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Abstract—The idea that with the help of proper

dimensionality reduction, trying to make the samples with the
same label be compact and the ones with the different labels be
separate after projection, is introduced into classification
problems with high-dimensional data. Based on the analysis of
the drawbacks of Discriminant Neighborhood Embedding (DNE)
and Locality-Based Discriminant Neighborhood Embedding
(LDNE), being the two relatively successful Locally Discriminant
Analysis methods proposed in recent years, this paper proposes a
method called Similarity-balanced Discriminant Neighborhood
Embedding (SBDNE). When constructing the adjacent graph,
SBDNE fully takes into account the geometric construction of
manifold and the problem of imbalance between the intra-class
points and the inter-class points. By endowing these two kinds of
samples with different similarities and selecting the near
neighbors according to the similarity matrix, not only the
structure in the original space can be preserved more efficiently,
but also the choice of discriminative information increases. The
method proposed here has a better recognition with comparisons
to some classical methods, which fully shows that SBDNE method
has the capacity to efficiently solve the classification problem.

Keywords—discriminant neighborhood embedding; adjacent
graph; intra-class; inter-class

L

There are more and more study and application fields that
need to deal with high-dimensional data. As a result, to achieve
its analysis and visualization, we have to reduce the
dimensionality so as to make the high-dimensional data embed
into relatively low-dimensional feature subspace with the inner
structure of data preserved. This skill is widely used in the
fields such as computer vision, machine learning and pattern
recognition and so on.

INTRODUCTION

As classical methods, both Principal Component Analysis
(PCA) [1-2] and Linear Discriminant Analysis (LDA) [2-3]
assume that the data processed are from the Euclidean space.
However, the manifold learning [4-6], rising after 2000, shows
that many complex objects are situated in some manifold
subspace and their non-linear inner structure cannot be learned
via traditional methods. Nevertheless, manifold learning
algorithms only consider the training samples and cannot get
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an explicit mapping, so they cannot perform incremental
learning for new data, namely called the out-of-sample
problem, because of which manifold learning methods are
under restrictions for classification. To cover this shortage, He
et al. proposed Locality Preserving Projection (LPP) [7] and
Neighborhood Preserving Embedding (NPE) [8], both of which
can directly map the new sample into a low-dimensional
subspace via the projection matrix obtained by the training
procedure.

Dimensionality reduction methods are composed of
unsupervised ones and supervised ones. The former focuses on
the better representations of high-dimensional data without
considering the labels, and the latter tries to achieve the
classification efficiently with the labels employed. They are
also called represented dimensionality reduction and
discriminative dimensionality reduction. As a classical linear
discriminative dimensionality reduction method, LDA tries to
find a projection direction, being conducive to discriminate, by
minimizing the divergence of samples with the same class and
maximizing the divergence of samples with the different
classes. Although LDA has been widely used in pattern
recognition field, it still has the problem of the small sample
size and requires the data to obey a Gaussian distribution.
However, the practical data often dissatisfy the hypothesis, so,
to overcome this drawback, maximum margin criterion (MMC)
[18] and margin Fisher analysis (MFA) [9-10] methods have
been proposed. MMC is mainly to maximize the difference
between inter-class and intra-class scatters and MFA as an
extension of LDA, MFA is able to efficiently solve the
problems discussed above. For MFA, the locally structure of
samples is preserved by constructing the homogeneous and
heterogeneous neighbor adjacency graphs, and the optimal
projection direction is found by minimizing the ratio of the
sum of distance between the samples with the same class and
the sum of distance between the samples with the different
classes.

