical learning, can be classified with
high confidence [1]. In fact, it can be seen from Fig.1
that LS loss encourages a margin of exactly one.

3) LS loss is boundless and is sensitive to outliers.
4) Kernel classifiers of LS loss, such as Proximal SVM

(PSVM) [23] and least square SVM (LSSVM) [33],
lose the important property of sparseness. Because the
VC-complexity of kernel classifiers, the training and
testing speed all are closely related to the number of
support vectors (SVs) [16], nonsparseness limits the
application scope of LS loss in kernel classifiers [34].

Considering these limitations of LS loss, Yang and Hu [7]
succeeded to solve the above problems by carefully updating
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Fig. 2. Classification in the 1-D feature space: (a) regularized least square(ridge regression), patterns locate on the two red axis-aligned tracks, as a result,
the residues are large and their p.d.f. isn’t like the Gaussian distribution any more; (b) SLS-based classification [7], patterns at the 𝑛 + 1-th stage are
translated to {(𝑥𝑖, 𝑡𝑖𝜏 (𝑛)

𝑖 )}𝑁𝑖=1 which locate on the two new symmetric red tracks; (c) ASLS-based classification and (𝑟+,𝑚+) = (4, 2), patterns at the

𝑛+ 1-th stage are translated to {(𝑥𝑖, 𝑡𝑖𝜏 (𝑛)
𝑖 )}𝑁𝑖=1 which locate on the two new asymmetric red tracks.

the targets 𝜏 and forming an LS-style loss function (𝜏 − 𝑧)2
stagewisely, which is called the SLS loss function.

B. Stagewise Least Square Loss

The key idea of SLS loss is to use stagewisely updated
targets 𝜏 to solve a series of LS problems so that it can finally
approximate the squared ramp loss function (see Fig.1). At
the 𝑛-th stage, the SLS loss is [7]:

𝑙
(𝑛)
𝑆𝐿𝑆(𝑧) = (𝜏 (𝑛) − 𝑧)2, (1)

where the targets are updated as follows:

𝜏 (0) =1,

𝜏 (𝑛+1) =𝑧(𝑛) + 𝑆(1− 𝑧(𝑛)),
(2)

where 𝑧(𝑛) = 𝑡𝑦(𝑛), 𝑦(𝑛) = 𝑓 (𝑛)(𝒙) 2 and 𝑆(𝑣) =
max(0,min(1, 𝑣)). Note that at the 0-th stage, the SLS loss
is actually the original LS loss. Fig.2(b) shows an illustrative
example of the SLS loss. According to (2), the updating
rules are: 1) if 𝑧(𝑛) > 1, we are confident about these
predictions, then 𝜏 (𝑛+1) = 𝑧(𝑛) so that the objective function
can emphasis less on these patterns at the next stage; 2) if
𝑧(𝑛) ∈ [0, 1], these patterns are correctly classified but with
insufficient margins, then the SLS loss sets 𝜏 (𝑛+1) = 1 in
order to increase these patterns’ margins at the next stage;
3) if 𝑧(𝑛) < 0, these patterns are misclassified, then the
SLS loss sets 𝜏 (𝑛+1) = 𝑧(𝑛) + 1 so as to penalize these
misclassifications with moderate losses at the next stage.

When the SLS loss converges, the SLS loss becomes the
squared ramp loss (see Fig.1) [7]:

𝑙∗𝑆𝐿𝑆(𝑧) =

⎧⎨
⎩

0, if 𝑧 > 1,
(1− 𝑧)2, if 𝑧 ∈ [0, 1],
1, otherwise.

(3)

The SLS loss has several desirable properties: 1) it is in
an LS-style within each stage, then it is convex at each
stage and can be easily optimized; 2) it naturally results in
a more sparse kernel classifier (see Section III-B); 3) when
converges, the SLS loss approximates the nonconvex squared
ramp loss (3) which satisfies the requirements of a robust loss

2𝑓 (𝑛)(𝒙) denotes the output of a classifier at the 𝑛-th stage.

[35], as a result, both generalization ability and robustness
are improved. However, from (1) and (2), we can easily find
that the SLS loss is sensitive to class imbalance, and this is
the problem that we settle in this paper.

