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Abstract—In this paper, the asymptotic stability properties of

neutral-type neuron system are studied mainly in the critical case

when the exponential stability is not possible. In the case of a

critical value of the coefficient in neutral-type neuron system, the

difficulty for our investigation is the fact that the spectrum of the

linear operator is asymptotically approximated to the imaginary

axis. Hence, based on the energy method, the asymptotic stability

results for neutral-type neuron system are derived, and a

complete analysis of the stability diagram is presented.
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I. INTRODUCTION

Systems with neutral differential equations arise when

modeling biological, physical, neurophysiological, etc.

processes whose rate of change of state at any moment of time

t is determined not only by the present states, but also by past

states[1-9]. In the research field of neural networks, some

particular neutral differential systems have been proven to be

highly useful when the problem has capability to memorize

dynamic information. Usually, the transmission of a signal

through the brain and neural chains requires some time, and is

more complicated than other transmission, such as

temperature transmission, etc., although it is possible to

propose an evolution neural model without delay also in this

case. However, the use of the delay equation may be

advantageous, since there is no need to analyze details of the

transmission, and it allows us to add a term to the delay � to
make up for the time of signal transmission [5].

How can the states of a neuron at previous moments of time

influence the present state of evolution of the neuron? It is

well known that at each moment the neuron ‘knows’ only the

situation at that moment, and hence can react only to this.

Even if we take into consideration the memory of human

beings, we should be able to consider only the memory state

of the current moment.

A natural issue when dealing neuron system of neutral-

type is to prove existence, uniqueness and global exponential

stability of the equilibrium based on various techniques, for

example, the linearization technique [1], Lyapunov approach

[2], linear matrix inequality and neutral transformation [3,4],

Lyapunov-Krasovskii functional and the descriptor system

approach[11], and so on. However, the mentioned-above

papers [1-4, 11] usually address this question by considering

neutral-type neuron system with 1p � , i.e., guarantee the

exponential stability of the difference operator. But, the

critical value 1p � raises technical difficulties and seldom

involve in yet at present. This is because the spectrum of the

linearized operator is asymptotically approximated to the left

of the imaginary axis, and furthermore, the exponential

stability is lost.

A lot of studies on delay equations start from the local

stability analysis of some special solutions. For this purpose,

the standard method is to analyze its variational equation

around that special solution. If the special solution is a

constant, the variational equation takes the form of linear

scalar delay equation. The stability of the trivial solution (i.e.,

the zero solution) of the variational equation depends on the

location of the roots of an associated characteristic equation.

Although this is an extensively studied topic, most of the

results derived so far apply only for retarded equations.

Systematic results for the more general neutral delay equations

are still very much in demand. Furthermore, an old

contribution to the critical 1p � is discussed in [10]. In the

linear case, algebraic rate of convergence is proven. In

nonlinear case with 1p � � algebraic convergence is also

proven in that paper, but assuming small C1 data. In both cases,

the main tools involved are asymptotic expansions of

characteristic roots, Laplace transforms and function series.

The main work of our paper is two aspects. First, we

generalize a single neuron system of neutral-type in [11] to a

more general neutral-type neuron system. Then, we push

forwards the analysis of this neutral-type neuron system in its

critical case, especially to remove (when possible) the

assumption of small solutions, and also to consider less

regular initial data. A strategy based on energy analysis is

followed.
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This paper is organized as follows. Section II treats the full

nonlinear NDDE. The stability of the zero solution in the

homogenous case is proven. Generalization to the non-

homogeneous case with constant external input is made in

Section III. Finally, some conclusions are drawn in Section IV,

and some future lines of research are given.

II. STABILITY IN THE HOMOGENEOUS CASE

In this section, we first give some definitions and lemmas

used in this paper.

Definition 1. Lebesgue spaces are function spaces

associated to measure spaces ( , , )X M � , where X is a set, M is

a algebra� � of subsets of X, and � is a countably additive

measure on M. Let 2 ( , )L X � be the space of those complex-

valued measurable functions on X for which the Lebesgue

integral of the square of the absolute value of the function is

finite, i.e., for a function f in 2 ( , )L X � ,
2

X f d� � �� , and

where functions are identified if and only if they differ only on

a set of measure zero.

Definition 2. The space ( , )L S ��
is defined as follows. We

start with the set of all measure functions from S to C (or R)

which are essentially bounded, i.e., bounded up to a set of

measure zero. Again two such functions are identified if they

are equal almost everywhere.