Dimensionality reduction methods can also be divided into
the non-graph-structure-based ones and the graph-structure-
based ones. The former directly reduces the dimensionality
without taking into account the structure information of data in
the original space, and the latter makes the geometric structure



of data in high-dimensional space still be preserved in low-
dimensional space by constructing the preserved structure
graph. As a relatively classical graph-structure-based method,
LPP achieves to preserve the local structure of original data by
making the samples being close to each other in original space
and still be close to each other in low-dimensional space.
However, LPP is an unsupervised method that does not
efficiently utilize the label information. , which might degrade
their performance in pattern recognition. Based on the idea of
LPP, many methods have been proposed, such as Supervised
Locality Preserving Projections (SLPP) [11] and Neighborhood
Discriminant Projection for Face Recognition (NDP) [12] and
so on, we can easily see that these supervised methods mainly
make use of class label information to well guide the procedure
of dimensionality reduction. Among which the Discriminant

Neighborhood Embedding (DNE) [13] proposed by Zhang et al.

is a much efficient method. For DNE method, first, by
constructing an adjacent graph, the relationship between the
samples in original space and their neighbors, including the
same class and the different classes, is preserved, then make
the samples have the same structure in the low-dimensional
space, and finally by employing the spectral analysis the
dimensionality of discriminative subspace is calculated.
However, DNE cannot preserve the detailed position
relationship between the samples and their neighbors,
including the same class and the different classes. As a
consequence, the recognition rate in low-dimensional space
would decrease when the data are unbalanced. By constructing
a different adjacent graph with DNE method and endowing
different weights, Locality-Based Discriminant Neighborhood
Embedding (LDNE) proposed in [14] makes the optimization
problem change to optimize the difference between the
distance of samples with the same class and the distance of
samples with the different classes.

Based on the analysis of the drawbacks of DNE and LDNE,
this paper proposes a new supervised dimensionality reduction
method called Similarity-balanced Discriminant Neighborhood
Embedding (SBDNE). By introducing a new similarity
function, SBDNE endows the data with the same class and the
different class with different similarity functions. The similar
neighbors are selected based on the matrix composed of the
similarity functions. By constructing the structure graphs of the
samples with the same class and the samples with the different
classes and utilizing the geometric structure of manifold, the
unbalanced problem between the same class and the different
classes is solved. As a result, not only the structure in the
original space can be preserved more efficiently, but also the
choice of discriminative information increases. Finally,
experimental results on the artificial dataset, ORL face dataset ,
Yale face dataset and FERET face dataset show the
effectiveness of SBDNE.

II.  RELATED WORK

In this section, we review both DNE and LDNE, which are
supervised dimensionality reduction methods. Suppose we

have the training samples {x,,y,},X, € R,y, ={1,2,...,¢} ,
where y, is the label of x,. ¢, N and d respectively denotes
the number of classes, the number of samples and the
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dimensionality of samples. The purpose of DNE and LDNE is
to find a linear projection that maps the data in the d -
dimensional space into the r -dimensional subspace, such as
v, =P"x, where v, represents the low-dimensional data after

projection and P € R™" is the projection matrix.

A. Discriminant Neighborhood Embedding
DNE aims to make the samples with the same label form a

compact sub-manifold and the distance between the samples

with the different labels are as far as possible in the low-

dimensional subspace after projection. The process of DNE

method is as follows:

(1) Define an adjacent graph F, of which the element F is

given by

+1, x, eN(x;)orx; eN, (x,) and (v, = y,)

-1, x, eN(x;)orx; eN, (x,)and (y, # y,)

0 , otherwise

4

(1)
where N, (X;) denotes the set of & nearest neighbors ofx,
y; and y, respectively represent the labels of X, and x,.

(2) Feature mapping: Optimize the following objective
function:

min ZH P'x, —Pij I’ F,
i )

P'P=L

where I is the identity matrix, and P is the projection matrix.

Through a simple derivation, the optimization problem

changes to be as follows:

{ P'P=1

where L=D—F, D is a diagonal matrix with D, = Z,- F,

s.t.

min #(P"XLX"P)
? 3)

S.t.

and tr(-) is the trace of matrix. Finally, the projection matrix

P can be obtained by the decomposition of the proper value
of a matrix according to the following objective function:
XLX'P = AP @
where the optimal projection matrix P is composed of the r
eigenvectors corresponding to the » minimum eigenvalues.

