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Abstract—In this paper, a computationally efficient Interval
Type-2 Neuro-Fuzzy Inference System (IT2FIS) and its Meta-
Cognitive projection based learning (PBL) algorithm is presented,
together referred as PBL-McIT2FIS. A six layered network
with computationally cheap type-reduction technique is proposed,
rendering the inference mechanism faster. During learning, the
projection based learning algorithm assumes that IT2FIS has no
rules in the beginning, and the learning algorithm adds rules to
the network and updates it depending on the prediction error
and relative knowledge present in the current sample. As each
sample is presented to the network, the meta-cognitive component
of the learning algorithm decides what-to-learn, when-to-learn
and how-to-learn it, depending on the instantaneous error and
spherical potential of the current sample. Whenever a new rule is
added or an existing rule is updated, a projection based learning
algorithm computes the optimal output weights by minimizing
the total error in the network in a computationally efficient
manner. The performance of PBL-McIT2FIS is evaluated on a
set of benchmark problem and compared to other state-of-the-art
algorithms available in literature. The results indicate superior
performance of PBL-McIT2FIS.

Index Terms—Interval Type-2 fuzzy systems, Meta-cognition,
Self-regulation, Projection based learning

I. INTRODUCTION

In the domain of soft-computing, artificial neural networks
and fuzzy rule based systems are being increasingly employed
to solve various problems such as wind speed prediction [1],
human action emotion recognition [2], power system analysis
[3]. This is due to the exceptional predictability of neural
networks (by virtue of its learning ability) and interpretability
of fuzzy systems. In order to combine the advantages of
these two, Neuro-Fuzzy Inference Systems (NFISs) have been
employed widely in literature. Traditionally, Type-1 fuzzy sets
were employed in neuro-fuzzy inference systems since they
can handle vagueness in data. Many NFISs have been proposed
based on these Type-1 fuzzy sets (known as Type-1 fuzzy
systems) [4–6]. An evolving clustering method was used in
dynamic evolving fuzzy inference system [4] to add rules.
An evolving Takagi-Sugeno model (eTS) is propsed in [5]
which used the concept of potential to update the structure.
The influence of rule has been used in Sequential Adaptive
Fuzzy Inference System (SAFIS) [6] for growing/pruning the
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rules. However, information uncertainty such as measurement
uncertainty, non-stationary noise, cannot be modeled using
the above mentioned algorithms due to the use of Type-1
membership functions.

In literature, this issue has been solved by the use of
Type-2 fuzzy sets [7]. Recently Type-2 Fuzzy Logic Systems
(FLS) have been studied in [8, 9]. Type-2 fuzzy sets handle
uncertainty by using a secondary membership degree but are
computationally expensive. The computational effort involved
in employing Type-2 fuzzy systems was reduced with the
development of Interval Type-2 fuzzy sets [10]. In Interval
Type-2 Fuzzy sets, the secondary memberships are set either
to zero or one. Based on these Interval Type-2 fuzzy sets,
various NFIS have been proposed [11–18]. A Takagi-Sugeno-
Kang type fuzzy inference has been realized in [11]. It uses
gradient descent for antecedent parameter learning and rule-
ordered Kalman filter is used to tune consequent parameters.
Three different architectures of Interval Type-2 fuzzy neural
network (IT2FNN) have been presented in [12]. A Type-2
neuro-fuzzy network has been developed in [15], where fuzzy
clustering is used to construct the structure of the network and
the consequent parameters are tuned by employing a gradient
descent based algorithm. In [14], authors have presented an
IT2FNN where antecedent part is modeled by gradient descent
algorithm while functional-link-based in the consequent part.
A seven layered IT2FNN and its gradient descent based
learning algorithm has been developed in [16]. A mamdani
fuzzy inference mechanism for evolving Interval Type-2 NFIS
is proposed in [17]. The learning algorithm employs gradient
descent approach to adapt centers and width. It uses all the
samples to approximate the functional relationship between
input and output data. In [18], a self-evolving IT2FNN in
which a simplified type-reduction step is proposed which
involves adaptive adjustment of the upper and the lower values.