C. Asymmetric Stagewise Least Square Loss

The SLS loss (1) places equal penalties on all the training
patterns, as a result, when it is applied to imbalanced datasets,
it produces unfavorable classification results for the posi-
tives. For example, in Fig.3(c), the positives are uniformly
distributed in the upper squared plane, the negatives are
uniformly distributed in the lower squared plane and the
black dash line between the two squared planes is the
ideal decision boundary. However, in a training set, the
class ratio of positives over negatives is 1:10. It is easy
to verify from Fig.3(c) that the linear decision boundary of
the SLS loss [7] is far from the ideal one, which causes a
high incidence of false negatives which usually have higher
cost. In order to improve the performance of imbalanced
classification of the SLS loss, we propose to place different
penalties on different classes under the principle of cost-
sensitive learning. In Fig.3(c), the positives lie farther from
the ideal boundary than the negatives, thus we think that
placing balanced margins may increase the bias of the model.
Considering this issue and the viewpoint of asymmetric
surrogate loss [15], we suggest the margin of positives should
be larger in imbalanced classification so as to help improve
the classification of positives. In all, we combine the ideas
of DEC [19] and Margin Calibration [20], and introduce the
asymmetric stagewise least square (ASLS) loss function in
this paper:

𝑙
(𝑛)
𝐴𝑆𝐿𝑆(𝑧) =

𝑟

𝑚2
(𝜏 (𝑛) − 𝑧)2, (4)

where we call 𝑟 the ramp coefficient and 𝑚 the margin
coefficient. The targets 𝜏 are updated as follows:

𝜏 (0) =1,

𝜏 (𝑛+1) =𝑧(𝑛) + 𝑆(𝑚− 𝑧(𝑛)),
(5)

where 𝑆(𝑚 − 𝑧(𝑛)) = max(0,min(𝑚,𝑚 − 𝑧(𝑛))). We use
the pair (𝑟,𝑚) to represent the pair of ramp and margin
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Fig. 3. (a) The ASLS loss functions with various pairs of (𝑟,𝑚); (b)The ASLS loss of each pattern at the 1st, 2nd and 10th stage on the Pima dataset,
where (𝑟+,𝑚+) = (4, 2); (c) Linear decision boundaries of the SLS loss and various ASLS losses on a training set whose class ratio is 1:10.

coefficients in the ASLS loss. We can easily find that the SLS
loss is a particular case of the ASLS loss where (𝑟,𝑚) =
(1, 1). When converges, the ASLS loss becomes:

𝑙∗𝐴𝑆𝐿𝑆(𝑧) =

⎧
⎨

⎩

0, if 𝑧 > 𝑚,
𝑟
𝑚2 (𝑚− 𝑧)2, if 𝑧 ∈ [0,𝑚],
𝑟, otherwise.

(6)

Fig.3(a) shows 𝑙∗𝐴𝑆𝐿𝑆(𝑧) with various pairs of (𝑟,𝑚), from
which we can find that different pairs of (𝑟,𝑚) lead to
different ramp penalties and margins. In this paper, for
imbalanced classification, we always set (𝑟−,𝑚−) = (1, 1)
for the negatives and only modify (𝑟+,𝑚+) for the positives.
Note that both 𝑟+ and 𝑚+ should not be smaller than 1
in imbalanced classification. Fig.2(b) and Fig.2(c) intuitively
illustrate the differences between the SLS and ASLS losses
at the 𝑛-th stage in the 1-D feature space. For the positives,
it begins to penalize when 𝑧 < 2 while for the negatives, it
begins to penalize when 𝑧 < 1. That is to say, the positives
and negatives tend to have the different margins. Besides,
the positives (𝑟+ = 4) finally have larger penalties than
the negatives (𝑟− = 1). In this way the ASLS loss shows
the idea of cost-sensitive leaning. Fig.3(b) shows that on the
Pima dataset, the positives and negatives gradually converge
to the different squared-ramp losses in several stages. The
linear boundary of the ASLS loss with (𝑟+,𝑚+) = (10, 2)
in Fig.3(c) approximates the ideal one perfectly, while neither
the linear boundary of ASLS-(10, 1) nor ASLS-(1, 2) can ap-
proximate the ideal boundary perfectly. This phenomenon in
Fig.3(c) proves that combining the class-dependent penalties
with the class-dependent margins can help further improve
the efficiency of class imbalance learning methods. In Section
IV-A and IV-B, we experimentally discuss the effects of ramp
and margin coefficients in detail.