B. Locality-Based Discriminant Neighborhood Embedding

Based on DNE and by endowing the adjacent graph with
different weights, LDNE is able to preserve the nearest
neighbors. Moreover, it also tries to find an optimal projection
matrix by maximizing the difference between the aggregation
of samples with the same class and the divergence of samples
with the different classes. The process of LDNE method is as
follows:

(1) According to the k& nearest neighbors rule, construct a
similarity matrix S by



“x-x, [ if (,=y,)and
—exp B T (x; €N (x;)) orx; e N (X))
[ if (%) and
Si’ - +exp( i ] ’ (x, et\’k(x‘/) orx, eN, (x,)) (5)

otherwise

s

where [ > 0is the parameter selected by users.

(2) Feature mapping: Optimize the following objective
function:

max Y ||[P'x, —P'x |} S,
v (6)

P'P=L

Through a simple derivation, the optimization problem

changes to be as follows:

max tr(P"XHX'P)
P'P=1

where H=D-S , D is a diagonal matrix, of which the
diagonal elements are composed of the sum of S by row or by
column, such as D, = Z,- S; -

s.t.

7

s.t.

Being similar to the DNE method, the projection matrix P
of LDNE can also be obtained by the decomposition of the
proper value of a matrix according to the following objective
function:

XHX'P = AP (8)
where P is composed of the r eigenvectors corresponding to
the 7 maximum eigenvalues.

C. The Drawbacks of DNE and LDNE

According to the discussion above, we know that when
constructing an adjacent graph, DNE only endows the samples
with the same label with +1 and the ones with the different
labels with -1, which would lead to three drawbacks. First, the
locally structure information of data cannot be preserved.
Second, sometime, it cannot be efficiently act on the samples
with the same label and the ones with the different labels at the
same time. Third, when the data are unbalanced, all the nearest
neighbors of an example may completely belong to the same
class or the different classes so that when constructing an
adjacent graph it cannot find the association between the
samples with the same label or the different labels. As a
consequence, DNE may not find the most efficient sub-
manifold.

For LDNE method, it achieves to preserve the locally
structure information of data by calculating the similarity
between the example and its neighbors. But it has two
drawbacks. On the one hand, it is not obvious to distinguish the
relationship between the same class and the different classes
since they are endowed with the same similarity function. On
the other hand, being similar to DNE, when the data are
unbalanced, it may not find the most efficient sub-manifold as
well.
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III. SIMILARITY-BALANCED DISCRIMINANT

NEIGHBORHOOD EMBEDDING

To overcome the drawbacks of DNE and LDEN, this paper
proposes a new supervised sub-manifold learning algorithm
called Similarity-balanced Discriminant Neighborhood
Embedding (SBDNE). In detail, it is able to efficiently make
the samples with the same label be aggregated and the ones
with the different classes be separated in the low-dimensional
subspace so as to get a better classification performance.

A. Similarity function

N
i=1"

Suppose we have the training samples {X,, y,},.,. Then, we

define a new similarity function between x; and x; as follows:

ex Y _X/ H2 _HX’ _XJ H2 1 if —
p ﬁ exp| exp ﬁ +1, 11y, Y,
9

2 B ( )
exp M exp| 1—exp M By 2,
[ ’ n

From (9), we know that the similarity functions for the
samples with the same label and the ones with the different
labels are different. Specifically, the previous ones are
endowed with larger weights and the latter ones are endowed
with smaller weights. Fig. 1 shows the curves of similarity

G(xl,x/)=

function G(xi,x j) vs the Euclidean distance between x; and

X;. When these two samples belong to the same class, the

similarity rapidly decreases with the increase of their distance.
If they belong to different classes, the similarity slowly
decreases with the increase of their distance. Note that the
curve for y, =y, always lies above that of y, # y,. Moreover,
the similarity degree in the same class situates between 0 and
e’ , but in the different classes the interval changes to be

between 0 and 1 so that the similarity degrees for the different
classes can be inhibited.

