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Abstract—In this paper, the finite horizon stochastic optimal 

control of nonlinear two-player zero-sum games, referred to as 

Nonlinear Networked Control Systems (NNCS) two-player zero-

sum game, between control and disturbance input players in the 

presence of unknown system dynamics and a communication 

network with delays and packet losses is addressed by using 

neuro dynamic programming (NDP).  The overall objective 

being to find the optimal control input while maximizing the 

disturbance attenuation. First, a novel online neural network 

(NN) identifier is introduced to estimate the unknown control 

and disturbance coefficient matrices which are needed in the 

generation of optimal control input. Then, the critic and two 

actor NNs have been introduced to learn the time-varying 

solution to the Hamilton-Jacobi-Isaacs (HJI) equation and 

determine the stochastic optimal control and disturbance 

policies in a forward-in-time manner.  Eventually, with the 

proposed novel NN weight update laws, Lyapunov theory is 

utilized to demonstrate that all closed-loop signals and NN 

weights are uniformly ultimately bounded (UUB) during the 

finite horizon with ultimate bounds being a function of initial 

conditions and final time. Further, the approximated control 

input and disturbance signals tend close to the saddle-point 

equilibrium within finite-time.  Simulation results are included. 

I. INTRODUCTION 

ONLINEAR Networked Control Systems (NNCS) [1], 

which brings in a communication network to close the 

feedback loop between the nonlinear system and the 

controller, has been considered as the next-generation control 

system since many benefits such as high efficiency, 

flexibility, low installation cost, so on can be harvested. 

However, the unreliable communication network in the 

feedback-loop causes several challenging issues such as 

performance degradation and instability due to network 

imperfections such as random delays and packet losses while 

exchanging feedback among the plant and remote controller. 

       Recently, authors in [2] considered asymptotic behavior 

of NNCS with network-induced delays alone. A discrete-time 

framework has been proposed in [3] to analyze NNCS 

stability in presence of both delays and packet losses. All the 

schemes [2-3] need the knowledge of system dynamics and 

network imperfections for maintaining stability of NNCS. 

However, due to uncertain network imperfections, the NCS 

dynamics cannot be assumed to be known a priori.  

Moreover, besides stability, optimality is more preferred [4-

5] for NCS. Thus, authors in [5] proposed an infinite horizon 

optimal control of NNCS under uncertain dynamics and 

unknown network imperfections.  However, finite horizon 
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optimal of NCS is not considered.  

       Finite horizon optimal problem is more difficult due to 

terminal constraints [8].  In addition, existing designs ignored 

the worst case disturbance issues referred to as NCS two-

player zero-sum game [6] whereas there are several practical 

engineering applications including smart grid, aircraft, where 

the influence of disturbance has to be considered with the 

controller design. Other practical examples of two-player 

zero sum game include rock-paper-scissors, chess, go, or 

checkers to name a few. To optimize performance of zero-

sum game, two-player min-max optimization
H control 

problem [6] is introduced, where controller is a minimizing 

player and the disturbance is a maximizing player. The 

overall objective of the two-player zero-sum game is the 

force the players to attain the saddle-point equilibrium [11] 

by using adaptive decision strategy within an infinite horizon. 

    This paper for the first time considers the finite horizon 

optimal solution for NNCS two-player zero-sum games with 

uncertain dynamics by using neuro dynamic programming [7] 

(NDP) while incorporating terminal constraints. In [8], the 

disturbance effects are not considered. In [9], authors utilized 

synchronous policy iteration to attain optimal design of 

nonlinear two-player zero-sum games. However, iteration-

based NDP methods [7-9] require significant number of 

iterations [10] within a fixed sampling interval which is not 

practical and hence time-based ADP approach is needed [10].  

However, the existing NDP schemes [7-10] are unsuitable 

for finite horizon NNCS two-player zero-sum game since a) 

worst case disturbance has not been considered even though 

the authors in [6] had proven that there exists a saddle-point 

equilibrium in two-player zero-sum game [11], b) network 

imperfections stemming from unreliable communication 

network are ignored, and c) only infinite horizon optimal 

control [11] is addressed with partial system dynamics. 

 In contrast, a time-based NDP based approach is 

undertaken with the overall objective, being to find the 

optimal control input while maximizing the disturbance input, 

formulated as a two-player zero sum game in the presence of 

uncertain system dynamics and network imperfections such 

as delays and packet losses.  First, to relax the need for partial 

system dynamics, a novel NN identifier is proposed to learn 

both control and disturbance coefficient matrices online. 

