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Abstract—The privacy-preserving data analysis has been
gained significant interest across several research communities.
The current researches mainly focus on privacy-preserving clas-
sification and regression. However, feature selection is also an
essential component for data analysis, which can be used to
reduce the data dimensionality and can be utilized to discover
knowledge, such as inherent variables in data. In this paper,
in order to efficiently mine sensitive data, a privacy preserving
feature selection algorithm is proposed and analyzed in theory
based on local learning and differential privacy. We also conduct
some experiments on benchmark data sets. The Experimental
results show that our algorithm can preserve the data privacy to
some extent.

I. INTRODUCTION

Privacy is the sensitive information that data owner re-
luctant to disclose, which has been a growing concern in
medical records, financial records, web search histories and
social network data. Thus, an emerging challenge for machine
learning and data mining is how to learn from these data sets
without privacy leak. The current researches mainly focus on
privacy-preserving classification and regression [1]. However,
feature selection is also one of the key problems in machine
learning and data mining [2], [3]. Feature selection brings the
immediate effects of speeding up a machine learning or data
mining algorithm, improving learning accuracy, and enhancing
model comprehensibility. Various studies show that features
can be removed without performance deterioration [4]. More-
over, feature selection also leads to better data visualization,
reduction of measurement and storage requirements. So the
feature selection with privacy preserving is a very important
issue and need to be deeply addressed. Before introducing
the concrete privacy preserving feature selection algorithm, we
will simply discuss the common properties of feature selection
and basic knowledge for privacy preserving.

Roughly speaking, a feature selection algorithm is usually
associated with two important aspects: search strategy and
evaluation criterion. According to the criterion, algorithms can
be categorized into filter model, wrapper model and embedded
model [2], [3]. In the wrapper model, the selection method tries
to directly optimize the performance of a specific predictor
(algorithm). The main drawback of this method is its compu-
tational deficiency. The embedded model incorporates feature
selection as a part of the training process, and features’ utility
is obtained based on analyzing their utility for optimizing the
objective function of the learning model. Compared to wrapper
and embedded models, feature selection algorithms with filter
model are independent to any learning model, therefore do not
have bias on specific learner models, which is believed to be
one advantage of the filter model. Another advantage of the
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filter model is that it has very simple structure, which usually
contains a straightforward search strategy, such as backward
elimination or forward selection, and a feature evaluation
criterion designed according to certain criteria. The benefits of
the simple structure are two folds. First, it is easy to design,
and after being implemented, it is also easy to understand for
other researchers. This explains that why most feature selection
algorithms are of filter model. Second, since its structure is
simple, it is usually very fast [4]. On the other hand, if the cat-
egorization is based on output characteristics, feature selection
algorithms can be divided into either feature weighting/ranking
algorithms or subset selection algorithms [4]. A comprehensive
survey of existing feature selection techniques and a general
framework for their unification can be found in [2], [3], [4].
In this paper, we focus on feature weighting algorithm, and it
belongs to filter model.

For the privacy preserving, according to the processing
stages of information flowing, the methods of privacy preserv-
ing are divided into four categories, namely, input perturbation,
transformed data release, query auditing and query answer per-
turbation, access control [5]. In our case, the proposed privacy
preserving feature selection method belongs to query answer
perturbation. For privacy measure, we adopt e-differential pri-
vacy model [6], which is a measure of quantifying the privacy-
risk associated with computing functions of sensitive data. A
statistical procedure satisfies e-differential privacy if changing
a single data point does not shift the output distribution by
too much. Therefore, from the output of the algorithm, it is
difficult to infer the value of any particular data point [1]. And
e-differential privacy model is robust to known attacks, such
as those involving side information [7]. e-differential privacy
model is a strong, cryptographically-motivated definition of
privacy that has recently received a significant amount of
research attention, such as differentially private empirical risk
minimization for classification [1].

In this paper, we apply the sensitivity-based method
to design feature selection algorithm while guaranteeing e-
differential privacy. The original feature selection algorithm-
FWELL is based on local learning, and logistic loss with
L2-regularizer is adopted to design the evaluation criterion
of feature selection. In differentially private feature selection
method-Private FWELL, noise is added as output perturbation
according to the sensitivity analysis of FWELL. We also give
proof for its e-differential privacy.

