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Abstract—In this paper, a novel weighted-combination-of-
components (WCC) method is proposed for modeling and fore-
casting trend and seasonal time series, and such a method is
based on decomposition model which regards the time series
as the weighted combination of trend, seasonality and other
components. Specifically, the Holt’s two-parameter exponential
smoothing (HTPES) method is improved (for short, the IHTPES
method) to evaluate the trend with linearly declining increments;
and the multiple sine functions decomposition (MSFD) method
is developed to evaluate the seasonality. Then the weighted
combination of the evaluations is obtained to estimate the
global time series. Numerical experiment results substantiate the
effectiveness and superiority of the proposed WCC method in
terms of modeling and forecasting time series from the NN3
competition.

I. INTRODUCTION

Time series modeling and forecasting is important and
useful for applications in numerous different fields [1]–[5]
such as business, economics, and science. Note that many time
series exhibit the characteristics of trend and/or seasonality [6].
In some cases, trend and seasonality even drive the evolutions
in the quarterly or monthly time series [5][6]. In other words,
trend and seasonal components have a significant impact on
the process of modeling and forecasting time series [7]. Thus,
effective methods for modeling and forecasting time series
with trend and/or seasonality is especially meaningful for
practical applications.

One of traditional approaches [7]–[9] to model and forecast
the time series with trend and seasonality is based on the
classic decomposition model which regards the time series as
the combination of trend, seasonality and other components.
Generally, the traditional methods first estimate the seasonal
influence, and then remove it from the data before the trend is
estimated, which ignores the interaction of the trend and the
seasonal components.

In this paper, a novel method termed WCC (weighted
combination of components) is proposed based on the decom-
position model which regards the time series as the weighted
combination of trend, seasonality and other components (e.g.,
level component). Specifically, the Holt’s two-parameter ex-
ponential smoothing (HTPES) method [6][10] is improved
(i.e., IHTPES method) for evaluating the trend with linearly
declining increments, and a method of multiple sine functions
decomposition (MSFD) is proposed and developed to evaluate

the seasonality. Then the global time series is estimated by the
weighted combination of the evaluations, which means that
the proposed WCC method has the superiority of estimating
the trend and the seasonality of the global time series in a
manner of simultaneously processing the original time series.
By exploiting the WCC method on the NN3 forecasting
competition dataset, the numerical experiment results verify
the effectiveness and superiority of the proposed WCC method
in terms of modeling and forecasting time series.

II. METHODOLOGY DESCRIPTION

In this paper, the decomposition model is used to describe
the time series Yt with trend Tt, seasonality St and the
remainder of other components denoted by Rt, i.e.,

Yt = wTt + (1 − w)St + Rt, (1)

where w ∈ [0, 1] is used to adjust the weights for the two
main components of the time series. It is worth pointing out
that, for Yt, the proposed WCC method is with w ∈ (0, 1),
the IHTPES method is with w = 1, and the MSFD method is
with w = 0.

Note that we choose the level of the time series Lt (i.e., the
average value of the time series) as Rt throughout the paper;
and that the WASD (weights and structure determination)
neuronet [11] will be exploited to estimate Rt in the our
further work for higher accuracy. In the rest of this section,
the IHTPES, MSFD, and WCC methods are investigated for
trend estimation, seasonality estimation, and global time series
estimation, respectively.

A. Trend Estimation

In this subsection, the improved Holt’s two-parameter ex-
ponential smoothing (i.e., IHTPES) method is used to evaluate
the trend of the time series. Firstly, the original Holt’s two-
parameter exponential smoothing method [6][10] is described
as follows:

Lt = αYt + (1 − α)(Lt−1 + Tt−1), (2)

Tt = β(Lt − Lt−1) + (1 − β)Tt−1, (3)

Ŷ t+k = Lt + kTt, (4)

where α ∈ (0, 1) denotes the smoothing parameter for the level
Lt of the time series data, β ∈ (0, 1) denotes the smoothing
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Fig. 1. The principle diagram of the MSFD (multiple sine functions decomposition) method for seasonality estimation

parameter for the trend Tt, and Ŷ t+k denotes the evaluation
of the kth-step-ahead value with trend.