Definition 3. Sobolev spaces, denoted by ,2ors sH W , are

Hilbert spaces. These are a special kind of function space in

which differentiation may be performed, but that (unlike other

Banach spaces such as the Holder�� spaces), support the

structure of an inner product.

Definition 4. The Holder�� spaces
, ( ),wherekC 	 
 
 is an

open subset of some Euclidean space and 0k � an integer,

consists of those functions on 
 having continuous

derivatives up to order k and such that the kth partial

derivatives are Holder�� continuous with exponent

,where0 1	 	� � .

In this paper, we consider the following neural model which

is modeled by nonlinear neutral delay differential equation

(NDDE) and search for the solution 
 �
 �1 1, ,locx H� � �� � :


 �
 �1

0

[ ( ) ( )] ( ( )) ( ( )) ( ), 0.

( ) ( ) , 0 , , 0

d
x t px t f x t g x t I t t

dt

x t x t H t

� �

� �

� � � � � � � � ��
�
� � � � � � � ��

(1) If

ast t�� �� �� , then Eq. (1) is said to have the property

of completely forgetting the past. This means that the values

of the solution x on any finite interval do not influence the

right-hand side of the equation for sufficiently large t. In other

words, the rate of change of the neuron at any moment is

determined by the states of the neuron at preceding moments

which are not too remote. Sometimes such equations are said

to have fading memory.

In order to study the stability of (1), we need make the

following assumptions

1

1,

( , ), 0, (0) 0

, with 0 1

p

f C f f

g f� �

� ��
� �� � � � ��
� � � ��

(2)

In some cases, we also require the following additional

assumptions

, with 0 1,

lim ( ) .
y

g f

f y

� �

���

� �� � � ��
� � ����

(3)

Let s t�� , then Eq. (1) becomes


 �
 �1

0

[ ( ) ( 1)] ( ( )) ( ( 1)) ( )],

( ) ( ) 1, 0 , , 1 0.

d
y t py t f y t g y t I t

dt

y t y t H t

� � �� � � � � � � ��
�
� � � � � � � ��

(4)

First, we introduce basic functions and inequalities in order to

state a main result:

0 0
( ) ( ) , ( ) ( ) ,

( ) 2( ( ) ( ))

y y

F y f z dz G y g z dz

H y F y pG y

� �� �

� �

� � , (5)

with , ,f g � and p defined in (1)-(2).
Lemma 1. For all y, F and H satisfy the following

inequality

0 2(1 ) ( ) ( ) 2(1 ) ( )F y H y F y� �� � � � �

Proof. Assume y>0. By (2) and (5), it follows

0 0
( ) ( ) ( ) ( )

y y

G y g z dz f z dz F y� �� �� � �� �
Similarly, if y<z<0, then ( ) ( )f z f z� � and

0 0

( ) ( ) ( ) ( )
y y

G y g z dz f z dz F y� �� �� � �� �
As a result, we get 0 G F�� � for all y. Using (5) and

1p � � concludes the proof. ■

In the following, we derive asymptotic stability of the zero

solution for system (4). Hence, we have

Theorem 1. Assume y(t) be the solution of (4) without

external input I=0. For all t>0, we define
2

1

( )
( ) ( ( ))

t

t

dy
E t f y d

d

�
� � �

��

� �� �
� �� �! "

# $� %
� (6)

Then we have

2 2

00 0

sup ( ) sup ( ( )) ( ( ( )))
t t

E t F y t f y t dt�
��

� �
� � � ��� , (7)

where F is defined in (5). It follows the asymptotic stability of

the origin

lim ( ) 0
t

y t
���

� . (8)

Proof. If ( ) 0I t � , Eq. (4) can become

( ) ( 1)
( ( )) ( ( 1))

dy t dy t
f y t p p g y t

dt dt
� �

�� �� � � �! "
# $

. (9)

For 1p � � and taking the square, we obtain

22
( ) ( 1)

( ( )) ( ( 1))
dy t dy t

f y t p g y t
dt dt

� �
� � �� � � �� � � �� � � �! "

� % # $� %
(10)
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By (5), the right-hand side of (10) at t-1 is rewritten

& '

2

2

2

2

( 1)
( ( 1))

( 1)
{ ( ( 1))

( ( 1)) ( ( 1)) }

( 1) ( 1)
( ( 1))

[ ( ( 1)) ( ( 1))]

[ ( ( 1)) ( ( 1)) 2 ( ( 1))]

( 1)
( (

dy t
p g y t

dt

dy t
f y t

dt

f y t p g y t

dy t dH t
f y t

dt dt

f y t pg y t

f y t p g y t f y t

dy t
f y

dt

�

�

� �

�

�
�

�

� � �� �� �� �! "
# $� %

�( )� � �* +, -

� � � �

� �( )� � � �* +, -

� � � �

� � � � �

�
� �

2

2 2 2

1))