The paper is organized as follows, the feature weighting
algorithm based on local learning FWELL is introduced in
section 2. Section 3 presents and analyzes the differentially
private feature selection algorithm Private FWELL. The exper-



imental results on bench mark data sets are shown in section
4. The paper concludes in section 5.

II. FEATURE WEIGHTING ALGORITHM BASED ON LOCAL
LEARNING

For feature weighting, we are given a training sample set
D, which contains n samples, D = {X,Y} = {x;,y:},
where x; is the input for the i-th training sample, and y; is
the label, and each sample is represented by a d-dimensional
vector X; = (41, Tia, -+ , Tiq) € RY,

Based on local learning, for sample x;, it should be close
to the nearest neighbor sample with the same label to x;
(i.e., near hit sample NH(x;)) and away from the nearest
neighbor sample with different class label (i.e., near miss
sample N M (x;)) [8]. For the purposes of this paper, we use
the Manhattan distance to find the nearest neighbors (i.e.,
NH(x;) and NM(x;)) and to define their closeness, while
other standard distance definitions may also be used. The
logistic regression loss is adopted to model the fit of data for
its simplicity and effectiveness. In addition, the logistic loss
is twice differentiable and strongly convex, which is good for
faster optimizations [9]. Then for any sample x;, the logistic
loss function is defined as follows,

L(wh'z;) = log(1 + exp(—w’'z;)) (1)

In the Eqn. (1), T is the transpose, w is the feature weight
vector, z; = |x; — NM(x;)| — |x;, — NH(x;)| and |.| is
an element-wise absolute operator. z; can be considered as
the mapping point of x;. w!z; is the local margin for x;,
which belongs to hypothesis margin [10] and an intuitive
interpretation of this margin is a measure of the proportion
of the features in x; that can be corrupted by noise (or how
much x; can move in the feature space) before x; is being
misclassified [8]. In other words, the feature weighting based
on local learning is like to scale each feature, and thus obtain a
weighted feature space parameterized by a vector w, so that a
local margin-based loss function in the induced feature space is
minimized. Thus by the large margin theory [11], a classifier
trained on weighted feature space that minimizes a margin-
based loss function usually generalizes well on unseen test
data.

Moreover, in order to prevent from overfitting, the regular-
ization is always used. Thus, the evaluation criterion for feature
weighting on the training data set D is defined as follows,

L(w,D) = % Z L(wh'z;) + \R(w), ()

i=1

n

where A is the cost parameter balancing the importance of the
two terms, R(w) in (2) is a regularizing term. Then feature
selection aims to find the target model w, which minimizes the
loss function in Eqn.(2). Then we obtain the feature selection
algorithm based on local learning shown in Algorithm 1. Note
that, as an example, the gradient descent algorithm is used
to illustrate the minimization of evaluation function (2). Of
course, the optimal feature weights can be found by many
other optimization approaches.

In the following analysis and experiments, the L2 regular-
izer is used as R(w) in Eqn. (2) for its rotational invariance
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Algorithm 1 Feature WEighting algorithm based on Local
Learning-FWELL

Step 1. Input training data set D = {x;,y;}",, x; € R?
and regularization parameter A in Eqn. (2).

Step 2. Initialize w = (1,1,---,1) € R9,

Step 3. Fort=1,2,---,n
(a) Given x;, find the NH(x;) and N M (x;).
(b) Based on Ean. (1) to obtain £(w”z;)
(c) V = 1260zl | \OROW,

Step 4. Output the feature weighting vector w.

and strong stability property [12]. Then the concrete evaluation
criterion considered in this paper is as follows,

1 n
L(w,D) = EZ;E(WTZZ')—F/\HWHZ. 3)
And the gradient descent algorithm is used to minimize the

evaluation function (3) to obtain the feature weights as de-
scribed in Algorithm 1.

III. DIFFERENTIALLY PRIVATE FEATURE SELECTION
A. Sensitivity analysis

We like to propose a privacy preserving FWELL in terms
of differential privacy definition in [6], then the sensitivity
of the FWELL should be analyzed. So before introducing
the privacy preserving feature selection method, we need a
definition-sensitivity as follows [13], [14].

Definition 1: For any function A with n inputs, we define
the sensitivity AQ) as the maximum, over all inputs, of the
difference in the value of A when one input of A is changed.
That is,

AQ = max | A(D) — A(D')| o)

Data sets D and D’ differ by at most one element. Based on
the Definition 1, we will give the Corollary 1 for the sensitivity
analysis of Algorithm 1 with L2 regularizer.