As seen from (2) and (3), the level Lt is a smoothed
estimation of the value of the time series data at the end of
each period (i.e., observation instant), and the trend Tt is a
smoothed estimation of average growth at the end of each

period. Then the Ŷ t+k is the evaluation of the kth-step-ahead
value which assumes that the increments of trend are constant
values as time goes on, which is not practical enough. In
most practices [12], the increments of the trend are linearly-
declining. Motivated by this, the increment parameter γ is used
to replace k while estimating the future trend of the time series,
and thus the specific formula of γ to use is proposed as

γ = 1 + (1 − r) + (1 − 2r) + · · · + (1 − (k − 1)r)

=
(2 − (k − 1)r)k

2
,

where r ∈ (0, 1) denotes the ratio of the linearly-declining
increments of the trend. Besides, the averages of the last m

estimations of level and trend [i.e., Lt(m) and Tt(m)] are
used to replace Lt and Tt of (4) respectively in the evaluation
process of the future value, for avoiding the noise influence of
the time series data. So, the trend of the kth-step-ahead value
is estimated as

Tt+k = γTt(m) =
(2 − (k − 1)r)k

2
Tt(m),

where Tt(m) denotes the average of the last m estimated trend
values (i.e., Tt to Tt−m+1). Thus, (4) is improved as

Ŷ t+k = Lt(m) + γTt(m), (5)

where Lt(m) denotes the average of the last m estimated level
values (i.e., Lt to Lt−m+1).

As compared with Holt’s damped-trend exponential
smoothing method [9][10], the IHTPES method assumes that
the increments of the trend are linearly-declining rather than
exponentially-declining. Besides, the formulas of the smooth-
ing estimations of level and trend [i.e., (2) and (3)] are
exploited in the IHTPES method directly.

B. Seasonality Estimation

In this subsection, the multiple sine functions decompo-
sition (i.e., MSFD) method is developed for estimation of
the seasonality of the time series. Seasonality is a periodical
and recurrent component caused by factors such as weather,

holidays, and repeating promotions [7]. Conventional seasonal
adjustment methods generally assume that the length of the
seasonality is a constant value (e.g. 12 for monthly time series
and 4 for quarterly time series). Therefore, it is unsuitable for
some special cases, for example, the length of seasonality (or
termed, quasi-period) is inconstant. Motivated by the reason,
the MSFD method is proposed, investigated and developed for
estimating the seasonality.

It is worth pointing out that the MSFD method is carried
out by determining the parameters of multiple sine functions
and updating the residual data for decomposition. More specif-
ically, we firstly use sine function A1 sin(B1t+C1) to approx-
imate the time series Yt (i.e., the original data for the first-time
decomposition), and the parameters (i.e., A1, B1 and C1) are
determined based on the least-squares method. Then we have

et(1) = Yt − A1 sin(B1t + C1),

where et(1) denotes the residual error time series after the first-
time decomposition using a sine function. Note that et(1) is
used as the “original” data of the second-time decomposition.
After n times of similar decompositions, the estimation of
seasonality is obtained as well as the estimation of the level
of the time series. The estimation expression can be shown as
follows:

Ŷt =
n

∑

i=1

Ai sin(Bit + Ci) = St + Lt,

where St denotes the estimation of seasonality at observation
instant t, Lt denotes the estimation of level, and n denotes the
number of times of decompositions using sine functions. It is
worth noting that all parameters {Bi} (with i = 1, 2, · · · , n)
are 0 when the time series does not contain seasonality (i.e.,
St = 0). For better understanding, the principle diagram of
MSFD method is shown as Fig. 1. Thus, the evaluation of the

kth-step-ahead value Ŷ t+k with seasonality and level can be
obtained as

Ŷt+k = St+k + Lt+k =
n

∑

i=1

Ai sin(Bi(t + k) + Ci). (6)

C. Global Time Series Estimation

In order to model and forecast trend and seasonal time se-
ries, inspired by the research [13], the weighted-combination-
of-components (i.e., WCC) method is proposed and inves-
tigated in this subsection. More specifically, based on the
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Fig. 2. The relationship between the testing RMSE and the decomposition
times of multiple sine functions

decomposition model (1) with w ∈ (0, 1), the IHTPES and
MSFD methods are exploited to evaluate the trend, seasonality,
and level of the time series simultaneously; then the weighted
combination of the evaluations is obtained to model the global
time series. Furthermore, according to (1), (5) and (6), the
estimation via the proposed WCC method for the kth-step-
ahead future value is achieved by

Ŷt+k = wTt+k + (1 − w)St+k + Rt+k

= w(Lt(m) + γTt(m))+

(1 − w)(
n

∑

i=1

Ai sin(Bi(t + k) + Ci)),
(7)

where Rt+k denotes the level of the kth-step-ahead value.
Note that the level of the time series is considered in both
IHTPES and MSFD methods. Thus, the estimation of Rt+k

can be effectively obtained generally via the WCC method.

