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Abstract—This paper proposes a real-time pricing scheme for
demand response management in the context of smart grids.
The electricity retailer determines the retail price first and
announces the price information to the customers through the
smart meter systems. According to the announced price, the
customers automatically manage the energy use of appliances
in the households by the proposed energy management system
with the aim to maximize their own benefits. We model the
interactions between the electricity retailer and its customers as
a 1-leader, N-follower Stackelberg game. By taking advantage
of the two-way communication infrastructure, the sequential
equilibrium can be obtained through backward induction. At the
followers’ side, given the electricity price information, we develop
efficient algorithms to maximize customers’ satisfaction. At the
leader’s side, we develop a genetic algorithms based real-time
pricing scheme by considering the expected customers’ reactions
to maximize retailer’s profit. Experimental results indicate that
the proposed scheme can not only benefit the retailers but also
the customers.

I. INTRODUCTION

With the increasing demand of electricity from residential
customers in recent years, the traditional electricity grid is
faced with many existing and potential problems such as
blackouts. In addition, the average household electricity load
has the potential to double with the deployment of plug-in
hybrid electric vehicles (PHEVs), which will further endanger
the existing grid [1]. Although the electricity prices in the
wholesale market fluctuate accordingly to the generation cost,
almost all end customers nowadays are charged flat retail
electricity prices. As a result, the customers do not have the
incentives to shift their electricity use from peak periods to
off-peak periods [2].

Instead of building more power plants to meet the peak
demand of customers, demand response (DR) is a better choice
for solving the above problems. Demand Response is defined
as a tariff or program established to motivate changes in
electric use by customers in response to changes in the price
of electricity over time [3]. Real-time pricing (RTP) is one of
the most important DR strategies, where the prices announced
by retailers change typically hourly to reflect variations of the
price in the wholesale market over time. Generally, customers
are notified of RTP prices the day before or a few hours before
the delivery time. One of the most typical types of RTP is day-

ahead RTP, in which customers receive the prices for the next
24 hours [4].

Both customers and utility companies can benefit from real-
time pricing. For customers, they have the incentive to shift
their electricity use from high price periods (peak time) to low
price periods (off-peak time) in order to reduce their utility
bills. For utility companies, they can obtain a low peak-to-
average load ratio, which can help them reduce their generation
cost and improve the grid reliability [5].

In general, the existing research on demand response and
real-time pricing can be divided into three parts. Firstly, the
work of [6][7] deals with how customers respond to the real-
time prices, i.e., they provide customers with an efficient
energy scheduling scheme by utilizing the benefits of smart
grids and smart meters, which provides a new picture of de-
mand response research in the context of smart grid. Secondly,
[1][8][9] are concerned with how the retailers set the real-time
pricing where they analytically models the customers’ prefer-
ences and customers’ electricity consumption patterns in the
form of utility functions. Thirdly, work of [2][10][11][12][13]
deals with how the retailers determine the real-time pricing
based on the expected responses of customers. [10] propose
a decision-making scheme for electricity retailers based on
Stackelberg game. They model the customers’ preference and
satisfaction as utility functions. [12] present an optimal demand
response scheduling with Stackelberg game approach. Similar
to [10], they model the customers’ behaviour patterns as
utility functions. [13] proposes a dependable demand response
management scheme via Stackelberg game in the context of
smart grids where they also model the electricity use patterns
of customers as utility functions. Rather than model customers’
behaviours as utility functions, [11][2] presents Stackelberg
game based models, in which the follower level problems are
modelled with appliance-level details.

Our results and analysis in this paper differ from the
related work in several aspects. For customer-side problems,
the difference between our work and [6][7] lies in that we
consider all categories of the home appliances including non-
shfitable appliances, interruptible appliances, non-interruptible
appliances and curtailable appliances, i.e., our models are
more accurate and comprehensive. For retailer-side problems,
existing research [1][8][9] have not given the explicit form of
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the customers’ utility functions and thus are unable to help
the customers to find the best usage and scheduling scheme
to maximize their benefits. To overcome this weakness, the
approach given in this paper aims to provide the best and
usable solution for customers to achieve their maximal bene-
fits. When determining the real-time prices for retailers based
on the expected responses of customers, the existing research
[2][10][11][12][13] are similar to ours in some aspects, i.e.,
we all model the interactions between an energy retailer and
its customers as a Stackelberg game. However, the difference
between our work and [10], [12] and [13] lies in that we
model the follower level problem (customers level problem)
with appliance-level details, which is more practical. Although
[11] and [2] model the follower level problem with appliance-
level details, they do not consider all types of appliances. In
this regard, our models which consider all four different types
of appliances and include all possible types of applications,
are most comprehensive and accurate.