Corollary 1 The feature weighting algorithm described in
Algorithm 1 with L2 regularizer has the sensitivity %

PVOOf. Let D = {(Xlay1)7"' a(men)} and D/ =
{(X1,91), "+, (Xn/, Yn’)} be two data sets that differ in the
value of the n-th individual. Suppose w; and wy are the
solutions respectively to Algorithm 1 when data sets are D
and D'.

{ w1 = argminy, L(w, D), )

wo = arg miny L(w, D)

Then according to the Definition 1, the sensitivity of Algorithm
1 is the upper bound of ||w; — wa]|.

We define a function ¢(w) as
{(w) = L(w,D") — L(w, D). (6)
Because logistic loss and L2 regularizer are adopted,

functions L and ¢ are continuous and differentiable. Since
the wy; and wo are minimizers of L(w, D) and L(w,D’),



respectively, and they are obtained through gradient descent,
then their gradients are equal to zero, i.e., VL(wy,D) = 0
and VL(wz,D") = 0. Based on Eqn. (6), we can obtain
(ws) = L(wy, D) — L(ws, D), then

VL(ws, D)+ Vi(wy) =0 @)
Since logistic loss and L2 regularizer are 1-strongly convex,
then L satisfies A-strongly convex [1]. We obtain

(VL(w1, D) — VL(wa, D))" (w1 — wa) > A|wy — wal?
(8)
while based on Eqn. (7) and VL(wy, D) =0,
(VL(w1,D) — VL(wy, D) (w; — wy) )

= (w1 —w3)(VE(wg))"
According to Cauchy-Schwartz inequality, we obtain
—w)(Ve(wa))"  (10)
So, combining Eqns. (8), (9) and (10)

[wi — w2 - [VE(wa)|| > (w1

Iwi —wall - [VEwa)| > Alws —wa> (1)
Namely,
1
lwi = w2l < T [[VE(we)] (12)

Suppose z,, and z, s only depends on x,, and X, respec-
tively, and based on Eqgns. (3) and (6), for any w, we can
approximately obtain

Lw) = 1

n

(L(wl'z,) — £L(wlz,)) (13)
According to Eqn. (1), for any point z
L(w''z) =1log(1 + exp(—w'z)) (14)

Then for the normalized ||z|]| <1

T _
|[VL(w"z)|| = H 1 —|—exp WTz) ‘ (15)
< _
< | a1
<1
Based on Eqns. (13) and (15), we can achieve
(IVe(w)| = - HVC(W Zn') — VE(szn)H
1
< (VL) )
<2 (16)
n

So ||V{(w2)| is less than 2. Based on Eqn. (12), we can
obtain

2
||W1 —W2|| < — (]7)
n
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B. Differential privacy feature selection

Now we turn to propose the corresponding differentially
private feature selection for Algorithm 1 with L2 regularizer.
For our privacy measure, we use a differential privacy defi-
nition [6] to quantify the privacy-risk associated with feature
selection evaluation functions for sensitive data.

Definition 2: A randomized mechanism A provides e-
differential privacy, if, for all data sets D and D’ which
differ by at most one element, and for all output subsets
S C Range(A),

Pr[A(D) € S] < exp(e) x Pr[A(D’) € 5] (18)

Then the algorithm is called satisfying differential privacy.
The probability Pr is taken over the coin tosses of A,
and Range(A) denotes the output range of A. The privacy
parameter € measures the disclosure.

Our proposed differential privacy feature selection
algorithm-Private FWELL is described in Algorithm 2.

Algorithm 2 Differentially Private Feature Selection-Private
FWELL
Step 1. Input data set D = {x;,y;};_;, regularization
parameter A\ in Eqn. (2), privacy parameter ¢ and
parameter a.
Step 2. Obtain w according to Algorithm 1.
Step 3. Draw a random noise vector b with density v(b)
based on the sensitivity analysis in Corollary 1.

]. neX

b) = Lo—282 bl
v(b) €

Step 4. Compute w' = w + b.

Step 5. Output w'.

For Private FWELL, the following Theorem 1 is obtained.
Theorem 1 Private FWELL is e-differential privacy.