III. CLASSIFIERS BASED ON THE ASLS LOSS

A. Linear Classifier

Assume that 𝒆 is a vector of all ones; 𝑋 is the data matrix
where each row of 𝑋 is a training pattern 𝒙′3; �̄� = (𝑋, 𝒆) is
the augmented data matrix; Λ is an 𝑁 ×𝑁 diagonal matrix,
where Λ𝑖𝑖 = 1 if 𝑡𝑖 = −1 and Λ𝑖𝑖 = 𝑟+

𝑚2
+

if 𝑡𝑖 = +1,

3The superscript ′ denotes the transpose of vectors or matrices.

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 ; and 𝐼 is the identity matrix. Define the
linear classifier is 𝑦 = 𝑓(𝒙) = 𝝎′𝒙+𝑏, �̄� = (𝝎′, 𝑏)′ and Γ =
(𝑡1𝜏1, 𝑡2𝜏2, ⋅ ⋅ ⋅ , 𝑡𝑁𝜏𝑁 )′. A linear ASLS classifier (LASLS)
minimizes the following objective at the 𝑛-th stage4:

min
1

2
�̄�′�̄� +

𝜈

2
(�̄��̄� − Γ)′Λ(�̄��̄� − Γ), (7)

where 𝜈 is the regularization number. The closed-form solu-
tion to (7) is:

�̄� = (
1

𝜈
𝐼 + �̄� ′Λ�̄�)−1�̄� ′ΛΓ. (8)

As 𝑑 is usually not very large, LASLS is efficient for massive
datasets. However, if 𝑑 ≫ 𝑁 , computing (8) directly will
be time-consuming. Fortunately, we can use the following
equation to reduce the computational complexity [1]:

(
1

𝜈
𝐼 + �̄� ′Λ�̄�)−1 = 𝜈𝐼 − 𝜈2�̄� ′(Λ−1 + 𝜈�̄��̄� ′)−1�̄�. (9)

Note that ( 1𝜈 𝐼 + �̄�
′Λ�̄�)−1 needs to be done only once and

the training complexity of LASLS is 𝑂(min(𝑁, 𝑑)3) [7].

B. Kernel Classifier

The kernel ASLS classifier (KASLS) can be obtained by
applying the kernel trick 𝑘(𝒙𝑖,𝒙𝑗) =< 𝜙(𝒙𝑖), 𝜙(𝒙𝑗) >. Sup-
pose 𝐾 is the Gram matrix where 𝐾𝑖𝑗 = 𝑘(𝒙𝑖,𝒙𝑗), 𝑖, 𝑗 =
1, 2, ⋅ ⋅ ⋅ , 𝑁 and Ψ = (𝜙(𝒙1), 𝜙(𝒙2), ⋅ ⋅ ⋅ , 𝜙(𝒙𝑁 )). At the 𝑛-
th stage, the objective of KASLS is:

min
1

2
(𝝎′𝝎 + 𝑏2) +

𝜈

2
𝜺′Λ𝜺,

𝑠.𝑡. Ψ′𝝎 + 𝒆𝑏− Γ = 𝜺.
(10)

The KKT condition of its Lagrangian [16] is:

𝝎=Ψ𝜶, 𝑏=𝒆′𝜶,
𝜶=−𝜈Λ𝜺, 𝜺=Ψ′𝝎 + 𝒆𝑏− Γ,

(11)

where 𝜶 is a vector of Lagrange multipliers and is given by:

𝜶 = (𝐾 + 𝒆𝒆′ +
1

𝜈
Λ−1)−1Γ. (12)

The decision boundary of KASLS is:

𝑦 = 𝑓(𝒙) =

𝑁∑
𝑖=1

𝛼𝑖𝑘(𝒙,𝒙𝑖) + 𝑏 = 0. (13)

4Without confusion, the superscript (𝑛) of the stage number is omitted
here.
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In contrast to PSVM [23] and LSSVM [33] whose sparseness
is totally lost, KASLS retains the sparseness to some extent
[7]. Because part of 𝜀𝑖’s are close to zero (see Fig.2(c)),
their corresponding 𝛼𝑖’s are also close to zero based on
their relationship (11). Thus, the sparseness of KASLS can
be gained by setting an off-training filtering procedure with
a small threshold 𝜃, which is exactly the same as KSLS
[7]. The computational complexity of (12) is 𝑂(𝑁3) which
is also computed only once. It is time-consuming when 𝑁
becomes large. If conjugate gradient is applied to solve (10),
the computational complexity can be reduced to 𝑂(ℎ𝑁2)
where ℎ is the rank of matrix (𝐾+𝒆𝒆′+ 1

𝜈Λ
−1−𝐼) [33]. In

the next section, we develop a reduced kernel classifier for
the ASLS loss in order to further reduce the computational
complexity.