In this paper, we propose a decision making scheme based
on Stackelberg game for a given electricity retailer and its
customers. We firstly design an efficient energy management
system to schedule the electricity use of appliances to achieve
the maximal benefits for customers. Furthermore, we design
an efficient real-time pricing algorithm for the retailer with
the aim to maximize its profits by considering the rational
responses from customers. The main contributions of this paper
are summarized as follows:

• We propose an efficient energy management system for
customers. We divide the appliances into non-shiftable ap-
pliances, interruptible appliances, non-interruptible appliances
and curtailable appliances according to their load types. For
different category of appliances, different models have been
proposed in this paper. To the best of our knowledge, this is
the first literature to consider all four types of appliances and
give relevant mathematical models.

• We model the interactions between the retailer and its
electricity customers as a 1-leader, N-follower Stackelberg
game and genetic algorithms have been adopted to obtain
Stackelberg solutions.

The rest of this paper is organized as follows. The system
model is proposed and the problem formulation is introduced
in Section II. In Section III, the system model is analysed, and
the optimal solution is given. Experimental results are provided
and discussed in Section IV. The paper is concluded in Section
V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will first introduce the concepts of
Stackelberg games with one leader and multi-followers, then
analyse how the optimal real-time pricing problem for demand-
side management can be modelled as a Stackelberg game
problem.

In a Stackelberg game with one leader and N followers,
the rule of playing is as follows: Firstly one player called the
leader (such as the retailer) chooses and announces its strategy
(such as price) uL from its strategy space UL; After knowing
the leader’s strategy, the other N players (such as customers)
called the followers will decide their best response (such as

energy consumption) strategies u∗

Fi
= Ri(uL)(i = 1, 2, ..., N)

from their strategy spaces UFi
(i = 1, 2, ..., N) respectively.

Assume that the followers’ goal is to minimise their objective
(such as bill) functions, then the followers’ best response
strategies are defined as

u∗

Fi
= Ri(uL) = arg min

uFi
∈UFi

JFi
(uL, uFi

) i = 1, 2, ..., N

(1)

Taking into account the followers’ reaction functions
Ri(uL)(i = 1, 2, ..., N), if the leader’s goal is to find its best
strategy which maximises its objective (such as profit) function
JL(uL, uF1

, ..., uFN
). That is, find

u∗

L = arg max
uL∈UL

JL[uL, R1(uL), ..., RN (uL)] (2)

Definition 1. In the above Stackelberg game with one leader
and N followers, an optimal Stackelberg strategy is a strategy
vector

(

uS
L, u

S
F1
, ..., uS

FN

)

satisfying the following conditions:

uS
Fi

= Ri(u
S
L) = arg min

uFi
∈UFi

JFi
(uS

L, uFi
) i = 1, 2, ..., N

(3)

uS
L = arg max

uL∈UL

JL[uL, R1(uL), ..., RN (uL)] (4)

In the following, we consider a micro-grid shown as Fig.1
which consists of a retailer and N customers [11]. It is assumed
that each customer is equipped with a smart meter. The retailer
procures electricity from the wholesale market, determines the
retail prices and sends the price information to the customers
(smart meters) via LAN. The smart meters then manage the
electricity use of home appliances in response to the price
signal and transmit the electricity demand information to the
retailer. The interactions between retailer and its customers can
be enabled through a two way communication infrastructure.
As it can be seen from the above interaction process, this is a 1-
leader, N-follower Stackelberg game, i.e., the customers make
their best energy consumption decisions based on the prices
announced by the retailer and in turn the retailer designs the
best real-time prices by analyzing the customers’ responses to
its prices.