The above mentioned NFIS address the issue of how-to-
learn the rules of fuzzy system, efficiently, by employing
learning algorithms derived from artificial neural networks.
These learning algorithms however assume that the training
data is distributed uniformly, and learn all the samples as
it is presented to them. In the literature of artificial neural
networks, it has been shown that the order in which the
sample is presented to the network influences its performance,
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significantly [19]. Thus, we need to develop a learning algo-
rithm for IT2-NFIS, which is able to self-regulate its learning
by deciding what-to-learn, when-to-learn and how-to-learn,
a given training sample, efficiently. In literature, it has been
shown that learning algorithms employing the concepts of
meta-cognitive self-regulation has better generalization ability.
Accordingly many meta-cognitive learning algorithms [19–27]
have been proposed.

Similar to the above works, we propose a meta-cognitive
learning algorithm for an IT2FIS. A computationally fast,
IT2FIS is the cognitive component and a self-regulatory learn-
ing mechanism, which controls the learning of the cognitive
component forms the meta-cognitive component. The IT2FIS
is realized as a six layered network, consisting of an input layer
with as many nodes as the number of input features (m), a
fuzzification layer employing Gaussian membership function
and a firing layer, with each layer consisting of twice as many
nodes as number of rules (2×K), a type-reduction layer and
a normalization layer consisting of K nodes, each and an
output layer with as many nodes as number of output features
(n). The type-reduction layer employs a modified version
of a simplified type-reduction technique proposed in [28],
rendering the inference mechanism fast. The proposed IT2FIS
begins with zero rules, and as each sample is presented, either
adds, updates or deletes rules from the network, depending
on the relative knowledge represented by the training sample
and the network. A projection based learning mechanism is
employed to analytically determine the output weight during
rule addition or rule update.

As each sample is presented to the network, the meta-
cognitive component monitors the knowledge in the cognitive
component and effectively controls the learning in it. Pre-
diction error and sample novelty is employed to monitor the
knowledge in the cognitive component. The prediction error
is measured by employing root mean squared error (RMSE)
and sample novelty is measured using spherical potential [29].
Spherical potential is defined as the average distance of the
current sample from all the rules in the network. The meta-
cognitive component controls the learning process in cogni-
tive component by deciding what-to-learn, when-to-learn and
how-to-learn through sample delete strategy, sample reserve
strategy and sample learn strategy, respectively. The proposed
approach is similar to that proposed in [27]. However, the work
in [27] is an efficient classifier, but cannot solve regression or
approximation problems. In this work the proposed algorithm
can be employed to solve regression problems.

The performance of McIT2FIS is evaluated on a bench-
mark system identification problem, identification of a time-
varying system and Mackey-Glass chaotic system identifica-
tion problem. Performance comparison clearly indicates the
improved generalization and noise resistance of proposed
PBL-McIT2FIS.

Rest of the paper is arranged as follows. In the next Section
II, we describe the architecture of the employed IT2NFIS.
In Section III, the meta-cognitive projection based learning
algorithm is presented. The proposed systems is evaluated on

a set of benchmark regression problems with different levels of
added noise, in Section IV. The paper is concluded in Section
V.

II. META-COGNITIVE INTERVAL TYPE-2 NEURO-FUZZY
INFERENCE SYSTEM STRUCTURE

In this section, the structure and inference mechanism of
the Meta-Cognitive Interval Type-2 Neuro-Fuzzy Inference
System (McIT2FIS) is presented. Let us assume that the
network consists of m input features, n output features and
has grown K rules after processing t − 1 samples. The pro-
posed McIT2FIS, as shown in Fig.1, is a six-layered network
which realizes Takagi-Sugeno-Kang Type-0 fuzzy inference
mechanism. The detailed output inference mechanism when
presented with the t-th sample, x(t), is as follows:
Layer 1- Input layer: This layer consists of as many nodes as
the number of input features (m) in the data. The input layer
passes the input data to the fuzzification layer directly. The
output of i-th input node is :

ui(t) = xi(t) i = 1, 2, · · · ,m. (1)