C. Reduced Kernel Classifier

KASLS is time-consuming when 𝑁 is large. Besides,
the SVs of KASLS may still be redundant, which causes
over-fitting problem [7]. In order to improve the training
and testing speed as well as the scaling property of the
resulting classifier, we derive a reduced version of KASLS
(KASLSR) which only uses a small portion of the training
set to constitute the nonlinear decision boundary.

Reduced SVM was proposed by Lee et al. [32], [36].
Although it only uses a small randomly portion of the
training set to its explicit evaluation, it has comparable
performance to the conventional SVM. What’s more, it also
reduces the size of the quadratic program. Here, we change
the inequality constraints in the reduced SVM to equality
constraints and form the KASLSR which is exactly an RBF
network [1]. Assume that 𝑋𝑅 ∈ ℝ

𝑁𝑅×𝑑 is a small randomly
selected portion of the training set; 𝜂 = 𝑁𝑅

𝑁 is the reduced
rate; and 𝐾𝑅 ∈ ℝ

𝑁×𝑁𝑅 is the reduced Gram matrix where
𝐾𝑅𝑖𝑗 = 𝑘(𝒙𝑖,𝒙𝑗), 𝒙𝑖 ∈ 𝑋, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 and 𝒙𝑗 ∈
𝑋𝑅, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑅. The decision boundary of KASLSR

is:
𝑦 = 𝑓(𝒙) =

∑
𝒙𝑗∈𝑋𝑅

𝑢𝑗𝑘(𝒙,𝒙𝑗) + 𝑏 = 0, (14)

where 𝒖 ∈ ℝ
𝑁𝑅 is also a weight vector. The optimization

problem of KASLSR is:

min
1

2
(𝒖𝑇𝒖+ 𝑏2) +

𝜈

2
𝜺′Λ𝜺,

𝑠.𝑡. 𝐾𝑅𝒖+ 𝒆𝑏− Γ = 𝜺.
(15)

The KKT condition of its Lagrange is:

𝒖=𝐾′
𝑅𝜶, 𝑏=𝒆′𝜶,

𝜶=−𝜈Λ𝜺, 𝜺=𝐾𝑅𝒖+ 𝒆𝑏− Γ.
(16)

And the solutions of Lagrange multipliers 𝜶 are:

𝜶 = (𝐾𝑅𝐾
′
𝑅 + 𝒆𝒆′ +

1

𝜈
Λ−1)−1Γ = (𝐺𝐺′ +

1

𝜈
Λ−1)−1Γ, (17)

where 𝐺 = (𝐾𝑅, 𝒆). Computing (𝐺𝐺′+ 1
𝜈Λ
−1)−1 directly is

time-consuming. Fortunately, like (9), we can also compute
it as follows:

(𝐺𝐺′ +
1

𝜈
Λ−1)−1 = 𝜈Λ− 𝜈2Λ𝐺(𝐼 + 𝜈𝐺′Λ𝐺)−1𝐺′Λ. (18)

TABLE II

CHARACTERISTICS OF THE EXPERIMENTAL DATASETS

Dataset
# of

Samples
# of Positive
Samples(%)

# of
Features

Pima 768 268 (34.90) 8
Phoneme 5404 1586 (29.35) 5
Vehicle-1 846 212 (25.06) 18

KC1 2109 326 (15.46) 21
Satimage-4 6435 626 (9.73) 36

Vowel-0 990 90 (9.09) 10
Yeast-me2 1484 51 (3.44) 8

Mammography 11180 260 (2.33) 6
Abalone-19 4177 32 (0.77) 8

Since there are only 𝑁𝑅 training patterns used for explicit
evaluation in KASLSR, the memory requirement of
KASLSR is 𝑂(𝑁𝑁𝑅) and its computational complexity is
approximately 𝑂(𝑁3

𝑅), i.e. 𝑂(𝜂3𝑁3). If we set 𝜂 around
0.3, as in most cases the rank ℎ of (𝐾+𝒆𝒆′+ 1

𝜈Λ
−1− 𝐼) is

much larger than 0.027𝑁 , the computational complexity of
KASLSR is much smaller than KASLS even when conjugate
gradient is applied. The SVs ratio of KASLSR is just 𝜂.