In this section, we provide a Stackelberg game representa-
tion of the considered two-stage decision making problems.
The retailer plays the leader-level game and the customers
play the follower level game. Firstly, our focus is to formulate
the energy management problem in response to the real-time
pricing in each household at the follower level. Secondly, we
model the profit maximization problem for the retailer who
will offer the 24 hours real-time prices to the customers at the
leader level.

Throughout this paper, let N = {1, 2, ..., N} denote the

considered set of customers, where N , |N | and H ,

{1, 2, ..., H} denote the scheduling horizon. Usually, H = 24.

We define the prices offered by the retailer as a price vector:
P = [p1, p2, ..., ph, ...pH ], where ph represents the electricity
price at hour h .
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Fig. 1: Structure of a Micro-grid

A. Customer-side Problem at the Follower Level

We categorize the home appliances into non-shiftable appli-
ances, shiftable appliances and curtailable appliances accord-
ing to their load types.

For shiftable appliances, the operations of this part of
appliances can be shifted from high price periods to low
price periods in order to lower the customers’ payment bills.
However, the total energy consumption to accomplish the
operations is fixed.

We further divide the shiftable appliances into interruptible
and non-interruptible appliances. For the interruptible appli-
ances such as PHEVs, the operations of these appliances can
be interruptible, i.e., it is possible to charge the PHEV for
one hour, then stop charging for one or several hours and
then complete the charging after that. For non-interruptible
appliances such as washing machines and dish washers, the
operations of these appliances are non-interruptible, i.e., since
such appliances start, they have to keep running till the
completion.

For curtailable appliances such as air conditioning and
space heater, the total energy consumption can be adjusted.
For example, if a customer feels the price in a given hour is
too high, he can reduce the usage or even stop the use of the
appliance.

For each customer n ∈ N , we denote respectively the
whole set of appliances in each household as An, the set
of non-shiftable appliances as NSn, interruptible appliances
as In, non-interruptible appliances as NIn and curtailable
appliances as Cn.

Since the non-shiftable appliances consume a fixed amount
of energy at each hour during a fixed working period, there is
no flexibility to adjust the energy consumption in response to
the price and no mathematical model is needed.

1) Interruptible Appliances: This model improves some
existing work [6] [2]. In [6] [2], an upper limit of hourly
electricity usage is set for each household, but we do not have
such constraints for the optimization problem at customers’
side as there is no such usage limits in practice. Instead,
we consider the total upper limit of hourly usage of all the
customers served by the same retailer and put the constraint
in the optimization problem at retailers’ side. This is to

represent the maximum supply capability by the retailer or
the maximum load capacity of power networks. Therefore, the
retailer can actually influence the hourly use of electricity of
each household by properly determining the retail price, which
is more feasible and realistic from an application point of view.

For each interruptible appliance a ∈ In, we define a
scheduling vector of energy consumption over the scheduling
horizon H = {1, 2, ..., H} as follows:

xn,a = [x1
n,a, ..., x

h
n,a, ..., x

H
n,a] (5)

where xh
n,a ≥ 0 represents the nth user’s electricity consump-

tion of appliance a at time h over the scheduling horizon.

The total electricity consumed during the scheduling win-
dow of appliance a ∈ In is defined as En,a and the
scheduling window for each appliance a is set by each
customer according to his/her preference and can be defined

as Hn,a , {αn,a, αn,a + 1, ..., βn,a}. Since the window
Hn,a is consecutive, one only needs to specify the beginning
scheduling time αn,a ∈ H and end time βn,a ∈ H. To meet
the energy need of operations for each appliance a over the
scheduling window, we have:

βn,a
∑

h=αn,a

xh
n,a = En,a (6)

As there is no operation needed for the hours outside the
scheduling window, we have:

xh
n,a = 0, ∀h ∈ H\Hn,a (7)

Furthermore, the energy consumption for each appliance a
at each hour h ∈ Hn,a is subject to:

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀h ∈ Hn,a. (8)

where γmin
n,a is the minimum power level of each appliance a

and γmax
n,a is the maximum power level.

Finally, the payment minimization problem for an inter-
ruptible appliance can be modelled as follows:

minJIn(a) = min
xh
n,a

∑H

h=1 p
h
× xh

n,a

s.t.
∑βn,a

h=αn,a
xh
n,a = En,a,

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀h ∈ Hn,a,

xh
n,a = 0, ∀h ∈ H\Hn,a.

