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Abstract—Similarity learning is one of the most fundamental
notions in machine learning and pattern recognition. In real-
world problems, the number of the paired-samples in similarity
set is far less than the ones in dissimilarity set. In other word,
there is an unbalanced problem in the paired-samples of similar-
ity learning. This paper presents a scheme of SVM ensemble to
solve it. In our scheme, we randomly select some of samples to
construct paired-samples, not producing all the paired-samples,
and introduces multiple classifiers to obtain higher stability and
reliability. As a result, the SVM ensemble can effectively decrease
the number of paired-samples in similarity learning and solve the
unbalanced data learning to some degree. In the experiments,
the SVM ensemble is compared with some classic unbalanced
learning algorithms. The results on classification tasks show that
the SVM ensemble gains better performance.

I. INTRODUCTION

In machine learning and pattern recognition, many classic
algorithms adopt similarity or distance metric, such as K-
NN (nearest neighbors) [1], SVM (Support Vector Machine)
[2], [3], [4], etc. Traditionally, similarity or distance metric is
preferentially appointed in these algorithms, such as Euclidean
distance, which is independent of specific problems. The
traditional way can not be applied to many complex tasks of
information analysis, recognition, retrieval and others. Thus,
similarity learning and distance metric is becoming a popular
research subject in the field of machine learning, pattern
recognition, image sciences, computer vision, etc.

In similarity learning, it requires to construct paired pat-
terns (paired-samples), which are the objects for machines to
learn. When solving real-world problems especially multi-class
problems, it is quite obvious that most of the paired-samples
are made up of dissimilar patterns, only a few ones consist of
similar patterns. In other word, this is an unbalanced problem.
It is well known that a balanced dataset provides improved
overall classification performance compared to an unbalanced
dataset for some classifiers [5], [6], [7]. Consequently, it is
necessary to solve unbalanced problems in similarity learning.

There may exist two unbalanced situations in a dataset.
The first type is between-class unbalance or class unbalance, in
which case some classes have much more instances than others
[8]. The other type is within-class unbalance or case unbalance,
in which case some subsets have much fewer instances than
other subsets in one class [9]. Here, by unbalanced problem,

we mean the first one. By convention, in unbalanced dataset,
we call the classes containing more instances the majority
(common) class, while the ones containing fewer instances are
called the minority (rare) classes.

Methods for solving unbalanced problems can be grouped
into two categories, or the data level and algorithmic level.
The main idea behind the methods at data level is to alter
the distribution of data in order to provide a balanced dataset
for classifiers. The methods at algorithmic level improve the
performance by modifying algorithms themselves [8], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].
We focus on the methods at data level which include some
classical sampling methods [8]. Typically, sampling methods
in unbalanced data learning is to modify the unbalanced dataset
to get a relatively balanced distribution.

The simplest sampling methods are random over-sampling
and random under-sampling. The former augments the minor-
ity class by exactly replicating the randomly selected examples
from the minority class, while the latter randomly removes
some examples from the majority class. The random over-
sampling and under-sampling methods appear to be function-
ally equivalent since they both alter the size of the original
dataset and can actually provide the same proportion of bal-
ance. However, this commonality is only superficial. Random
over-sampling may make the decision regions of the learner
smaller and more specific, leading to over-fitting [10]. Ran-
dom under-sampling may cause classifiers to miss important
concepts pertaining to the majority class. Thus, many modified
sampling methods have been presented. Kubat et al. presented
a heuristic under-sampling method which balances a dataset
through just eliminating the noise and redundant examples
from the majority class [11]. Synthetic sampling is another
important part of sampling methods. The synthetic minority
over-sampling technique (SMOTE) is a powerful method that
has shown a great deal of success in various applications
[12]. SMOTE generates new synthetic examples along the
line between the minority examples and their randomly se-
lected nearest neighbors. Han et al. presented two novel over-
sampling methods based on SMOTE, or borderline-SMOTE1
and borderline-SMOTE2 [13]. The examples on the borderline
and the ones nearby (called borderline examples in [13]) are
more apt to the misclassified than the ones far from border-
line, and more important for classification. Borderline-SMOTE
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methods only strengthen the borderline minority examples.
First, this method finds out the borderline minority examples;
then, synthetic examples are generated from them and added to
the original dataset. It shows that synthetic sampling methods
are effective in dealing with unbalanced datasets. However,
the data generation methods discussed above have a highly
computational complexity. Noting that the essential problem
of over-fitting is caused by random over-sampling, Mease et
al. proposed a much simpler technique, over/under-sampling
with jettering (JOUS-Boost) [10]. In each iteration of boost-
ing, JOUS-Boost introduces independently and identically
distributed (iid) noise into minority examples and generates
new samples. This algorithm is relatively simple compared
to synthetic sampling counterparts and also incorporates the
benefits of boosted ensembles to improve performance. Based
on the characteristics of the given data distribution, four KNN
under-sampling methods were proposed, namely, NearMiss-1,
NearMiss-2, NearMiss-3 and the “most distant” method [14].