Note that all the above derivation is for the 𝑛-th stage. After
the 𝑛-th stage is finished, we need to update the targets
Γ according to (5) for the next stage. We know from the
experimental results that the update usually converges in
around 10 stages.

IV. EXPERIMENTS

In this section, we present the experimental results of the
proposed approaches to show their properties and perfor-
mance. Table II shows the characteristics of the datasets,
among which KC15 is about the software engineering mea-
surements, Mammography is generously provided by Dr.
Nitesh Chawla [13] and the other seven are from the UCI
data repository. If a dataset has more than two classes, we
carefully convert all but a certain class into negatives so
as to form a binary classification problem and increase the
skewness.

A. The Effect of Asymmetric Margins

Cost-sensitive learning is the most popular method to
deal with imbalanced classification which has been used in
many classifier models and its effectiveness has been broadly
proved [10]. Because positives usually lie further from the
ideal boundary, placing balanced margins is likely to be a
bias introduced by the model. In this section, we are going to
show how asymmetric margins help improve the imbalanced
classification. Firstly, we generate a set of patterns shown in
Fig.4(a) and apply LASLS with different pairs of (𝑟+,𝑚+)
to it. During this process, we always set the regularization
number 𝜈 = 100 so that the differences are only caused by
the margin coefficient of the ASLS loss. Fig.4(a) shows that
the positive margin of LASLS varies with 𝑚+, and the ratio
of positive margin over negative margin is 𝑚+

1 = 𝑚+. This
reflects the fact that the margin coefficient is in charge of the

5http://promise.site.uottawa.ca/SERepository/datasets-page.html
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Fig. 4. (a) Asymmetric margins of LASLS on a synthetic dataset; (b)
Decision boundaries of LASLS-(10,1), LASLS-(10,3) and LASLS-(30,1)
on an artificial dataset.

margins of different classes. Secondly, we generate another
set of patterns like Fig.3(c) whose class ratio is also 1:10.
We apply LASLS with (𝑟+,𝑚+) = (10, 1), (10, 3), (30, 1)
to this dataset respectively. Fig.4(b) shows the decision
boundaries of these LASLS’s. The decision boundary of
LASLS-(10,1) doesn’t approximate the ideal boundary well.
The decision boundary of LASLS-(30,1) is almost the same
with LASLS-(10,1) although it has higher ramp coefficient.
This phenomenon reflects the fact that only applying the
class-dependent penalties sometimes can’t fully recover the
boundary bias, because the margins of positives and negatives
to the ideal boundary are also imbalanced. Thus, we should
also consider the margin imbalance in order to fully recover
the boundary bias. And that is the reason, we believe, that
the decision boundary of LASLS-(10,3) approximates the
ideal one well. Therefore, introducing asymmetric margins to
imbalanced classification can help improve the classification
results as margin imbalance may also exist in the imblanced
datasets.

B. Comparison of Different Pairs of Parameters

We investigate how ramp and margin coefficients affect
the results of imbalanced classification in this section. We
perform LASLS and KASLS with different pairs of (𝑟+,𝑚+)
on the Vehicle dataset. We don’t perform off-training filtering
for KASLS here. 10-fold cross validation is applied and
Gaussian kernel 𝑘(𝒙𝑖,𝒙𝑗) = exp(−∣∣𝒙𝑖 − 𝒙𝑗 ∣∣2/𝜎2) is used
in KASLS. We use G-mean [9] to evaluate the imbalanced
classification results. And Table III shows the comparison
results. Firstly, it is LSLS or KSLS [7] when (𝑟+,𝑚+) =
(1, 1). Compared with LSLS and KSLS, LASLS and KASLS
do help to improve the imbalanced classification results a

TABLE III

COMPARISON AMONG DIFFERENT PAIRS OF (𝑟+,𝑚+) ON THE VEHICLE

DATASET. CR=2.99 IS THE CLASS RATIO OF VEHICLE DATASET. IN

EACH CELL, THE UPPER VALUE IS FOR LASLS, THE LOWER VALUE IS

FOR KASLS. THE BEST VALUES ARE IN BOLD.