(9)

2) Non-interruptible Appliances: As the operations of each
non-interruptible appliance a ∈ NIn are consecutive, we
define the length of the operations Ln,a. For non-interruptible
appliance, the customers also need to set the scheduling

window Hn,a , {αn,a, αn,a + 1, ..., βn,a} by specifying the
beginning scheduling time and end time.

The optimization problem is to find the optimal start time
s∗n,a that minimize the customer’s payment. As a result, for
each appliance a, to meet the energy need of accomplishing
the operations, we have:

sn,a+Ln,a
∑

h=sn,a

xh
n,a = En,a, (10)
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where αn,a ≤ sn,a ≤ βn,a − Ln,a.

Furthermore, the constraints Eq.(7) and Eq.(8) also apply
to the non-interruptible appliances.

As a result, the payment minimization problem for a non-
interruptible appliance can be defined as follows:

minJNIn(a) = min
sn,a

{min
xh
n,a

∑sn,a+Ln,a

h=sn,a
ph × xh

n,a}

s.t.
∑sn,a+Ln,a

h=sn,a
xh
n,a = En,a,

αn,a ≤ sn,a ≤ βn,a − Ln,a,

xh
n,a = 0, ∀h ∈ H\Hn,a,

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀h ∈ Hn,a.

(11)

3) Curtailable Appliances: Similarly to shiftable appli-
ances, we assume that for each appliance a ∈ Cn, the
customers need to select the beginning hour αn,a ∈ H and
end hour βn,a ∈ H for a valid scheduling window. Compared
to shiftable appliances, the window of curtailable appliances
should be more strict and accurate because the appliances
will be on for the whole window. For example, for a typical
summer weekday, it is not reasonable to select the beginning
hour αn,a = 7 PM and the end hour βn,a = 7 AM (the next
day) for the air conditioning, which instead is a perfect time
window for PHEVs or washing machine. However, αn,a = 7
PM and βn,a = 12 PM could be a reasonable time setting for
the air conditioning.

We define the energy consumption at each typical hour h
for each curtailable appliance xh

n,a, the minimum acceptable

consumption level uh
n,a and maximum affordable consumption

level uh
n,a. The minimum acceptable consumption level uh

n,a

and maximum affordable consumption level uh
n,a differ among

customers and can be set according to each individual cus-
tomer’s preference. Usually, γmin

n,a ≤ uh
n,a and uh

n,a ≤ γmax
n,a ,

where γmin
n,a and γmax

n,a are defined in the previous section.
Finally, we have:

uh
n,a ≤ xh

n,a ≤ uh
n,a (12)

By the customers’ behaviour analysis, there are two types
of optimization models for curtailable appliances.

For some customers, in particular more price sensitive ones,
they prefer reducing the spending as much as possible subject
to an acceptable comfortable level (for example, the air condi-
tion is turned on at least half an hour with each hour between
7:00pm and 10:00pm). For the other (and more) customers,
they prefer a budget based comfortable maximization model
in the sense that, for a given curtailable appliance such as air
conditioning, they set up a daily budget (i.e., the maximum
allowed daily spending) under which they choose to make their
life as comfortable as possible under the given budget. To meet
the above two types of customers’ preferences, two types of
optimization model for curtailable appliances are proposed as
below and a customer can choose one of them dependent on
his/her preference.

a) Minimize Bill Subject to an Acceptable Life Quality:
The life quality for customers in terms of energy use can
be represented as the total electricity consumed during the
scheduling window. In this case, for each curtailable appliance,
the electricity consumed during the operation period should not
less than a minimum consumption level, i.e., there exists a life
quality constraint for each appliance a:

βn,a
∑

h=αn,a

xh
n,a ≥ Umin

n,a (13)

The optimization problem is to minimize the payment bill
of customers subject to the life quality constraint shown as
follows:

minJ1Cn(a) = min
xh
n,a

∑βn,a

h=αn,a
ph × xh

n,a

s.t.

uh
n,a ≤ xh

n,a ≤ uh
n,a,

∑βn,a

h=αn,a
xh
n,a ≥ Umin

n,a .