( 1)
[ ( ( 1)) ( ( 1))] . (11)

t

dH t
f y t g y t

dt
�

( )�* +, -
�

� � � � �

The above equation is replaced into (10), which yields
2

2 2 2

2

( )
( ( ))

( 1)
[ ( ( 1)) ( ( 1))]

( 1)
( ( 1))

dy t
f y t

dt

dH t
f y t g y t

dt

dy t
f y t

dt

�

�

�

� �� ��� �! "
# $� %

�
� � � � �

�( )� � �* +, -

(12)

Integrating (12) over [0, t], we get for all t>1
2

0

1
2 2 2

1

2
1

1

( )
( ( ))

[ ( ( )) ( ( ))] ( ( 1))

( )
( ( 1)) ( ( ))

t

t

t

dy
f y d

d

f y g y d H y t

dy
H y f y d

d

�
� � �

�

� � � �

�
� � �

�

�

�

�

�

� �� �
�� �! "

# $� %

� � � �

� �� �
� � � �� �! "

# $� %

�

�

�

(13)

Equation (13) is simplified into the energy equality
2

1

1
2 2 2

0

2
0

0

0
1

0
2 2 2

0 0 0
1

( )
( ( ))

[ ( ( )) ( ( ))] ( ( 1))

( )
( ( ))

( ( 1)) [ ( ( )) ( ( ))]

t

t

t

dy
f y d

d

f y g y d H y t

dy
f y d

d

H y f y g y d

�
� � �

�

� � � �

�
� � �

�

� � � �

�

�

�

�

� �� �
�� �! "

# $� %

� � � �

� �� �
� �� �! "

# $� %

� � � �

�

�

�

�

(14)

By Lemma 1 and Eq. (14), one deduces the energy inequality

for all 1� �
2

1

1
2 2 2

0

( )
( ( ))

(1 ) ( ( )) 2(1 ) ( ( 1))

t

t

t

dy
f y d

d

f y d F y t

�
� � �

�

� � � � �

�

�

� �� �
�� �! "

# $� %

� � � � �

�

�

2
0

0

0
1

0
2 2 2

0 0 0
1

( )
( ( ))

2(1 ) ( ( 1)) (1 ) ( ( )) (15)

dy
f y d

d

F y f y d C

�
� � �

�

� � � � �

�

�

� �� �
� �� �! "

# $� %

� � � � � �

�

�
Since the three terms on the left side of (15) are positive,

furthermore, for all t>1, we obtain the following three

inequalities:

2 20 0

020
( ( )) , ( ( )) , ( )

2(1 ) 1

C C
F y t f y t dt E t C�

� �

��
� � �

� �� (16)

The first inequality in (16) implies (0, )y L�� �� . On any

bounded set K, there exists d>0 such that

( )
y

d y f y
d

� � on K. Using the second inequality in (16)

and the boundedness of y, one obtains
2 (0, )y L� �� , one

deduces that
( )dy t

dt
is uniformly bounded in 2 ( 1, )L T T� and

hence y is bounded in the Holder�� space
1

0,
2 (0, )C �� . It

proves that y tends towards 0. ■

The proof of the stability for system (1) is based on an

energy method. Notice that the inequality (7) allows

convergence towards zero with an algebraic rate. Actually,

there is not exponential stability of the equilibrium y=0.

Remark 1. If p=0 and 0� � in system (4) with (2), then the

NDDE is a simple ODE. Our computation provides for all T>0:

2 2 2

0

( )
2 ( ( )) ( ) ( ( )) 2 ( (0))

T dy t
F y T f y t dt F y

dt
�� �� � �! "

# $� ,

which implies the global stability of y=0. Moreover, the

stability of y=0 is exponential since (0) 0f � � .

Remark 2. In the usual case 1p � , then a stronger energy

estimate can be obtained by our proof: 1(0, )y H� �� , and

the stability is exponential.

Remark 3. In the present case 1p � , the 2y L L�� � and y

is uniformly bounded in
1( 1, )H � �� for all� .

Remark 4. If 1p � and 1� � , then the stability is obtained,

but the asymptotic stability can be lost.