The integration of sampling strategies with ensemble learn-
ing has also been studied. For example, the SMOTEBoost
algorithm is based on the idea of integrating SMOTE with
AdaBoost.M2 [15]. Specifically, SMOTEBoost introduces syn-
thetic sampling in each boosting iteration. Another inte-
grated approach, the DataBoost-IM method, combines the data
generation techniques introduced in [17] with AdaBoost.M1
to achieve high predictive accuracy for the minority class
without sacrificing accuracy on the majority class [16]. The
Granular Support Vector Machines-Repetitive Under-sampling
algorithm (GSVM-RU) was proposed in [18] to integrated
SVM with under-sampling. The GSVM-RU method uses the
SVM itself as a mechanism for under-sampling to sequentially
develop multiple information granules with different informa-
tion samples, which are later combined to develop a final SVM
for classification.

The methods mentioned above could be directly used to
solve the unbalanced problem in similarity learning. When
applying these methods, it requires to generate an unbalanced
problem first. In other words, all paired-samples which are un-
balanced must be obtained from the original dataset, and then
these methods are used for generating a balanced dataset. How-
ever, it is time-consuming for generating all paired-samples.
Even if we generate all paired-samples, we still try to discard
most of them by using these classical sampling methods. Thus,
it costs a lot. In this paper, we apply SVM ensemble to solve
unbalanced problem in similarity learning. In our scheme, we
randomly select some of samples to construct paired-samples
to decrease the number of paired-samples and balance the
data distribution. The randomly selected samples would play
an important role in the performance of SVM. To eliminate
the randomness in selecting samples, ensemble learning is
introduced here. Since selecting samples randomly could bring
the diversity for ensemble learning, it is appropriate for intro-
ducing ensemble techniques.

The structure of this paper is organized as follows. Section
II gives a brief introduction to unbalanced problems in similar-
ity learning and reviews some classic under-sampling methods.
Section III describes our proposed similarity learning method
solving unbalanced problems using SVM ensemble in details.
Section IV compares the proposed method, SVM ensemble,
with other under-sampling methods and gives experimental

results. Section V draws conclusions.

II. RELATED WORK

In this section, we have a brief review on unbalanced
problems in similarity learning and some classic sampling
methods in unbalanced data learning.

A. Unbalanced problem in similarity learning

Let the set of multi-class training samples be X =
{xi, yi}

l

i=1, where xi ∈ R
d is the ith training sample,

yi ∈ {1, 2, · · · , c} is the label of xi, l is the number of training
samples, and c is the number of classes. As Phillips described
in [31], two sets are generated in difference space. One is the
within-class differences set S, the other one is the between-
class differences set D. In this way, we can formulate a multi-
class classification problem into a classic binary one, which
can be easily dealt with the traditional SVM. The within-
class differences set S and between-class differences set D

are formally described as

S = {(xi − xj)|xi ∼ xj , yi = yj , i, j = 1, · · · , l} (1)

and

D = {(xi − xj) |xi 6∼ xj , yi 6= yj , i, j = 1, · · · , l} (2)

where (xi − xj) is a paired-sample consisting of two samples
xi and xj in difference space. xi ∼ xj and xi 6∼ xj indicate
the two samples xi and xj are in the same class (within-class)
and in different class (between-class), respectively. Define that
the labels of the paired-samples in the within-class differences
set S are +1, while the labels of the paired-samples in the
between-class differences set D are −1.

Obviously, the number of the generated training paired-
samples is about l

2, which leads to an excessive number
of training paired-samples. In addition, the number of the
constructed dissimilar paired-samples is much larger than the
number of the similar ones in multi-class problems. This is an
unbalanced problem to be solved in similarity learning.