�����𝑚+

𝑟+ 1 0.5CR CR 1.5CR 2CR 2.5CR 3CR

1
67.26
76.52

73.43
77.49

77.60
82.02

77.73
82.64

77.35
82.95

77.64
83.03

75.54
83.21

1.4
58.32
75.84

70.45
78.11

77.42
82.42

77.96
83.47

77.47
83.62

77.51
84.01

76.19
84.16

1.8
48.43
74.53

65.94
78.30

77.19
83.15

77.45
83.95

78.71
83.09

77.67
83.64

76.67
83.46

2.2
34.10
73.34

59.19
76.87

76.99
82.15

77.99
83.30

78.38
83.24

77.76
82.88

76.63
83.24

2.6
23.14
71.83

52.36
76.07

74.75
80.92

78.22
82.59

78.63
82.70

78.35
82.71

77.29
83.25

3
16.11
70.91

41.16
74.99

73.52
80.79

77.09
82.30

78.35
82.36

78.47
82.19

77.62
82.13

lot if (𝑟+,𝑚+) are properly set. Secondly, ramp coeffi-
cient contributes more to the improvement of imbalanced
classification when compared with margin coefficient. The
reason is that positives are much fewer than negatives. If
𝑟+ = 𝑟−, positives contribute much less to the objectives (7)
or (10) compared with negatives even when all the positives
are used. Thus, we have to use class-dependent penalties
to balance their contribution. Thirdly, margin coefficient
doesn’t begin to help improve imbalanced classification until
ramp coefficient is large enough and this phenomenon is
more severe in LASLS. This is an interesting and confusing
phenomenon which we will further investigate in the future.
The margin coefficient is not always the larger the better
and it should depend on the classifier outputs of positives,
because if 𝑚+ is too large, all the positive targets will be
𝑚+ which makes no differences among the positives. Above
all, both the ramp and margin coefficients can help improve
imbalanced classification if they are set properly.

C. The Effectiveness of KASLSR

We compare KASLSR with KASLS on the Vowel dataset
in order to show the effectiveness of KASLSR. Gaussian

TABLE IV

COMPARISON BETWEEN KASLS AND KASLSR ON THE VOWEL

DATASET. (MEAN(STD))

�������𝜂
KASLSR G-mean (%)

Time (s)

�������𝜂
KASLSR G-mean (%)

Time (s)

0.05
93.85(2.69)

0.0230(0.0008) 0.1
96.02(1.31)

0.0246(0.0004)

0.2
97.00(1.17)

0.0295(0.0005) 0.3
97.75(1.10)

0.0356(0.0003)

0.4
98.03(0.89)

0.0440(0.0004) 0.5
97.98(0.85)

0.0545(0.0006)

0.6
98.20(0.95)

0.0658(0.0007) 0.7
98.48(1.00)

0.0794(0.0008)

0.8
98.49(0.84)

0.0954(0.0014) 0.9
98.54(0.93)

0.1123(0.0005)

1
98.65(0.93)

0.1330(0.0048)

KASLS
G-mean (%)

Time (s) Ratio of SVs

98.28(2.76)
0.1424(0.0198) 0.7490(0.0109)
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TABLE V

COMPARISON OF LINEAR CLASSIFICATION (MEAN(STD)). THE ASTERISK

(*) DENOTES A SIGNIFICANT DIFFERENCE BETWEEN LASLS AND

OTHER METHODS. THE BEST VALUES ARE IN BOLD. BELOW THE NAME

OF DATASET IS THE RATIO OF CLASSES.

Dataset G-mean(%) F-Measure(%) AUC(%)

Pima
(1:1.866)

LASLS 75.10(5.13) 68.06(6.47) 82.92(4.60)
PSVM-DEC 73.92(6.70) 66.18(7.22) 83.02(4.74)
SVM-DEC 73.72(6.24) 65.49(6.69) 82.81(4.80)
SVM-SDC 74.54(5.00) 66.82(5.43) 82.52(4.72)

Phoneme
(1:2.407)

LASLS 76.10(1.98) 65.32(2.47) 81.30(2.21)
PSVM-DEC 74.38(2.40)∗ 62.93(2.79)∗ 81.16(2.18)
SVM-DEC 74.81(2.34) 63.43(2.71)∗ 81.05(2.28)
SVM-SDC 74.97(2.32) 61.59(1.63)∗ 81.05(2.32)