Proof: We know that D and D’ are any two data sets that
differ in one individual. For w’ derived from Algorithm 2 on
D and D’, we obtain w' = wy +b; and w' = wy + by where
wy and wy are unique outputs of Algorithm 1 on data sets
D and D’ respectively, by, and by are the corresponding noise
vectors in Algorithm 2.

v(w'ID) _ v(b1) _nex (o~ fu) (19)
v(w'[D")  wv(by)
where v(w' |D)(v(w’|D’)) is the probability density of the
output of Algorithm 2 at w’ when the input is data set D
(D"). Since b; —by = wa — wy, we obtain following equation
using a triangle inequality,

b2l = (b1 < [[by = by = [lw1 — wo (20)
Combining Eqns. (17), (19) and (20),
v(w'|D)
———= <€ 21
o(w/| D) =€ @h
|

Therefore, our algorithm-Private FWELL is e-differential
privacy in terms of Definition 2.



IV. EXPERIMENTS

In this section, we will give some experimental results for
our proposed differentially private feature selection algorithm.
The experiments consists of two parts: validate the effect
of privacy parameter € and the classification performance
for different selected feature subsets under a given privacy
degree. The classifiers used in the experiment are linear support
vector machine (SV M) with C=1 and the 3-nearest neighbor
classifier (3N V). Classification accuracy was assessed using a
10-fold cross-validation. For each fold, the proposed FWELL
and Private FWELL algorithm were applied to the training
part of the data to obtain the feature weighting result, and
the features are ranked in descending order. Then different
numbers of important features are selected with top ranks
one by one to create classifiers. For all experiments, the
parameter A in our proposed methods are tuned by cross-
validation. Six bench-mark data sets from UC1I repository
(http://archive.ics.uci.edu/ml/datasets.html) are used in our ex-
periments. The data sets are summarized in following Table.
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TABLE 1. DESCRIPTION OF EXPERIMENTAL DATA SETS

Data sets Samples | Features | Classes
BASEHOCK 1993 4863 2
Soybean 307 34 2
Sonar 208 60 2
Wave form 3343 20 2
Lung 203 12600 2
Wdbc 569 30 2

A. Experiments for parameter €

For the first part of our experiment, we study the tradeoff
between the privacy preserving degree and the classification
accuracy. The number of selected features for training classifier
is 10 percent of original feature dimensions. The privacy
degree for Private FWELL is quantified by the value of e.
The increasing of ¢ implies a higher change in the belief of
adversary when one entry in D changes, and thus lower privacy
preserving. The experimental results are shown in Fig.1-6 for
six data sets using 3NN classifier, and Fig.7-12 for six data sets
using SVM. The X-axis is the log value of selected privacy
parameter £ and the Y-axis is the classification accuracy using
different classifiers.
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From the results, we can observe that in the case of no
privacy-preserving, i.e., € = 1, the Private FWELL consistently
obtains similar classification accuracy to the FWELL’s. The
performance of Private FWELL will drop along with the de-
cline of ¢, i.e., the data privacy preserving degree is increasing.
When ¢ = 0.00000001, the extent of privacy preserving is
pretty high, then the value of classification accuracy for Private
FWELL is very low. These results are consistent with our
intuition.

B. Experiments for differentially private feature selection

For the second part of our experiment, we study the classi-
fication accuracy when the classifiers are trained with different
numbers of selected features. And the privacy parameter for
Private FWELL is constant, i.e., ¢ = 0.01. The experimental
results for FWELL and Private FWELL on six data sets are
shown in Fig.13-24. The X-axis is the number of selected
features and the Y-axis is the classification accuracy using
different classifiers.

From the results, we can observe that the performance of
privacy preserving feature selection-Private FWELL is very
close to the non-privacy preserving one-FWELL in most
cases. Then our proposed differentially private feature selection
algorithm can obtain approximate classification performance to
non-privacy preserving feature selection under the constraint
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of privacy, such as with € = 0.01. And the proposed algorithm-
Private FWELL is effective and efficient.

V. CONCLUSIONS

In this paper, we study the problem of privacy preserv-
ing feature selection, and a corresponding feature selection
algorithm based on local learning and differential privacy
is proposed and analyzed in theory. We also conduct many
experiments to validate its performance on different bench-
mark data sets and classifiers. In the experiments, the results
for different privacy preserving degree ¢ and different numbers
of selected features under privacy constraint are shown. Our
experiments as well as theoretical results indicate that in
general, the proposed algorithm-Private FWELL can obtain
high performance under some privacy constraint, and it can
preserve data privacy to some extent.
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