G( X; xj)

Fig. 1 The similarity between intra-class and inter-class

B. Construction of adjacent graphs

Now, we consider the construction of adjacent graphs
according to the new similarity function (9). Our scheme is to
select the farthest homogeneous neighbors for a sample to

construct an intra-class graph F" | and it’s nearest
heterogeneous neighbors to build an inter-class graph F”. The



reason can be illustrated by Fig. 2. In Fig. 2(a), there are three
classes denoted by solid square, circle and solid triangle. For
the hollow circle point, we select the farthest neighbor in the
solid circle points, and the nearest neighbors in the solid square
and triangle points as shown in Fig. 2(b). Fig. 2(c) ideally gives
their images in the subspace. We expect that the farthest
homogeneous could be attracted to around the sample and the
nearest heterogeneous neighbors could be pushed way from the
sample.

[ | | A -
A
Lo e oY
o o ° e o o o o
A A A
(@) (b) ©

Fig.2 An illustration. (a) The hollow circle point has seven neighbors. (b) The
interactions by attraction and repulsion for the points. (c) Projected points in
the subspace.

For F¥

[/

smallest similarity for x, and preserve their structural

we select the & homogeneous samples with the

relationships. Namely,

o :{G(x[,x‘/) , if x, e N (x;) or x; € N/ (x,)

i

(10)
0

where N, (x;) and N/ (x;) respectively denote the set of

) otherwise
farthest homogeneous neighbors of x,andx, and x, has the
same label withx ;. The intra-class compactness has the form:
O(P)=)||P'x, —P'x, |} F

i (11)

On the contrary, for F,/b , k heterogeneous nearest neighbors
with the highest similarity are selected forx,. Then,
o :{G(xi,xj) , if x, e N (x;) or x; e N, (x,)
ij
0
where N, (X,) and N, (x,) respectively denote the set of

(12)

s otherwise
nearest heterogeneous neighbors of x; and x,, and x, has the
different label with x; .

divergence as

Thus, we have the inter-class

(13)

By respectively building intra-class structure graph and
inter-class structure graph, each example is able to get the
associations with the samples with the same or different
classes. In other words, for an example, we can get at least
two associations, namely the association with the same class
and the association with the different classes.

We try to maximize the difference between the nearest
inter-class distance and the farthest intra-class distance so as
to make the distance between the same classes is nearer and
the distance between the different classes is farther in the
projection sub-space. That’s to say, we need to maximize

Y(P)=D(P)-Q(P)

QP)=Y | P'x, ~P'x, | F;
iJ

(14)
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Through a simple derivation (see Appendix A), the
optimization problem changes to be:
max t(P"XUX'P)
’ (15)
sd. P'P=1
where U=D"—F’—D"+F" , D’ and D" are diagonal
matrixes with D = Z/ F; and D} = Z,- F;" , respectively.
The detail of this algorithm is shown in Algorithm 1.

Algorithm 1 Similarity-balanced Discriminant Neighborhood
Embedding (SBDNE)

{0,

Input: Training set ; sample matrix

X=[X,,X,,....X, ] € R™Y

Output: Projection matrix P

1). Build the intra-class adjacent graph F" and inter-class adjacent
graph F’ according to (10) and (12), respectively.

2). Perform eigendecomposition on the matrix XUX" . Suppose we
obtain the eigenvalue 4 and the corresponding eigenvector p, , and
eigenvalues are organized by descending order, 4, > A, =---= A, .

3). Get the 7 eigenvectors corresponding to the first 7 eigenvalues,

and then we have the projection matrix as P =[p,,p,,....p,] -

IV. EXPERIMENTS

In this section, we will discuss applications of SBDNE, and
its comparisons with MFA, DNE and LDNE. Both the number

of neighbors k for the four methods and S for the SBDNE,

and LDNE are the tunable parameters. In our experiments, we
select nearest neighbor classifier to classify our data after
dimensionality reduction.