Fig. 1. Structure of a six layered Interval Type-2 Neuro-Fuzzy Inference
System

Layer 2- Fuzzification layer: Each node in this layer calculates
the membership of the input data with the rule antecedents by
employing the Interval Type-2 Gaussian membership function.
The membership of i-th input feature with k-th rule is given
by :

φki(t) = exp

{
− (ui(t)− µki)2

2σ2
ki

}
≡ φ (µki, σki, ui(t)) (2)

where, µki ∈
[
µlki, µ

r
ki

]
and σki ∈

[
σlki, σ

r
ki

]
are left and

right limits of the center and width of k-th rule’s i-th feature,
respectively.

The footprint of uncertainty of this membership function can
be represented as an Interval in terms of upper membership
function φup and lower membership function φlo, as given
below:

φupki (t) =

 φ
(
µlki, σ

l
ki, ui(t)

)
ui(t) < µlki

1 µlki ≤ ui(t) ≤ µrki
φ (µrki, σ

r
ki, ui(t)) ui(t) > µrki

(3)
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φloki(t) =

{
φ (µrki, σ

r
ki, ui(t)) ui(t) ≤ (µl

ki+µ
r
ki)

2

φ
(
µlki, σ

l
ki, ui(t)

)
ui(t) >

(µl
ki+µ

r
ki)

2

(4)

The output of each node can be represented by the Interval
Φki = [φloki(t), φupki (t)].
Layer 3- Firing layer: Each node in this layer calculates the
firing strength of a rule. This layer consists of 2 ×K nodes
where each set of K nodes represent the upper and lower firing
strength of K rules. The algebraic product operation is applied
upon the rule antecedents to calculate the firing strength of a
rule and is given by :[

F lok (t), Fupk (t)
]

; k = 1, · · · , K (5)

where

F lok (t) =
m∏
i=1

φloik and Fupk (t) =
m∏
i=1

φupik ; k = 1, · · · ,K (6)

Layer 4- Type reduction layer: This layer consists of K nodes.
Each node in this layer performs type-reduction of Interval
Type-1 fuzzy set to Type-1 fuzzy number. For type-reduction,
we employ a variant of Nie-Tan [28] type-reduction procedure
as proposed in [27]

Fk(t) = αF lok (t) + (1− α)Fupk (t); k = 1, · · · ,K (7)

where α is the design vector. In our study α is chosen as 0.5.
Layer 5- Normalization layer: Each node in this layer nor-
malizes the firing strengths of rule that is generated by the
type reduction layer. This layer consists of K nodes. The
normalized firing strength is given by :

F̄k(t) =
Fk(t)∑K
p=1 Fp(t)

, k = 1, · · · , K (8)

Layer 6- Output layer: This layer calculates the network
output which is weighted sum of the normalized firing strength
of the K rules obtained from the previous layer and is given
by :

ŷj(t) =
K∑
k=1

wjkF̄k(t); j = 1, · · · , n (9)

where, wjk is the output weight connecting k-th rule with j-th
output node.

Next, we describe the Projection based learning algorithm
for the proposed network.

III. META-COGNITIVE PROJECTION BASED LEARNING
ALGORITHM FOR IT2FIS

In this section, we present a fast meta-cognitive pro-
jection based learning algorithm for the proposed net-
work. Here the training samples arrive in a sequential
manner. Let us assume that we have a set of training
data {(x(1),y(1)) , · · · , (x(t),y(t)) , · · ·}, where, x(t) =
[x1(t), · · · , xm(t)]

T ∈ <m is the m-dimensional input vector
of t-th sample and y(t) = [y1(t), · · · , yn(t)]

T ∈ <n is n-

dimensional output vector. The functional relationship between
the input and the output (x→ y) can be represented by f [.]

y = f [x]. (10)

The objective of PBL-McIT2FIS is to approximate f[.] such
that, the predicted output

ŷ = f̂ [x,w] (11)

is as close as possible to the desired target y. Here, w is the
parameter vector of PBL-McIT2FIS.