(14)

b) Maximize Life Quality Subject to an Acceptable Fi-
nancial Constraint: In this case, for each curtailable appliance,
the money spent during the operation period should not exceed
the given budget, i.e., there exists a financial cap for each
appliance a:

βn,a
∑

h=αn,a

ph × xh
n,a ≤ Cmax

n,a (15)

Finally, the optimization problem is to maximize the life
quality of customers subject to the budget constraint shown as
follows:

maxJ2Cn(a) = max
xh
n,a

∑βn,a

h=αn,a
xh
n,a

s.t.

uh
n,a ≤ xh

n,a ≤ uh
n,a,

∑βn,a

h=αn,a
ph × xh

n,a ≤ Cmax
n,a .

(16)

Since there are two types of optimization model for cur-
tailable appliances, the optimization problem for customer n
including all types of appliances has two different optimization
objectives shown as Eqs.(17) and (18). The customers can
choose one of them depending on their preferences.

minJ1n = min{
∑

a∈In

JIn(a) +
∑

a∈NIn

JNIn(a) +
∑

a∈Cn

J1Cn(a)}

subject to the constraints (6)-(8), (10) and (12)-(13).
(17)

minJ2n = min{
∑

a∈In

JIn(a) +
∑

a∈NIn

JNIn(a) −
∑

a∈Cn

J2Cn(a)}

subject to the constraints (6)-(8), (10), (12) and (15).
(18)

B. Retailer-side Problem at the Leader Level

In this subsection, the energy cost model for a retailer will
be discussed first, and then a profit maximization model will
be proposed.
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Let function Ch(Lh) represent the cost of providing elec-
tricity by the retailer at each hour h ∈ H, where Lh represents
the amount of power consumed by all users at each hour of
the day. If per unit (such as KW) cost at hour h is ah, then
the cost function can be given as follows:

Ch(Lh) = ahLh (19)

where ah > 0 and h ∈ H.

For each hour h ∈ H, by defining the minimum price that
the retailer (utility company) can offer pmin and the maximum
price pmax, we have:

pmin
≤ ph ≤ pmax. (20)

pmin and pmax are usually designed based on history
prices, market competition, customers’ acceptability and the
wholesale price. It is reasonable to assume that the price the
retailers can offer is greater than the wholesale price for each
hour, and there exists a price cap for the retail prices due to
retail market competition and regulation. Then pmax can be
used to represent such a price cap.

Note that there is usually a maximum supply capacity,
denoted as Emax

h , at each hour. Thus, we have the following
constraint:

∑

n∈N

∑

a∈An

xh
n,a ≤ Emax

h , ∀h ∈ H (21)

Furthermore, due to the political pressure and customers’
acceptability, the retailer needs to set up a total revenue
cap, denoted as Rmax. As a result, we have the following
constraint:

∑

h∈H

ph ×

∑

n∈N

∑

a∈An

xh
n,a ≤ Rmax (22)

Finally, the profit maximization problem can be modelled
as follows:

max
ph

{

∑

h∈H

ph ×

∑

n∈N

∑

a∈An

xh
n,a −

∑

h∈H

Ch(
∑

n∈N

∑

a∈An

xh
n,a)}

s.t.

pmin
≤ ph ≤ pmax,

∑

n∈N

∑

a∈An

xh
n,a ≤ Emax

h , ∀h ∈ H,

∑

h∈H

ph ×

∑

n∈N

∑

a∈An

xh
n,a ≤ Rmax.

(23)

C. A Two Stage Stackelberg Game Model

We model the interactions between the retailer and the
customers as a 1-leader, N-followers two stage Stackelberg
game.

• Stage 1: The retailer determines the electricity prices
P = [p1, p2, ..., ph, ...pH ] to offer to the customers.

• Stage 2: The customers determine their individual elec-
tricity demand to maximize their pay-off, given the price P .

III. STACKELBERG GAME MODEL SOLUTIONS

A. Existence of Stackelberg Strategy

In the previous section, we have shown that the optimal
real-time pricing problem for demand-side management can
be modelled as a Stackelberg game problem, in which the
customers as the followers need to find the optimal energy
consumption schemes or strategies to minimize their objective
functions given in Eq.(17) or Eq.(18), whereas the retailer as
the leader needs to find the optimal real-time price strategy
to maximise its objective function given in Eq.(23). Before
we develop the algorithms which can find the optimal energy
consumption schemes for the customers and the optimal real-
time price strategy for the retailer, we need to know whether
such optimal consumption schemes and optimal real-time price
strategy exist. In other words, whether the optimal Stackelberg
strategy for the considered Stackelberg pricing game problem
exists? The following theorem gives a positive answer to this
question.