A. Synthetic Dataset

We generate two class samples obeying uniform
distribution, ones of which are the random numbers drawn

from the interval [O,l]5 , and the other ones are drawn

from [0.7,1.7]5. There are 200 training and 200 test samples.

The projection matrix is learned by DNE, LDNE and SBDNE
respectively.

In this experiment, k is selected to be 1 and g is got via

10-fold cross-validation for LDNE and SBDNE. The range of
p is from 1 to 50. Fig. 3 shows the projected data obtained by

DNE, LDNE and SBDNE, respectively.

From Fig. 3, we can know that compared with DNE and
LDNE, SBDNE works better for classification since it achieves
to make the intra-class samples be aggregated and the inter-
class ones be separated. From another point of view, this also
indicates that the projection matrix learned by SBDNE is more
satisfied to classify the samples. For DNE method, it builds the
adjacent graph by exploiting the relationships between the
samples and their neighbors without considering the locally
position information of the samples. For LDNE method, on the
one hand, it is not obvious to distinguish the samples when the
intra-class samples and the inter-class ones are endowed with
the same similarity function, and on the other hand, being
similar to DNE method, it may not find the most efficient sub-
manifold. On the contrary, SBDNE method fully takes into



account not only the position information of data but also the
balanced relationships between the intra-class data and the
inter-class data so that it has the better recognition effect.

To verify this, Table I provides the quantitative analysis.
Table I presents intra-class scatter, inter-class scatter and the
ratio between them, where the intra-class scatter is the sum of
distances of all two samples in the same class, the inter-class
scatter is the sum of all two samples in the different class. Of
course, we expect that the inter-class scatter is large, the intra-
class scatter is small, and the ratio of inter-class scatter to
intra-class scatter is large. The larger the ratio is, the better the
separability is. For the raw data, the ratio is 2.072. The

TABLE 1. SEPARABILITY ON SYNTHETIC DATASET

Intra-class Inter-class Ratio of inter-
scatter scatter class scatter

to Intra-class
scatter
Raw Data 1.7395 X 104 3.6044 % 104 2.0720
DNE 1.0279 X 104 2.1449 X 104 2.0867
LDNE 1.0252% 104 2.1901 X 104 2.1362
SBDNE 9.8788 X 103 3.2958 % 104 3.3362

projected data obtained by the three methods has a higher ratio.

The inter-class scatters in four cases are almost the same. But
SBDNE generates a rather smaller intra-class scatter. Thus,
the separability on the projected data obtained by SBDNE is
the best.

0.5
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0.5

&0
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0.6

0.4
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-0.2
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-0.6

-0.8
-4

(c) SBDNE
Fig.3 Projected data obtained by DNE (a), LDNE (b) and SBDNE (c).
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B. Experiments on Face Recognition

This experiment is based on the three famous datasets, ORL
dataset [16], Yale dataset [17] and FERET subset dataset. For
SBDNE, MFA, DNE and LDNE, their performance is
measured by recognition rate. In the experiment, the
parameters k and B of SBDNE are selected to be several

different sets of values so as to observe their effect on the
recognition rate. The whole training set is divided into 60%
training set and 40% validation set, and the value of parameter
B is selected based on the training result on the validation set.

Finally, all the methods employ the Nearest Neighbors as their
classifier.

C. ORL Face DataSet

The ORL face dataset [16] consists of 400 face images of
40 persons, with 10 images for each person. Some images are
taken at different times so that the person’s face expression and
face detail may have the different degrees of variation such as
open eyes or closed eyes, simile or not simile and with glasses
or without glasses. Additionally, face posture changes with
deep or plane rotation to 20 degree and face size also has the
10% variation. Each image has the grayscale from 0 to 255
with digitization and normalization and is scaled to be 32x32
(this means an image has 1024 features) for the efficient
computation. Fig. 4 shows the images of one person from the
ORL dataset.