III. NUMERICAL EXPERIMENTS

In order to assess the modeling and the forecasting per-
formances of the proposed WCC method, we conduct a large
number of numerical experiments. Before the presentations of
the results, data for experiments are described briefly. Besides,
two performance measurements are provided for evaluating the
overall performance. Furthermore, the procedures of determi-
nation for the parameters of the WCC method are described in
detail. Finally, the experimental results are given and analyzed
to verify the modeling and forecasting performances of the
proposed WCC method.

A. Data Description

In this paper, the dataset of 111 time series (i.e., the com-
plete dataset) from the NN3 competition [9][14] is used for val-
idating the effectiveness of the proposed WCC method. Data
of NN3 competition can be obtained from http://www.neural-
forecasting-competition.com/NN3/datasets.htm. With the his-
torical observations of each time series Y1, Y2, · · · , Yt [14],
the objective of the competition is to forecast the future 18
values (i.e., to forecast Yt+k, where k = 1, 2, · · · , 18). Due
to space limitation and results similarity, numerical results are
shown only for 6 time series, namely, NN3 023 and NN3 109
(dominated by trend), NN3 068 and NN3 104 (dominated by
seasonality), NN3 011 (dominated by both trend and season-
ality), and NN3 106 (with a high level of noise).

B. Performance Measures

In order to evaluate the overall performance of the pro-
posed WCC method, we employ the symmetric mean absolute
percentage error (SMAPE) and the root mean squared error
(RMSE) as performance measures in this paper.

The formula of SMAPE is defined as below [11][15]:

ESMAPE =
1
K

K
∑

j=1

|Yj − Ŷj |

(|Yj | + |Ŷ
j
|)/2

× 100%, (8)

where Yj and Ŷj are the real and the forecasted value at jth
instant, respectively, and K is the number of forecasted values.
As seen from (8), the SMAPE is a relative-error measure, and
we can use it to compare errors computed for different time
series by different methods. In this paper, 18 future values
(i.e., K = 18) are forecasted using SMAPE for evaluating the
performance of the proposed new method.

Besides, the expression of RMSE [16][17] is shown as

ERMSE =

√

∑

K

j=1(Yj − Ŷj)2

K
. (9)

As seen from (9), RMSE can be used to measure the dif-
ferences between the real value and the forecasted value. By
exploiting RMSE as an additional exact tool, we can compare
the modeling and forecasting performances of models with
different parameters for a particular time series.

C. Parameters Determination

By exploiting the proposed WCC method (7) for multi-
step-ahead forecasting of the NN3 competition, the future 18
values can be forecasted via (7) with specific parameters.
Besides, to determine parameters of the WCC method, for each
of the 111 time series, the last 18 historical observations are
reserved as forecasting-type testing samples and the remaining
historical observations are used for modeling the time series.
In this subsection, the procedures of parameters determination
of the WCC method are described in detail.

Through analysis and comparison of the modeling (i.e.,
smoothing) performances measured via (9), the smoothing
parameters α and β are selected for the smoothing estimations
of trend and level of the IHTPES method. Specifically, the
optimal smoothing parameters α and β are determined within
(0, 1)2 via search gap 0.001 when achieving the optimal
smoothing performance (i.e., the minimal modeling RMSE).
Besides, r (i.e., the ratio of the linearly-declining increments
of the trend) and m (i.e., the number of averages of level
and trend) are determined based on the RMSE of testing
samples and within (0, 1) × [1, 24] via search gaps 0.001 and
1 respectively.

Additionally, the relationship between the estimation per-
formance (i.e., testing RMSE) and the decomposition times
of multiple sine functions is investigated. As seen from the
results of the experiments shown in Fig. 2 (with just the
result of the NN3 011 shown for space limitation and results
similarity), too few times of decomposition may lead to failure
on achieving the seasonality with desired accuracy, while
too many times of decomposition may result in over-fitting
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Fig. 3. Performances of modeling and trend estimation via the IHTPES method
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Fig. 4. Performances of modeling and seasonality estimation via the MSFD method
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TABLE I. MODELING AND FORECASTING RESULTS OF THE PROPOSED WCC METHOD (7)

Time series Modeling SMAPE Forecasting SMAPE Modeling RMSE Forecasting RMSE Weight w for (7)