B. Classic sampling methods in unbalanced data learning

Sampling methods play an important role in solving unbal-
anced problems. Generally speaking, these methods provide a
balanced distribution by using different ways. In other word,
these methods add some instances into the minority class or
remove some examples from the majority class according to
the required proportion of balance.

Random over-sampling and random under-sampling are
the simplest sampling methods. Random over-sampling aug-
ments the original minority class by exactly copying several
randomly selected examples, while random under-sampling
removes some instances from the majority class randomly.
At the first blush, random over-sampling and under-sampling
methods seem to be functionally equivalent. Nevertheless, each
of them introduces its own drawbacks. In the case of random
under-sampling, the disadvantage is quite obvious: removing
data means missing information, maybe very important to
classifiers. Thus, it is probable to degrade the performance on
the majority class. In the situation of random over-sampling,
the problem is not visualized enough. Several copies of certain
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examples may become “tied”, making the decision region
smaller and more specific, eventually leading to over-fitting
problems [10].

Synthetic sampling with data generation is another sig-
nificant part of sampling. Synthetic minority over-sampling
technique (SMOTE) is a representative one in this community
[12]. The SMOTE algorithm generates new synthetic instances
along the line between the minority instance and its selected
nearest neighbors. The detailed steps of SMOTE are illustrated
as follows. For each instance x in the minority class, we
first find its K nearest neighbors in the same class. Then we
randomly select some of the neighbors according to the amount
of SMOTE. Next, for every selected neighbors x′, we compute
the difference dif between x and x′, or dif = x′−x, multiply
dif by a random number gap between 0 and 1. Finally, we get
the new synthetic example Synthetic. The formal description
is

Synthetic = x + gap × dif

In summary, SMOTE has overcome the drawback of random
over-sampling that may cause overfitting, and also made the
decision region larger and more general.

Zhang et al. proposed four informed under-sampling meth-
ods based on K-Nearest Neighbor (KNN) classifier, namely,
NearMiss-1, NearMiss-2, NearMiss-3 and the “most distant”
method [14]. The NearMiss-1 method selects the majority class
examples that are close to some of the minority examples. In
this method, the majority examples would be selected when
their average distances to three closest minority examples
are smallest. NearMiss-2 selects majority examples that are
close to all minority examples. That is, we select the majority
examples whose average distances to three farthest minority
examples are smallest. In NearMiss-3, for each example in
minority class, we select a given number of the closest majority
examples. This method guarantees every minority example is
surrounded by some majority class. Finally, the “most distant”
method selects the majority class examples whose average
distance to the three closest minority class examples are the
largest.

These classical methods could be directly used to solve
the unbalanced problem in similarity learning. However, all
paired-samples which are unbalanced must be obtained from
the original dataset when applying these methods. In fact, it
is time-consuming for generating all paired-samples. Even if
we could generate all paired-samples, we still want to discard
most of them by using these classical sampling methods. Thus,
it costs a lot.

III. SVM ENSEMBLE FOR UNBALANCED PROBLEM IN

SIMILARITY LEARNING

In this section, we apply SVM ensemble to solve unbal-
anced problem in similarity learning. Typically, SVM ensemble
learning consists of two sub-procedures. The first is how to
generate individual SVMs. The second is how to combine the
predictions into a final result. The proposed method will be
described from these two parts.

A. Generating individual SVMs

As described in Section II-A, traditionally, there exists
an unbalanced problem in similarity learning, which has an

influence up on the performance of standard SVM. To avoid
this, the paired-samples must be balanced. Our strategy is that
for each example x in the original training set X , just pick
the same amount of the examples from the same class and the
different class, not all the examples in X , to construct paired-
samples. In ensemble learning, individual learners should be
as diverse as possible. Thus, we randomly select the examples
to construct paired-samples for each individual SVM. In this
way, the individual SVMs can be definitely diverse. In the same
time, it guarantees that each example in the original training
set is with the same weight.

Here we display the sub-procedure of generating individual
SVMs in formal description. Let X = {xi, yi}

l

i=1 be the
original training set. For each individual SVM, it is necessary
to construct a new training set of paired-samples in difference
space. Assume that there is N individual SVMs totally, then
N new training sets Z1, Z2, · · · , ZN are required. To construct
Zn, n = 1, 2, · · · , N , we first randomly select some samples
xj in the original training set. For each of them, then we
randomly select k examples from the its class and k examples
from the different class, and respectively generate the within-
class difference set Sn and the between-class difference set
Dn by using them. Finally, Zn = Sn ∪ Dn.