The difference between the actual and the predicted output
for t-th sample, error e(t) = [e1(t), · · · , en(t)] is defined as,

ej(t) = yj(t)− ŷj(t); j = 1, 2, · · · , n (12)

Root Mean Squared Error (RMSE) and spherical potential
[29] are the two measures which are used to quantify the
difference in knowledge between the current sample and the
network. The RMSE of the current prediction at instant t is
given as

E(t) = ‖e(t)‖ (13)

Spherical potential [23, 30] quantifies the novelty of the
current incoming data sample. It is defined as the average
distance of the current sample from existing rules in a hyper-
dimensional feature space.

ψ(t) =
1

K

K∑
k=1

Fk(t). (14)

Here, K represents the number of rules in the neuro-fuzzy
inference system.

The meta-cognitive learning algorithm employs RMSE and
spherical potential to decide either to delete the sample without
learning, or learn the knowledge in the sample or reserve the
sample for future use. During sample learning, either a new
rule is being added to the network, or network structure and
parameters are tuned to accommodate the knowledge in the
sample. Next we shall describe the projection based learning
algorithm and the three strategies in detail.

A. Projection Based Learning Algorithm

The projection based learning algorithm estimates the op-
timal output weight corresponding to the minimum energy
of the energy function. In the literature of artificial neural
networks, such a projection based learning algorithm was first
proposed in [21] and was extended in Type-1 neuro-fuzzy
inference systems in [25]. In this work, we extend this idea
to Type-2 neuro-fuzzy inference systems. For the t-th sample,
the energy function is defined as:

Jt =
n∑
j=1

(ej(t))
2 (15)

=
∑n
j=1

(
yj(t)−

∑K
k=1 wjkF̄k(t)

)2
. (16)

Assuming that McIT2FIS has employed N samples until
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now, the total energy of the system is given as,

J(W) =
1

2

N∑
t=1

Jt (17)

The aim of projection based learning algorithm is to estimate
the optimal output weights (W = W∗) such that the total
energy of the network is minimized.

The optimal output weights (W∗) is obtained by equating
the first order partial derivative of J(W) with respect to output
weight to zero. By equating the first order partial derivative to
zero and re-arranging, we get,

K∑
k=1

N∑
t=1

F̄k(t)F̄p(t)wjk =
N∑
t=1

F̄p(t)yj(t),

where p = 1, · · · ,K; j = 1, · · · , n (18)

which in turn could be written as
K∑
k=1

wjkakp = bpj ≡ Aw = B (19)

where the projection matrix A ∈ RK×K is given by

akp =
N∑
t=1

F̄k(t)F̄p(t), k = 1, · · · ,K; p = 1, · · · ,K (20)

and the output matrix B ∈ RK×n is

bpj =
N∑
t=1

F̄p(t)yj(t), p = 1, · · · ,K; j = 1, · · · , n (21)

From Eqn. (19), the optimal output weights W∗ could be
obtained as

W∗ = A−1B (22)

B. Sample Delete Strategy

A sample is deleted from the network without being learnt
if the RMSE for the current sample is below a particular
delete threshold Ed, which implies that similar knowledge is
already present. A sample is deleted if it satisfies the following
condition:

E(t) < Ed (23)

Here, Ed is the delete threshold, and it is set in the range
[0.0001, 0.001].

C. Sample Learning Strategy

In this strategy either a new rule is added to the network
or the parameters of the existing rules are updated. We shall
now describe each of these sub-strategies.