Vehicle
(1:2.99)

LASLS 78.08(3.41) 63.69(4.89) 85.65(3.68)
PSVM-DEC 77.14(4.44) 63.45(4.76) 85.01(3.98)
SVM-DEC 77.80(3.53) 63.19(4.29) 85.61(3.70)
SVM-SDC 78.04(3.47) 62.74(4.50) 85.91(3.74)

Yeast
(1:28.10)

LASLS 81.22(8.89) 28.76(9.60) 87.19(8.82)
PSVM-DEC 78.98(11.23) 26.64(7.63) 87.59(8.61)
SVM-DEC 80.75(10.44) 28.59(7.82) 87.08(8.67)
SVM-SDC 78.70(12.34) 27.36(8.45) 87.34(8.53)

Abalone
(1:129.53)

LASLS 72.67(12.81) 6.11(3.06) 85.79(6.81)
PSVM-DEC 76.73(8.19) 5.40(2.12) 86.07(6.30)
SVM-DEC 73.61(9.60) 4.86(1.59) 85.02(6.96)
SVM-SDC 74.89(13.28) 4.95(1.75) 84.80(7.13)

kernel, 10-fold cross validation and G-mean are all used here.
And we set 𝜃 = 6.3 × 10−2 for the off-training filtering
of KASLS. The reduced rate 𝜂 = 𝑁𝑅

𝑁 ranges from 0.05
to 1. Table IV shows the comparison results. On one hand,
the differences of G-mean among KASLSR’s are small and
we can get good classification results even using only 10
percent of the training set. On the other hand, the differences
of G-mean between KASLS and KASLSR’s are also small.
The SVs ratio of KASLSR is 𝜂. We can see from Table IV
that KASLSR with 𝜂 = 0.4 has comparable performance to
KASLS whose SVs ratio is 0.7490 and besides, the former
training time is much less than the latter. Thus, KASLSR is
comparable to KASLS even though only a small part (𝑋𝑅)
of the training set is used in the training and testing phases.
We use KASLSR in the following experiments.

D. Comparison with Other Class Imbalance Learning Meth-
ods

To demonstrate the performance of the ASLS loss in
imbalanced classification, we report experimental results on
the real world datasets along with other class imblance
learning methods. Except for G-mean, we also use F-measure
and AUC [37] to evaluate the classification results. For
comparison, PSVM-DEC [23], SVM-DEC [19] and SVM-
SDC [27] are selected as baselines, among which SVM-
SDC involves a popular data pre-processing method named
SMOTE [13]. Libsvm [38] is used to implement SVM-DEC
and SVM-SDC. For hyper-parameters like regularization
number 𝜈, ramp coefficient 𝑟+ and margin coefficient 𝑚+

etc., we determine them by 5-fold cross-validation on the
training set. We run three 10-fold cross-validation throughout
the experiments. In addition to reporting the average results,
we also perform paired t-test [1] comparing other class
imbalance learning methods to the ASLS-based classifiers

TABLE VI

COMPARISON OF NONLINEAR KERNEL CLASSIFICATION (MEAN(STD)).

THE ASTERISK (*) DENOTES A SIGNIFICANT DIFFERENCE BETWEEN

KASLSR AND OTHER METHODS. THE BEST VALUES ARE IN BOLD.

BELOW THE NAME OF DATASET ARE THE RATIO OF CLASSES AND THE

REDUCED RATE 𝜂.

Dataset G-mean(%) F-Measure(%) AUC(%)

Phoneme
(1:2.41)

(𝜂 = 0.3)

KASLSR 88.68(1.55) 82.41(2.82) 94.45(1.28)
PSVM-DEC 87.95(1.27) 81.71(1.94) 94.82(0.86)
SVM-DEC 88.23(1.15) 82.74(1.89) 93.99(1.20)
SVM-SDC 86.10(1.47)∗ 79.63(1.61)∗ 92.51(0.93)∗

Vehicle
(1:2.99)

(𝜂 = 0.7)

KASLSR 83.78(4.60) 71.49(6.55) 90.65(3.51)
PSVM-DEC 81.70(5.02) 68.48(5.79) 89.86(2.94)
SVM-DEC 81.85(4.31) 69.08(6.13) 90.46(3.11)
SVM-SDC 81.56(4.23) 69.00(4.82) 90.13(3.13)