In this experiment, owing to the high dimensionality of
ORL dataset, we would reduce dimensionality with two times
so as to get a high running speed. Additionally, PCA is
employed firstly to reduce the data to be 100 features since it
can eliminate the majority of noises. 4 samples of each person
in the ORL dataset are selected to be training ones and the rest
6 ones are test ones.

The neighborhood parameter £ in MFA, DNE, LDNE and
SBDNE is set to be 1 and 3, respectively. We repeat 10 data
division for training and test and report the average
experimental results in Fig. 5. Although the number of
neighbors is different when constructing the adjacent graph, the
recognition rates for each method have the consistent tendency.
Compared with MFA, DNE and LDNE, SBDNE has a better
recognition rate and its optimal discriminative subspace has a
relatively low dimensionality so as to reduce the complexity of
calculation.

Table II presents the optimal recognition rate and the
dimensionality of discriminative sub-space with different
number of nearest neighbors. Compared with other methods,
SBDNE has not only a better recognition rate but also a lower
dimensionality of discriminative sub-space.




When building adjacent graphs, SBDNE not only confirms
the locally structure information and the positions of data but
also solves the unbalanced problem. By endowing the intra-
class data and the inter-class data with different similarities,
SBDNE has a more powerful discrimination than MFA, DNE
and LDNE so as to make the learned projection matrix be able
to more efficiently achieve aggregation among intra-class data
and separation among inter-class data.

Accuracy

0187 % LDNE |4

—+— SBDNE

0 r c r c r c r T 3

0 10 20 30 40 50 60 70 80 90 100
Dimension

(a) k=1

Accuracy

01 % LDNE H
~—+ SBDNE
o : : : : : : : : :

0 10 20 30 40 50 60 70 8 90 100

Dimension
(b) k=3

Fig.5 Recognition performance for the ORL database with different neighbor
parameter

TABLE II. PERFORMANCE COMPARISON ON THE ORL DATABASE

k=1 k =3
Sub- Recognition rate Sub- Recognition rate
dimension (%) dimension (%)
MFA 100 92,081 0.32 100 89.86 T 0.33
DNE 62 95421 121 50 9333 2.19
LDNE 73 95.56 ¥ 0.17 84 93.89F 0.64
SBDNE 53 96.25F 0.38 52 95.83 % 0.43

D. Yale Dataset

Yale dataset [17] contains 165 face images of 15 persons,
with 11 images for each person. The face expression and light
condition for each image are as follows: centered light, with
glasses or without glasses, happy, normality, left side light,
right side light, sad, sleep, surprise and blink. The size of each
image is 32x32 with grayscale from 0 to 255. Fig. 6 shows
some face images with different conditions from the Yale
dataset.

Being similar to ORL face dataset, Yale face samples are
also reduced to 100 features via PCA, after which we would
respectively employ the methods of MFA, DNE, LDNE and
SBDNE to achieve the second dimensionality reduction. Here,
we mainly focus on the effect of the number of samples on the
recognition rate and all the recognition rates are the average
values of 100 experiments with k=1. In the experiment, we
randomly select 5 (or 7) samples of one person as our training
set and the rest ones as test set.

Fig. 7 shows the recognition rates of each discriminative
subspace with the different number of samples. From Fig. 7(a)
and 7(b), we can see that although the number of samples is
different, the general trends of recognition rate are the same.
Compared with MFA, DNE and LDNE, SBDNE always
presents a better recognition rate and tends to the high
recognition rate in a relatively fast speed. Table III provides the
optimal recognition rates for the four methods with the
different number of samples.