After gaining Zn, n = 1, 2, · · · , N , use N standard SVMs
to train. We can get N train models. The standard SVM is to
solve the convex quadratic programming problem as follows:

max
α

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjvivjk (zi, zj)

s.t.

m
∑

i=1

αivi = 0

0 ≤ αi ≤ C , i = 1, 2, · · · , m

(3)

where zi ∈ R
d is the paired-sample, vi ∈ {−1, +1} is the

label for zi, k (zi, zj) is the kernel function, αi is the Lagrange
multiplier, m is the number of the paired-samples, and C > 0
is the regular factor.

In the test procedure of SVM, we input the paired-samples
in test set into the training model obtained above. The discrim-
inant function is described by

v̂ = f (z) = sgn

(

m
∑

i=1

αivik (zi, z) + b

)

(4)

where sgn(·) is the sign function, z is a test paired-sample,
and v̂ is the estimated label of z. For any 0 < αj < C, the
threshold b can be computed under KKT conditions by the
following equation:

b = vj −

n
∑

i=1

αivik (zi, z) (5)

B. Combining multiple outputs

Traditionally, a test set for similarity learning is formed in
this way: for a test example x, construct the paired-samples
with each examples in the original training set. Since the
scale of test set is quite large when the original training
set contains too much examples, it is a big challenge in
computation complexity. To speed up the algorithm, it requires
to cut down the scale of test set to some degree. We randomly
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select k
′ examples in each class from the original training set,

and express the selected subset of the original training set as
X

′. For a test example x, construct paired-samples with the
examples in X

′ instead of all the examples in the original
training set. Until now, the test set T is obtained.

Each individual SVM corresponds to a specific train model.
For each paired-sample in T , there results in N outputs
obtained from all SVMs. In the following, we describe the
combination rules for these outputs.

It is well known that the test paired-sample z is made up of
two samples, the test sample x and any example xi in X . Also,
(4) only determines these two samples are similar or not, and
cannot indicate the class attribute of the unseen samples x. For
the application of classification, it needs to utilize similarity to
determine the class of test samples.

To determine the class label of an unseen sample x, we

construct the set of test paired-samples T ={z′i}
k
′
×c

i=1
, where

z′i = (x − xi) ∈ R
d constructed with the original training

samples xi in X
′. Note that the training samples in X

′ are
rearranged according to their labels, or the first k

′ samples
belongs to class 1 and so on. By (4), we can obtain v̂ni, n =
1, · · · , N, i = 1, · · · , k

′ × c. Each v̂ni represents whether the
test sample x is similar to the training sample xi according
to the nth SVM. Of course, the labels of xi are known since
they are training samples.

To combine the outputs of multiple SVMs, we introduce
some combination rules, including “voting then classifying”
(or VC) rule, the “classifying then voting” (or CV) rule, the
maximum (or MAX) rule, the minimum (or MIN) rule and
the average (or AVG) rule. In the following, we describe these
rules.

1) VC rule: For the test paired-sample zi, the VC rule first
combines the N similarities obtained from N SVMs. Namely,

v̂
′

i
= sgn

(

∑

N

n=1
(v̂ni + 1)
2N

−
1
2

)

(6)

If v̂
′

i
= 1, then we think that the test sample x is similar to

the training sample xi. Otherwise, they are not similar when
v̂
′

i
= −1. Then we compute the similarity probability of the

text sample in each class, which is defined as

Pj(x) =

∑

j×k
′

i=(j−1)×k
′+1

(v̂′
i
+ 1)

2k′
, j = 1, · · · , c (7)

We classify the test sample x according to the maximum
similarity probability. Namely,

ŷ = arg max
j=1,··· ,c

Pj(x) (8)

2) CV rule: In the CV rule, the estimated classification
labels on the test sample x are first obtained, and then these
classification results are combined by some way. The similarity
probability in each class generated by the nth classifier is
expressed as:

Pnj(x) =

∑

j×k
′

i=(j−1)×k
′+1

(v̂ni + 1)

2k′
, j = 1, · · · , c, n = 1, · · · , N

(9)

By using these probabilities, we give the classification results

ŷn = arg max
j=1,··· ,c

Pnj(x) (10)

where ŷn is the estimated classification label on x obtained
from the nth classifier. According to the majority voting rule,
these classification labels ŷn, n = 1, · · · , N determine the final
estimate label for x.