Theorem 1. Consider the Stackelberg game with one leader
and N followers as follows: 1) The leader’s objective function
is defined in Eq.(23) and its strategy space is defined by the
constraints (20)-(22); 2) There are N followers, in which some
followers’ objective functions are defined by Eq.(17) and their
strategy spaces are defined by the constraints (6)–(8), (10) and
(12)–(13), whereas the other followers’ objective functions are
defined by Eq.(18) and their strategy spaces are defined by
the constraints (6)–(8), (10), (12) and (15). Then the optimal
Stackelberg strategy exists.

Due to the space limitation, the proof for the above theorem
is omitted in this paper. With the above theorem ensure the
existence of the optimal Stackelberg strategy, the algorithms to
find the optimal Stackelberg strategy are going to be developed
and presented in the remaining part of this section.

B. Backward Induction

The proposed leader-follower Stackelberg game model con-
sists of two-stage, sequential decision-making problems. The
common solution concept for a multi-stage Stackelberg game is
the sub-game perfect equilibrium(SPE). Backward Induction,
which starts at the last action and reasons backwards, is a
general method to determine the SPE [14]. We first starts from
stage 2 and analyse how the customers (followers) adjust their
energy consumption to maximize the pay-off, given the prices
offered by the retailer (leader). Then it moves backwards in
time to stage 1 to analyse how the retailer makes real-time
pricing decisions based on the expected response of followers.

If the analytical solutions exist both at the followers’ side
problem and leader’s side problem, we can obtain the optimal
Stackelberg strategies for this game. However, in our case,
there are no analytic solutions because the followers’ reaction
functions are not differentiable. As a result, genetic algorithms
are adopted to obtain the Stackelberg solutions.

C. Solutions to Customer-side Problem in Stage 2

As the follower’s optimization problem is the sum of
three separable sub-optimization problems corresponding to
interruptible, non-interruptible, and curtailable appliances re-
spectively. As a result, the follower’s optimization problem
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can be solved by each sub-optimization problem separately.
As the result, in the following, we discuss how to solve each
sub-optimization problem.

1) Interruptible Appliances: The mathematical model of
interruptible appliances is shown as Eq.(9) which is a typical
linear programming problem. Simplex method is a common
method to this problem. In this paper, we adopt IBM CPLEX
solver to solve this problem.

2) Non-interruptible Appliances: Eq.(11) shows the math-
ematical model of non-interruptible appliances. The optimiza-
tion problem is to find the optimal start time s∗n,a for each non-
interruptible appliance to minimize the customer’s payment
bill. We define the sub-problem of the original model Eq.(11)
as follows by fixing the start time at s′n,a ∈ [αn,a, βn,a−Ln,a].

min
xh
n,a

∑s′n,a+Ln,a

h=s′n,a
ph × xh

n,a

s.t.
∑s′n,a+Ln,a

h=s′n,a
xh
n,a = En,a,

xh
n,a = 0, ∀h ∈ H\Hn,a,

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀h ∈ Hn,a.

(24)

Eq.(24) is a linear programming problem and can be easily
solved with IBM CPLEX solver. As a result, the original
problem Eq.(11) can be solved in an iterative way.

3) Curtailable Appliances: The optimization problems
Eq.(14) and Eq.(16) for curtailable appliances are linear pro-
gramming problems and can be solved by existing solvers such
as IBM CPLEX.

D. Solutions to Retailer-side Problem in Stage 1

We adopt genetic algorithms (GAs) to solve profit max-
imization problem at the retailer’s side and show how the
retailer finds the optimal electricity real-time prices taking into
account the customers’ responses.

GAs are computationally simple and powerful and are
very good tools for non-linear optimization problems since
they have more chances to find the global optimal solutions.
Furthermore, GAs are often the only method available for some
ill-defined optimization problem such as those involving with
non-differential, discontinuous, or non-analytically definable
functions. The optimization problem for the retailer’s side is
one of such cases.