• Rule Growing for PBL-McIT2FIS: If for the current
sample, the prediction error is very high and if the
knowledge present in the sample is novel to the network,
a new rule is added to capture the new knowledge. The
rule addition criterion is given as :

E(t) > Ea AND ψ(t) < ES . (24)

where, Ea is the add threshold and ES is the novelty
threshold. Lower value of ES indicates higher resistance
to rule addition. In the experiments in this work, this
parameter is set in the range [0.4, 0.7]. Ea is the self-
adaptive add threshold which is initially set in the range
[0.05, 0.1]. When a new rule is added to the network, Ea
is the self-adapted as

Ea = (1− δ)Ea + δE(t) (25)

The aim of self-adaptive threshold is to initially let the
network add rules to gain knowledge, and later to fine
tune it. Here, δ is the slope parameter that decides the
slope at which Ea increases, and is set close to 0.
When the K + 1-th fuzzy rule is added to the network
the rule center is initialized as,

µK+1 = [x(t) ∗ 0.9, x(t) ∗ 1.1] (26)

The width is assigned as,

σlK+1 = κ× min
∀k

[
‖(µlK+1 − µlk)‖, ‖(µlK+1 − µrk)‖

]
;

(27)

σrK+1 = κ× min
∀k

[
‖(µrK+1 − µlk)‖, ‖(µrK+1 − µrk)‖

]
;

(28)
where, κ determines the overlap between the newly
added rule and nearest rule. κ is chosen in the range
[0.5,0.9], so as to induce overlap among rules.

When a new rule is added based on the t-th sample, the
projection matrix A is updated as,

A(K+1)×(K+1) =

[
AK×K +

(
F̄ (t)

)T
F̄ (t) aTK+1

aK+1 aK+1,K+1

]
(29)

where, aK+1 ∈ R1×K is

aK+1,p =
N∑
t=1

F̄K+1(t)F̄p(t), p = 1, · · · ,K (30)

and

aK+1,K+1 =
N∑
t=1

F̄K+1(t)F̄K+1(t).i (31)

The output matrix B is updated as,

B(K+1)×n =

[
BK×n +

(
F̄ (t)

)T
(y(t))

T

bK+1

]
(32)

and bK+1 ∈ R1×n is given as,

bK+1,j =
N∑
t=1

F̄K+1(t)yj(t), j = 1, · · · , n (33)

The output weights are re-estimated as given in Eqn. (19).
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Parameter Update for PBL-McIT2FIS: When a sample
contains significant knowledge which is not novel, but
is less familiar to the network, the output weights are
updated. The output weight of the network is updated if
the following condition is satisfied:

E(t) > EL (34)

Here, EL is self-adaptive parameter update threshold,
which is set in the range [0.3,0.5]. It self-adapts according
to the equation

EL = (1− δ)EL + δE(t). (35)

If a sample is used for updating the parameters of the
network, the matrices A ∈ <K×K and B ∈ <K×n are
updated as

A = A +
(
F̄(t)

)T
F(t) (36)

B = B +
(
F̄(t)

)T
(y(t))

T (37)

and the output weights are updated according to:

WK = WK + A−1
(
F̄(t)

)T
(e(t))

T (38)

D. Sample Reserve Strategy

If the current sample does not satisfy sample delete or
sample learning strategy, it is reserved to be considered for
learning at a different time.

IV. PERFORMANCE EVALUATION

In the previous section, a meta-cognitive Interval Type-2
neuro-fuzzy inference system and its projection based learn-
ing algorithm was presented in details. In this section, the
performance of the proposed algorithm is evaluated on non-
linear system identification [31], online identification of a
time-varying system and Mackey-Glass time series prediction
problem [32]

A. Performance Measures

Root mean square error (RMSE) is employed as a perfor-
mance measure. RMSE is defined as,

RMSE =

√∑N
t=1 e

2(t)

N
(39)

where N is the total number of samples, e(t) is the prediction
error for the t-th sample.