3) MAX rule: Given the similarity probability Pnj , n =
1, · · · , N, j = 1, · · · , c, the MAX rule is to estimate the label
for x by

ŷ = arg max
j=1,··· ,c

max
n=1,··· ,N

Pnj (11)

4) MIN rule: Given the similarity probability Pnj , n =
1, · · · , N, j = 1, · · · , c, the MIN rule is to estimate the label
for x by

ŷ = arg max
j=1,··· ,c

min
n=1,··· ,N

Pnj (12)

5) AVG rule: The AVG Rule is parallel to the MAX rule
and MIN rule. The only difference is that the final similarity
probability of each class is the average value of the results in
individual SVMs, which can be expressed by

ŷ = arg max
j=1,··· ,c

∑

N

n=1
Pnj

N
(13)

IV. EXPERIMENTS

In order to validate the effectiveness of the proposed
method for solving unbalanced problems, we select some pop-
ular datasets, including Iris dataset from UCI [32], the MNIST
database of handwritten digits [33] and the UMIST Face
Database [34]. The compared methods are four representative
under-sampling methods, which are random under-sampling,
NearMiss-1, NearMiss-2, and NearMiss-3 method.

Some experiment settings are explained here, such as
the data pre-processing and some parameters. First, a data
normalization processing is needed. All the selected datasets
are mapped into the interval [0, 1]. Second, the kernel function
of SVM is the popular radial basis function (RBF), which is

denoted by k (z, z′) = exp
{

−γ‖z − z′‖2
}

, where γ > 0 is

the kernel parameter. The value of γ is determined according
to the training examples [36]. There is another parameter
related to SVM, which is called the regular factor C. In
our experiment, C is determined via 5 fold cross-validation,
ranging from {10−3

, 10−2
, · · · , 103}. The results of cross-

validation show that the performance is best when C is equal
to 10. Hence, we set C = 10 in the following experiments.
The four sampling methods sample the data to a completed
balanced data distribution.

A. Iris dataset

The UCI Machine Learning Repository is a collection of
databases, domain theories, and data generators that are used
by the machine learning community for the empirical analysis
of machine learning algorithms. Iris dataset is one of the most
popular datasets.

The Iris dataset contains 3 classes. Each class describes a
type of iris plants. Note that one class is linearly separable
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from the other two, while the latter are not linearly separable
from each other. 50 instances are included in each class, 150
in total. Each sample has 4 attributes. In the experiment, half
of the samples are selected randomly as training samples in
each class, while the rest as test samples. We perform 10 times
and report the average result.

To construct the training set of paired-samples for SVMs,
we first randomly select k samples in each class from the
training set. For each selected sample, we randomly select
k other examples in the same class and k examples in the
different class. In the case of constructing test paired-samples,
we randomly select k

′ examples from each class for a test
sample. Here, let k = k

′ = 10.

We compare the performance of five combination rules
when varying the number of individual SVMs N . The
number of individual SVMs N takes value from the set
{5, 10, 15, 20, 30, 40, 50, 100}. Figure 1 and Table I show test
errors versus (vs.) different N for our method, and Table
II gives test errors obtained from other four methods. The
performance index “Number” in these tables means the number
of paired-samples in the training set in SVM ensemble. While
in the four under-sampling methods, it means the number of
paired-samples after/without under-sampling.

The running time in Table I includes the time of construct-
ing training and test paired-sample sets, the time of training
all SVMs and the time of test all samples in the test set. Note
that the running time in Table I includes the time of training
N SVMs, while the running time in Table II just contains that
of one SVM.

5 10 15 20 30 40 50 100
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Fig. 1. Test errors versus different N on the Iris dataset

From Figure 1, it is obvious that the AVG rule is the best
one with highest accuracy and strongest stability among all
the five rules. From Table I, we can see that the number of
SVMs has a little effect on the classification performance, but
has a great effect on the running time. Table II indicates that
the accuracy of the four under-sampling methods is quite high,
which is compared to our methods. However, the time spent
on the sampling procedure cannot be ignored, especially in
NearMiss-1, NearMiss-2 and NearMiss-3. When the scale of
dataset is much larger, the re-sampling time is insufferable,
which will be reflected in the following experiments. When N

is small enough, the running time is competitive to the other
methods.