In our genetic algorithm, binary encoding and deterministic
tournament selection without replacement is adopted. For
the crossover and mutation operations, we employ uniform
crossover and bit flip mutation respectively.

Finally, the GA based decision-making algorithms are
shown as Algorithm 1 and 2, which are implemented at the
retailer-side and customer-side respectively. At the end, the
most profitable prices for the retailer and the best usage pat-
terns and schedules with the minimized bill and/or maximized
life quality for each customer are found.

Algorithm 1 GA based pricing algorithm to Eq.(23) executed
by the retailer

1: Population Initialization, i.e., generating a population of
N chromosomes randomly; each chromosome denotes a
strategy of the leader (retailer).

2: for i=1 to N do
3: The leader plays the strategy uL,i, i.e., announces a set

of 24-hour prices by decoding the ith chromosome to
the smart meters (customers) via LAN;

4: Receive the optimal response of each follower n includ-
ing the optimal energy consumption information: uFn,i.

5: Evaluate the fitness of strategy i based on uL,i and uFn,i

with the aim to solve the profit maximization problem
shown as Eq.(23).

6: end for
7: A new generation of chromosomes is created by using the

selection, crossover and mutation operations of the genetic
algorithm.

8: Steps 2 - 7 are repeated until the stopping condition is
reached.

9: The retailer announces the finalized price vector to the
smart meters (customers) via LAN at the beginning of the
scheduling horizon.

Algorithm 2 Energy management algorithm executed by each
smart meter (customer)

1: Receive the prices information from the retailer.
2: The smart meter calculates the energy consumption in

response to prices by solving the follow-side problem
Eq.(17) or Eq.(18).

3: The smart meter sends back the total energy consumption
at each hour to the retailer via LAN.

IV. EXPERIMENTAL RESULTS

We simulate a neighbourhood consisting of 100 customers
served by one energy retailer. It is assumed that each customer
has 4 appliances: PHEV, dishwasher, washing machine, air-
conditioning. The scheduling horizon is set from 8AM to 8AM
(the next day). We assume that the end customers are homoge-
neous, i.e., En,a = Ea, Hn,a = Ha, γmin

n,a = γmin
a , etc. With

the purpose of simulations, for air-conditioning (curtailable
appliance), we assume that all the customers choose the second
optimization model for curtailable appliances, i.e., maximize
life quality subject to an acceptable financial constraint.

As a result, the parameter settings of each type of appli-
ances are given in Table I, II, III.

For the cost of the energy provided to customers by retailer,
the cost function is Ch(Lh) = ahLh , where Lh represents the
amount of power consumed by all users at each hour of the day.
The values of ah from 8AM to 8AM (the next day) are set as
(4.5, 3, 2.5, 3, 4, 5, 5.5, 4.5, 4.5, 3, 2.5, 3, 4, 5, 5.5, 4.5, 3, 6, 10,
9.5, 10, 10, 9.6, 9, 8, 5, 3, 2, 2, 1.5, 5, 5).

In this section, we will firstly show the benefits to the
retailer by employing our proposed real-time pricing scheme.
Secondly, we will show the benefits to customers by adopting
our proposed energy management scheme.
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TABLE I: Parameters for each interruptible appliance

Appliance Name Ea Ha γmin
a γmax

a

PHEV 9.9kwh 8AM-8AM 0.1kwh 3.0kwh

TABLE II: Parameters for each non-interruptible appliance

Appliance Name Ea Ha γmin
a γmax

a La

Dishwasher 2.5kwh 10PM-6AM 0kwh 1kwh 3hrs

Washing machine 1.94kwh 8AM-7PM 0kwh 1kwh 2hrs

TABLE III: Parameters for each curtailable appliance

Appliance Name Cmax
a αa βa uh

a uh
a

Air-conditioning 150 pence 7PM 11PM 0.5kwh 2KW

TABLE IV: Parameter settings of GA

Parameter Name Symbol Values

Chromosome Length L 10

Population Size N 50

Mutation Probability Pm 0.005

Terminate Generation T 30

A. Benefits to Retailer

In this section, we compare our proposed optimal real-time
pricing scheme with optimal flat pricing scheme.