KC1
(1:5.47)

(𝜂 = 0.3)

KASLSR 72.10(4.99) 46.05(6.23) 80.10(4.02)
PSVM-DEC 68.38(4.34)∗ 45.98(5.95) 80.62(4.06)
SVM-DEC 71.43(3.98) 44.12(7.28) 78.40(4.23)
SVM-SDC 68.06(5.89)∗ 43.09(5.74)∗ 78.17(5.02)∗

Satimage
(1:9.28)

(𝜂 = 0.3)

KASLSR 91.87(1.08) 73.97(4.06) 96.73(0.89)
PSVM-DEC 91.15(1.67) 73.92(4.50) 97.21(0.80)∗
SVM-DEC 90.16(2.18)∗ 70.45(4.69)∗ 96.88(0.84)
SVM-SDC 89.20(2.12)∗ 69.81(3.54)∗ 95.53(0.95)∗

Yeast
(1:28.10)

(𝜂 = 0.7)

KASLSR 81.69(9.48) 44.35(15.05) 88.61(9.05)
PSVM-DEC 71.67(11.66)∗ 35.59(19.08) 88.67(8.31)
SVM-DEC 75.82(9.40)∗ 35.68(11.55) 91.51(5.16)
SVM-SDC 74.21(12.74)∗ 38.41(10.73) 89.16(6.74)

Mammo.
(1:42)

(𝜂 = 0.3)

KASLSR 91.40(4.38) 67.72(9.12) 94.61(3.25)
PSVM-DEC 90.81(4.50) 54.70(5.75)∗ 95.24(3.81)
SVM-DEC 86.99(6.05)∗ 53.11(6.81)∗ 94.02(3.48)
SVM-SDC 82.04(5.59)∗ 56.08(5.89)∗ 91.91(4.62)

TABLE VII

THE AVERAGE SVS RATIOS OF KERNEL CLASSIFIERS OVER ALL THE

DATASETS.

KASLSR PSVM-DEC SVM-DEC SVM-SDC
Ratio 0.4654 1.0000 0.3274 0.3489

at the 5% significance level.
The average linear classification results are reported in

Table V. LASLS generally performs better than the other
class imbalance learning methods in terms of G-mean and
F-measure. Especially on the Phoneme dataset, LASLS is
statistically better at the 5% significance level when F-
measure is used to evaluate the classification reuslts. On the
Abalone dataset, PSVM is a little better. In all, there are no
statistical differences in AUC among all the methods and
all the datasets. From Table V, we know that LASLS has
comparable or better performance compared with the other
state-of-the-art linear imbalanced classification methods.

Table VI shows the average results of nonlinear kernel
classification. Gaussian kernel is used in all the kernel
classifiers and the reduce rates of KASLSR are listed be-
low the name of datasets. Like linear classification results,
KASLSR generally performs better than the other methods in
terms of G-mean and F-measure, particularly on the highly
imbalanced datasets like Satimage, Yeast and Mammography,
where KASLSR is statistically better in most of the cases.
The performance of AUC of all the methods are comparable
on all the datasets. Table VII shows the average SVs ratios
of the four kernel classifiers over all the datasets. We easily
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find that PSVM-DEC loses the sparseness, while KASLSR

possesses the property of sparseness although its sparseness
is not comparable to SVMs. In all, KASLSR is generally an
effective imbalanced classification method.

V. CONCLUSION

We propose an asymmetric stagewise least square loss
function for imbalanced classification in this paper. Its ramp
and margin coefficients are in command of the penalty and
margin of the ASLS loss respectively which make the ASLS
loss be more flexible. Experimental results show the effec-
tiveness of asymmetric margins in recovering the decision
boundary bias in imbalanced classification. Besides, com-
pared with the LS loss, it naturally inherits the advantages
of the SLS loss like higher generalization, better robustness,
and better sparseness [7]. In order to further improve the
training and testing speed, we also develop the KASLSR

algorithm which has comparable performance to KASLS.
Overally, experimental results confirm the effectiveness of
the ASLS loss in imbalanced classification. In the future, we
will further study the optimization and sparseness problems
of the ASLS loss and compare the ASLS loss to the emerging
C-loss function [8] and cost-free leaning [39], [40].
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