In the proposed method, the accuracy is pretty good among
all the five rules when N is 20. Considering both accuracy
and running time, we choose the AVG rule as the combination
rule of individual SVMs, and set N to 15 in the following
experiments.

B. MNIST database of handwritten digits

The MNIST database of handwritten digits is a popular
database in machine learning and pattern recognition. The
database has a training set of 60,000 instances and a test set
of 10,000 instances, which is a subset of a larger set available
from NIST. It contains 10 classes, namely class 0-9. Each
instance is a gray level image with the size of 28×28 pixel.
Figure 2 shows some samples from the MNIST database. In
this experiment, we just select five classes, class 1, 3, 7, 8,
and 9. Considering the huge expense on sampling procedure
in the under-sampling methods, 50 training examples and 100
test examples are picked from each class randomly. That is,
there are 250 training examples and 500 test examples in total.
As the dimension is quite high, dimensionality reduction is in
badly need. Influenced by the recent upsurge of compressed
sensing, random projection is becoming an effective and fast
dimensionality reduction method [35], [36]. Here, random
projection is used on the original samples. Namely,

x̄
i
= Rx

i
(14)

where x̄
i
∈ R

d
′

is the corresponding sample of xi in a

projected subspace, R ∈ R
d
′
×d is a random projection matrix,

and d
′ is the dimensionality of the projected subspace. d

′ is
set to 50 in this experiment. Similarly, we perform 10 trials
and report an average result.

Fig. 2. Some samples in the MNIST database of handwritten digits

In the experiment of the MNIST database, we set k = 10
and k

′ = 10. As described in Section IV-A, we select the AVG
rule as the combination strategy, and set N to 15. The results
are illustrated in Table III.

From Table III, it is easy to find out that the proposed
method not only has a higher accuracy but also a much faster
runtime. The other four methods consume too much time
on sampling. Without considering the runtime of the four
under-sampling methods, more examples can be included in
the training set, which will improve the performance of our
method.

C. UMIST face database

The UMIST face database consists of 564 images of 20
people. Individuals cover a range of race/sex/appearance. Each
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individual is shown in a range of poses from profile to frontal
views. Figure 3 shows some samples in the UMIST face
database. Each sample is an image of size 112×92. The
dimensionality is quite high, so random projection is still used
here. The dimensionality of projection space is also 50. The
experiments is repeated 10 times. Since the number of the
instances for each person is not the same and the number
of individuals is relatively large, we select less examples to
construct paired-samples, k = 5 and k

′ = 5. The results are
shown in Table IV.

Fig. 3. Some samples in the UMIST face database

From Table IV, it is obvious that the prediction of the
proposed method is best. Meanwhile, random under-sampling
method has done a better job in running time. The UMIST
database contains images of 20 people, thus the number of
paired-samples in training set after random under-sampling is
not very large. While in SVM ensemble, the SVM training
procedure runs 15 times. The NearMiss-1, NearMiss-2 and
NearMiss-3 method get a lower accuracy while pay a huge
cost on cpu time, especially in NearMiss-2.

V. CONCLUSION

This paper deals with similarity learning using SVM en-
semble which has a great advantage in solving the unbalanced
problems. This problem is caused by constructing paired-
samples in traditional way. From the results on the Iris dataset,
the proposed method gets a competitive accuracy compared
to the other under-sampling methods while the advantage of
speed is not outstanding. The reason is that the Iris dataset is in
small size. Meanwhile, the AVG rule gets the best performance
when varying N . On the MNIST database and UMIST face
database, the proposed method outperforms the other four
methods in both prediction and running time. To sum up, the

proposed method is meaningful, especially when the scale of
dataset is relatively larger.
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TABLE III. TEST RESULTS ON THE MNIST DATABASE

Methods Number Test error(%) Running time(s)

SVM ensemble 5000 13.58 481.2
Random under-sampling 25000/62500 18.10 1014.8

NearMiss-1 25000/62500 36.16 5971.1
NearMiss-2 25000/62500 39.24 7885.1

NearMiss-3 25000/62500 20.98 11457.0

TABLE IV. TEST ERRORS ON THE UMIST DATABASE

Methods Number Test error(%) Running time(s)

SVM ensemble 2820 5.11 292.7

Random under-sampling 8904/79524 7.50 72.5
NearMiss-1 8904/79524 6.23 1200.6
NearMiss-2 8904/79524 15.32 1645.8

NearMiss-3 8904/79524 6.83 1576.1
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