III. STABILITY IN COPNSTANT EXTERNAL INPUT

In this section, we consider a non-homogeneous NDDE (4)

with constant external input I:

1

0

[ ( ) ( 1)] ( ( )) ( ( 1)) ,

( ) ( ) ( 1, 0), 1 0

d
y t py t f y t g y t I

dt

y t y t H t

� � �� � � � � � � ��
�
� � � � � � ��

(17)

with assumption (2). For the sake of clarity, we analyze

successively g=0 and 0g . .

Theorem 2(Case g=0). Assume y(t) be the solution of Eq.

(17). One of three cases may occur:

(i)If I=f(e), then e is the unique globally attractive solution;
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(ii)If I>sup f (or I<inf f), then lim ( ) (or )
t

y t
���

� �� �� ;

(iii)If I=sup f (or I=inf f), then there is no convergence towards

a constant solution.

Proof.We consider successively the three cases.

Case 1: I=f(e):

This case occurs if lim ( )
y

f y
���

� �� . Replacing

, ( ) ( ) ( )ez y e f z f e z f e� � � � � ,

into (17) yields the homogeneous NDDE

( ) ( 1)
( ( )) ....e

dz t dz t
p f z t

dt dt
�

� �� � � �

Since (0) 0ef � and 0ef
� � , the assumptions of Theorem 1 are

satisfied: lim ( ) 0
t

z t
���

� and thus y tends asymptotically towards

e.

Case 2: I>sup f (or I<inf f).

Assume sup f I� � �� , and introduce sup 0I f/ � � � .

� If p=+1, then
( ) ( 1)

( ( )) ,
dy t dy t

I f y
dt dt

� /
�

� � � � so that

0

( )
( ) ,

dy n
y n

d

�
� /

�
� �� � with [ 1, 0]� � � . As a result,

( )
lim ,
t

dy t

dt���
� �� and hence lim ( )

t
y t

���
� �� .

� If 1p � � , then
( ) ( 1)dy t dy t

dt dt
�/

�
� � . Integration on

[ 1, ]� �� yields ( ) ( 2)y y� � /� � � , and once again

lim ( )
t

y t
���

� �� .

Case 3: I=sup f (or I=inf f).

Let us assume ( )y t e� when t� �� . Let ( )ny s be

( ) for [0,1]y n s s� � . We have (.) in ([0,1])ny e L�� and

0ny
� � in the sense of distribution. The NDDE can be

rewritten as follows: 1 ( )n n ny py f y I�
� �� � � .Taking the weak

limit, we get ( )f e I� which is impossible since f<I. As a

result, y(.) cannot converge towards a constant.

Using the same argument, we can state that y(.) cannot

converge towards a periodic continuous solution. More

precisely, let us assume that ( ) ( )ny s e s� where e(.) is

continuous.

Writing 1(0) ( ) (( 1) 1) (1)n ny y n y n y �� � � � � yields

e(0)=e(1) i.e., e is a 1-peridioc continuous function. Taking the

weak limit in the NDDE yields a differential equation for

(.) : (1 ) ( ) ( ( ))e p e t f e t I�� � � .

� If p=1, then f(e(t))=I, which is impossible.

� If 1p � � , then 1([0,1])e C� by the equation. Let s0 be a

maximizer of e(.) on the compact set [0, 1], then

0( )e s I� � and by the differential equation, 0( ( ))f d s I� which

is again impossible.

As a consequence, y(. ) cannot converge towards a periodic

continuous solution. ■

Now, let us examine the NDDE (17) with all the terms.

Theorem 3 (Case 0g . ). Under the assumption (3), the

unique e such as ( ) ( )f e g e I� � is the unique globally

attractive solution of (17).

Proof. Assumption (3) easily imply that there exists a

unique e satisfying ( ) ( )f e g e I� � . Replacing

, ( ) ( ) ( ), ( ) ( ) ( )e ez y e f z f e z f e g z g e z g e� � � � � � � � ,

into (17) yields the homogeneous NDDE

( ) ( 1)
( ( )) ( ( 1)) 0e e

dz t dz t
p f z t g z t

dt dt

�
� �� � � � � .

Inequality (3) implies that
e ef g� � .

Since (0) 0and 0e ef f �� � , all the assumptions of Theorem 1

are satisfied, and hence 0z� asymptotically. ■

Without assumptions (3) in Theorem, one may encounter

more complex situations, with 2 or more solutions.

IV. CONCLUSIONS

It is well-known that for the neutral-type system, the

analysis of stability conditions is more complicated than a

retarded-type system. We have shown that the condition of

asymptotic stability for neutral-type neuron system in the

critical case can be derived by means of the energy method.

Existence and asymptotic stability of periodic solutions for

system in the critical case and under external periodic stimulus

are a important problem deserving of study.
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