The parameter settings of our proposed genetic algorithm
are shown in Table IV.

Since the customers have no incentives to change their
energy consumption pattern when responding to flat pricing,
we assume that, under the flat pricing, the customers start
the operations of appliances right at the beginning of the
scheduling window Ha and the appliances work at their typical
power levels. We assume that, for each hour h, ah ≤ ph ≤ 14
holds. When calculating the optimal flat pricing, we use same
parameters and model as those of optimal real-time pricing.
As a result, the determination of optimal flat pricing becomes
a linear programming problem.

Finally, the obtained optimal real-time prices and the
optimal flat prices are given as Figure 2.

We begin to look at the peak-to-average ratio (PAR) [7] in
the residential load when using our proposed optimal real-time
pricing scheme. Clearly, the retailers are interested in having
a more balanced load demand with a lower PAR.

The total energy consumption of the customers under
optimal real-time prices and optimal flat prices are given as
Figure 3. Compared with the flat pricing, we can see from
Figure 3 that the real-time pricing can flatten the load demand
curve and reduce the peak-to-average ratio. The PAR under
flat pricing is 3.94 while the PAR under real-time pricing is
3.45, which means a 12% reduction.

Furthermore, the details of revenue, cost and profit under
optimal RTP and optimal flat prices can be found in Table V.

From Table V, we can see that, to make the same revenue
which means the total bills for all customers are the same, the
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Fig. 2: Obtained optimal real-time prices and optimal flat
prices
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Fig. 3: Total energy consumption under real-time prices and
flat prices at each hour of the day

TABLE V: Comparison of revenue, cost and profit under
different price settings

Price setting Revenue

(pounds)

Cost

(pounds)

Profit

(pounds)

Optimal Real-time Pricing 200 132.63 67.37

Optimal Flat Pricing 200 155.18 44.82

cost of the retailer under optimal real-time pricing is 132.63
pounds and the cost under optimal flat pricing is higher (155.18
pounds). This is due to the increase of peak demand and
thus the increase of peak-time cost. Furthermore, the profit
under optimal real-time pricing (67.37 pounds) is much higher
than the profit under optimal flat pricing (44.82 pounds).
The example shows a very important potential for the real-
time pricing and our proposed approach: the real-time pricing
enables to significantly increase the retailer’s profit without
increasing customers’ expenses.
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Fig. 4: Comparison of daily electricity payment of each
customer over one month

B. Benefits to Customers

In this subsection, we show the effectiveness of the pro-
posed energy management scheme based on public real-time
price data. We use the actual Real Time Price (RTP) data
adopted by ISO New England from January 1, 2012 to January
31, 2012, which is available to the public online at [15].
With the purpose to design a benchmark, we assume, without
our proposed energy management scheme, the appliances start
operations right at the beginning of the time horizon Ha and
work at their typical power levels.

The simulation result is shown as Figure 4 where we can
easily find that, after adopting energy management scheme, the
daily payment bills are always reduced. More specifically, the
average daily payment of one customer over one month can
be reduced from 105.31 pence to 91.87 pence, which means a
more than 13% save on the bill.

V. CONCLUSION

In this paper, by utilizing the benefits of smart girds, we
model the interactions between the retailer and its customers
as a 1-leader, N-follower Stackelberg game. Firstly, according
to the load types, we categorize home appliances into non-
shiftable, interruptible, non-interruptible and curtailable appli-
ances. For different category of appliances, different appliance-
level optimization models are given. Secondly, genetic al-
gorithms have been adopted to obtain Stackelberg solutions.
Since the experimental results show that both the retailer and
its customers can benefit from the proposed scheme, it has
great potential to improve the implementation of current energy
pricing programs, help customers to reduce the increasing
energy bills, and change their energy usage patterns.

Our future work will focus on Stackelberg game prob-
lems with imperfect information. Our existing work takes
the assumption that there exists a two-way communication
infrastructure between the retailer and its customers. However,
in reality, there may not exist this two-way communication
either at retailer-side or at customer-side, i.e., the retailers are
unable to obtain the expected response (energy consumption

information) from customers. The above problem can be
modelled as a Stackelberg game with imperfect information,
i.e., the leader does not know its followers’ reaction function.
As a result, the leader has to learn the reaction function from
history data.
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