NN3 023 2.2914% 12.4729% 110.8280 443.5291 0.865
NN3 109 0.6569% 9.7376% 32.4787 382.1495 0.973
NN3 068 2.6774% 5.2811% 120.7233 199.3757 0.001
NN3 104 19.7738% 17.8799% 1053.6161 1211.7580 0.196
NN3 011 6.2717% 10.3545% 370.7007 902.1311 0.213
NN3 106 4.2694% 3.8002% 271.7639 216.3399 0.451
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Fig. 5. Performances of modeling and forecasting via the proposed WCC method (7)

phenomenon, which may introduce the noise at the same time.
Therefore, the decomposition times of multiple sine functions
is set via searching for the optimal testing RMSE. Specifically,
we search for the optimal decomposition times of the MSFD
method via the following simple process. 1) Record the optimal
decomposition times with the minimal testing error during the
process of decomposition. 2) Terminate the procedure when
achieving the limitation of the decomposition times. It is worth
mentioning that the numbers of the data of each time series
from the NN3 competition are less than 150. Besides, most
experiments show that the testing error does not decrease with
the number of the decomposition times increasing after 100
times decomposition. Thus, the limitation of the decomposition
times is set to 200 in the experiments throughout the paper.

Before the weighted combination of trend, seasonality and
other components, the weight should be determined. In this
paper, the weight (i.e, w) is obtained based on the testing errors
(i.e., testing RMSE) of weighted combination of evaluations
via the IHTPES method and the MSFD method. More specifi-
cally, firstly, each of the time series is modeled by the IHTPES
method and the MSFD method simultaneously. Secondly, the

value of w is selected from 0.001 to 0.999 with gap 0.001
to search for the optimal combination of estimations resulted;
i.e., select the optimal weight w which achieves the minimal
testing RMSE.

D. Experiment Results

For the trend estimation, to verify the effectiveness of the
IHTPES method for evaluating the trend of the time series,
numerical results of using (5) to model (or to say, smooth) the
aforementioned 6 time series are presented in Fig. 3. As seen
from the figure, the 6 time series are modeled and the trend
can be estimated well by the IHTPES method, especially in
the case that the time series contain the trend (e.g., NN3 023,
NN3 109, NN3 011 and NN3 106).

For the seasonality estimation, to test the effectiveness of
the MSFD method, experiment results are shown in Fig. 4.
From the figure, we can find that the MSFD method can model
time series well (except for the NN3 023 and NN3 109 which
are mainly dominated by trend). Besides, the seasonality can
be effectively estimated by (6), especially in the case that the
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time series contain the seasonality (e.g., NN3 068, NN3 104,
NN3 011 and NN3 106 ).

For the global time series estimation, the optimal weight
determined via the above-presented procedure is exploited for
the proposed WCC method (7) to model and forecast, and the
numerical results are presented in Table I and Fig. 5. Specif-
ically, as shown in the table, the modeling and forecasting
SMAPEs of the 6 presented time series [calculated by (8)] are
less than 20%. Besides, the modeling and forecasting RMSEs
[calculated by (9)] are much smaller in comparison with the
values of the original time series. Additionally, Fig. 5 shows
illustratively that the shape of the curve of modeling values
estimated by the WCC method (7) closely resembles the curve
of real values. Thus, we can conclude from Table I and Fig.
5 that the WCC method possesses excellent modeling ability
even for some time series with a high level of noise (e.g.,
NN3 106). It is worth noting that such good characteristics
can be found in the numerical experiment results of many other
time series from NN3 competition.

Following the above numerical experiments on the model-
ing ability, we further investigate the forecasting ability of the
WCC method. The corresponding numerical results of 6 time
series are also shown in Table I and Fig. 5. As seen from the
table, all of forecasting SMAPEs are less than 20% and most
of forecasting RMSEs are much smaller, which substantiates
the efficacy of the proposed WCC method on forecasting.
Moreover, Figs. 5(c), 5(e) and 5(f) show that the WCC method
can accurately forecast the future data of the time series with
trend and seasonality. Furthermore, the variation tendency of
future values can be forecasted even when the time series has
a high level of noise.

In summary, the proposed WCC method (7) can achieve
good performances in terms of modeling and forecasting trend
and seasonal time series.

IV. CONCLUSIONS

In this paper, we have proposed a novel method, namely the
weighted-combination-of-components (WCC) method, which
is based on the decomposition model. Such a model regards the
time series as the weighted combination of trend, seasonality
and other components (e.g., level component). Specifically, the
Holt’s two-parameter exponential smoothing (HTPES) method
has been improved (i.e., IHTPES method) for evaluating the
trend of the time series; and a method of multiple sine func-
tions decomposition (MSFD) has been proposed and developed
to evaluate the seasonality. Then the global time series has
been estimated by weighted combination of the evaluations.
Numerical experiment results have further demonstrated the
effectiveness and superiority of the proposed WCC method
in terms of modeling and forecasting time series by applying
the method to data from the NN3 forecasting competition.
As a future research direction, the proposed WCC method
may be applied to weather forecasting (e.g., monthly average
temperature of a city); and the systematical research results
are expected to be summarized and presented then.
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