Accuracy

= LDNE |
—+  SBDNE

c c c c c c c
0] 10 20 30 40 50 60 70 80 90 100
Dimension

(a) 5 training samples
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Accuracy

Fig.7 Recognition performance for the Yale database with different training

samples.

c ¢ ¢
30 40 50
Dimension

r ‘
70 80

(b) 7 training samples

TABLE III. PERFORMANCE COMPARISON ON THE YALE DATABASE

Five training samples Seven training samples
Sub- Recognition Sub- Recognition
dimension rate (%) dimension rate (%)
MFA 100 67.78 £ 0.34 100 6478 %034
DNE 51 7167 1.12 40 7218 1.12
LDNE 28 73.33%2.63 38 7278 % 2.63
SBDNE 20 82.22% 0.64 46 86.67 % 0.64

E. Yale Dataset

The FERET database is a standard database for evaluating
state-of-art face recognition algorithms. In this experiment, a
subset, this contains 1400 face images of 200 individuals with
7 images per individual. Fig. 8 shows Sample images for one
individual of the FERET subset

Fig.8 Sample images for one individual of the FERET subset

Being similar to ORL and Yale face dataset, FERET face
samples are also reduced to 100 features via PCA, after which
we would respectively employ the methods of MFA, DNE,
LDNE and SBDNE to achieve the second dimensionality
reduction. And also we mainly focus on the effect of the
number of samples on the recognition rate and all the
recognition rates are the average values of 100 experiments
with k =1. In the experiment, we randomly select 3(or 4)
samples of one person as our training set and the rest ones as
test set.

Table IV provides the optimal recognition rates for the four
methods with the different number of samples.
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TABLE IV. PERFORMANCE COMPARISON ON THE FERET DATABASE

Three training samples Four training samples
Sub- Recognition Sub- Recognition
dimension rate (%) dimension rate (%)
MFA 100 3575334 100 4775234
DNE 21 50.12% 3.15 38 65.50E 1.25
LDNE 25 52.88 % 2.48 38 66.75% 0.95
SBDNE 20 79.37% 0.28 22 83.75% 0.80

V. CONCLUSION

This paper proposes a new linear dimensionality reduction
method, called Similarity-balanced Discriminant
Neighborhood Embedding (SBDNE). Based on the MFA and
LDNE, SBDNE gives some improvements in that the
information of samples’ positions and the balanced relationship
between the intra-class data and the inter-class data are taken
into account. As a result, we are able to give an overall
consideration on the preservation of manifold’s original
geometric structure and utility of classification information.

Through numerical experiments, the advantages of SBDNE
are verified on the synthetic dataset and the two face image
datasets. By directly using the constructed low-dimensional
model, it is able to quickly get the low-dimensional
information of new test example, at the same time, with a
rising recognition rate. However, SBDNE is still a linear
method, so to improve on the classification performance, in the
future, we would try to extend it to be non-linear.

APPENDIX A

First, SBDNE computes the similarity function G(xi,xj)

according to the labels, from which we can know that the
similarity of the samples with the same class being farthest
from one example is the minimal among the samples with the
same class, and the similarity of the samples with the different
classes being nearest to one example is the maximal among the
samples with the different classes.

According to G(xi,xj) , the intra-class structure graph F"

and the inter-class structure graph F’ are constructed by (10)
and (12), respectively. The intra-class compactness is given by

O(P)=) || P'x, —P'x, |} F’
LJ

and the inter-class divergence is given by
QP=) || P'x, ~P'x, |’ F}
L]

For SBDNE method, the difference W(P) between the sum
of the distances between the nearest samples with the different
classes and the sum of the distances between the farthest
samples with the same class is maximal and its derivation
process is as follows:



Y (P)=d(P)-Q(P)
=2tr{P"X(D" -F")X"P-2P"X(D" -F")X"P}
=2tr{P"X(D" -F" -D" +F")X"P}
=2tr{P" XUX'P}
:2Zd: P/XUX'P
where U=D" ’—ZIF” —D"+F", according to the method for

DNE algorithm, then we have the optimization problem as
follows:

max #(P"XUX"P)
P

P'P=1

whose corresponding problem is

s.t.

max ipTiXUXTpi = i/ll
i1 i1

Suppose the eigenvalues of XUX' are A 224, we

select the r eigenvectors corresponding to the first r
eigenvalues to form the  transformation  matrix,

orP=[p,,---,p,].
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