B. Non-linear System Identification Problem

First, we shall evaluate our algorithm on non-linear system
identification problem [31]. The dataset is generated by a
difference equation :

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) (40)

Here the current output of the system, y(t+ 1), depends on
its past output, y(t), and an input, u(t) = sin(2πt/100). The
network is trained using 50,000 samples and 200 samples are

used for testing. The output, y(t) is in the range [−1.5, 1.5].
The parameters for this problem are: meta-cognitive param-
eters: delete threshold, Ed = 0.0001, add threshold, Ea =
0.1189, parameter update threshold, El = 0.0011, novelty
threshold, ES = 0.2647, rule antecedent overlap constant, κ =
0.8015.

TABLE I
PERFORMANCE COMPARISON FOR NON-LINEAR SYSTEM IDENTIFICATION

PROBLEM

Algorithm Number of RMSE
Rules Train Test

et2FIS 14 - 0.053
PBL-McIT2FIS 16 0.03 0.03

The result of PBL-McIT2FIS is compared against another
Type-2 algorithm et2FIS [17]. Table I shows the number of
rules used, training and testing RMSE. From the table we can
observe that PBL-McIT2FIS performs better than the existing
algorithm.

C. Online Identification of Time-Varying System

The experiment is performed to demonstrate the ability
of PBL-McIT2FIS to handle disturbance in the system with
dataset generated as in

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) + f(t) (41)

where a disturbance f(t) is introduced into the system, such
that f(t) is described as:

f(t) =

{
0 1 ≤ t ≤ 1000 and t ≥ 2001
1 1000 ≤ t ≤ 2000

(42)

TABLE II
ONLINE IDENTIFICATION OF A TIME-VARYING SYSTEM

Algorithm Rules Test RMSE
eT2FIS 12 0.18

PBL-McIT2FIS 16 0.03

The network is trained using 50,000 samples and 200
samples are used for testing. The output, y(t) is in the
range [−1.5, 1.5]. The parameters for this problem are: meta-
cognitive parameters: delete threshold, Ed = 0.0001, add
threshold, Ea = 0.1277, parameter update threshold, El =
0.0636, novelty threshold, ES = 0.2092, κ = 0.8559. Table II
shows the number the rules used, training and testing RMSE.
From the table we can observe that even after the presence
of disturbance in the training data PBL-McIT2FIS is able to
generalize well.

D. Mackey-Glass Chaotic Time Series Problem

The noise resistance ability of PBL-McIT2FIS is evaluated
on the Mackey-Glass time series prediction [32]. This time
series data is generated using the differential equation:
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dx

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (43)

where τ = 30 and initial condition x(0) = 1.2. The four
past values are used to predict the current value; where input
vector is [x(t − 24), x(t − 18), x(t − 12), x(t − 6)] and the
corresponding output vector is [x(t)]. Out of the one thousand
samples that were generated 500 were used for training and
last 500 were used for testing. The noise resistance ability
of the proposed McIT2FIS is studied by performing several
experiments. We add noise of Standard Deviation (S.D) 0.1,
0.2 and 0.3 with mean 0 to the generated training data set and
noise of S.D 0.1, 0.3 to the test data set.In table III we can
see that test RMSE increases with increase in noise levels.
However, the increase in the RMSE is not significantly higher
for McIT2FIS. It shows that McIT2FIS is able to learn the
underlying functional relationship, inspite of varying noise.
The use of meta-cognition and Interval Type-2 fuzzy system
has helped the network to generalize well.

V. CONCLUSION

In this paper, we have presented a computationally fast
Interval Type-2 Fuzzy Inference System (IT2FIS) and its
meta-cognitive projection based learning algorithm. The meta-
cognitive learning algorithm monitors the knowledge in the
current sample with respect to the knowledge contained in
the network to decide on what-to-learn, when-to-learn and
how-to-learn, efficiently. During how-to-learn, either a new
rule is added to the network or parameters of the network
are updated using projection based learning algorithm, which
finds the analytical minima of the total energy function. The
performance comparison on a set of benchmark applications
indicates the superior performance of McIT2FIS.
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