Then, a critic NN is introduced and tuned forward-in-time to 

learn stochastic value function of NNCS two-player zero-sum 

game within a finite time by using Hamilton-Jacob-Isaacs 

(HJI) equation [6], given the terminal constraint.  Eventually, 

the proposed two actor NNs are utilized to estimate both the 

stochastic optimal control and disturbance inputs by 

minimizing and maximizing tuned stochastic value function 

respectively.  It can be shown that the overall game reaches 
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close to the saddle-point equilibrium [11]. 

II. BACKGROUND 

A. NNCS Zero-sum Game 

The block diagram of NNCS is same as [5] where the 

nonlinear feedback control-loop is closed by using a 

communication network. Since the communication network 

is shared [5], the NNCS in this paper considers the network-

induced delays and packet losses including: (a) )(tsc : sensor-

to-controller delay, (b) )(tca : controller-to-actuator delay, 

and (c) )(t : indicator of network-induced packet losses. 

Assumption 1: a) Due to the wide area communication 

network, the two types of network-induced delays are 

considered independent, ergodic and unknown whereas their 

probability distribution functions are considered known. The 

sensor-to-controller delay is assumed to be less than a 

sampling interval. b) The sum of two delays is considered to 

be bounded while initial state of system is assumed to be 

deterministic [4].  

    Incorporating the network-induced delays and packet 

losses, the original nonlinear two-player zero-sum game in 

affine form can be represented as 

))(())(()())(())(()())(()( ttdtxhtttutxgttxftx    (1) 
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)(xf ℝ𝑛×𝑛, )(xg ℝ𝑛×𝑚 and )(xh ℝ𝑛×𝑙  represent system 

state, control inputs, disturbance inputs, nonlinear internal 

dynamics, control coefficient and disturbance coefficient 

matrix respectively. 

    Similar to [5], integrating (1) over a sampling interval
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losses and introducing a new augment state as
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NNCS two-player zero-sum game can be represented in 

compact form as 
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sTb is upper bound on network-induced delay, sT is sampling 

interval, )( sk kTxx  , ),)(( sik Tikuu  ))(( sik Tikdd 

bi ,...,1,0  are discretized current NNCS system state, 

previous control inputs and disturbance signals. Additionally,

),(, X ),(, P )(, K for NNCS two-play zero-sum game 
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Further, note that )(F , )(G and )(H in (2) represent 

NNCS two-player zero-sum game internal dynamics, control 

and disturbance coefficient matrices with MFk GzG )( and

MFk HzH )( [10] where
F

 denotes the Frobenius norm 

[12] and MG , MH are positive constants [10].  Moreover, since 

network-induced delays and packet losses have been 

considered in the NNCS two-player zero-sum game 

representation, equation (2) becomes uncertain and stochastic 

thus needing adaptive control methods. 

B. Traditional Stochastic Optimal Strategies  

Consider the nonlinear two-player zero-sum game as  

 , 1 , , , , ,( ) ( ) ( )DT k DT DT k DT DT k DT k DT DT k DT kx f x g x u h x d      (3) 

where
kDTkDT
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d
,

represent the system state, control 

input and disturbance signals and )(
,kDTDT

xf , )(
,kDTDT

xg ,

)(
,kDTDT

xh denote the internal dynamics, control and 

disturbance coefficient matrices respectively in discrete-time. 

According to traditional optimal control [6][11] of two-player 

zero-sum game, the finite horizon optimal strategies can be 

derived to minimize the value function which is expressed as 
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with cost-to-go is denoted as , , , ,( , , ) ( )DT k DT k DT k DT DT kr x u D Q x

2
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s

NT is the 

final time instant,  is a positive constant (i.e. 0  ), 

( ) 0,DTQ x  ( ) 0N x  and DTR , DTS are symmetric positive 

definite matrices. In contrast to infinite horizon design [6], 

)(x
N
 is the terminal constraint which needs to be satisfied in 

the finite horizon two-player zero-sum game optimal design. 

According to dynamic programming technique [7], equation 

(4) can also be represented for 1,...,0  Nk as 

   , , , , 1 , 1( , ) ( , , ) ( , 1)k DT k DT k DT k DT k k DT kV x k E r x u d V x k 
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     Similar to [5], when 0x , 0),( kxV
k

, the value function

),( kxV
k

serves as the Lyapunov function [12]. Based on 

Bellman principle of optimality [7], the optimal value 

function also satisfies discrete-time Hamilton-Jacob-Isaacs 

(HJI) equation described by 
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 (6) 

For finite horizon nonlinear two-player zero-sum game, 

controller
k

u is viewed as the player minimizing the cost 

function while the disturbance
k

d maximizes the cost. 

According to [6][11], this two-player zero-sum game optimal 

design has a unique solution while Nash condition holds as 
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     According to [6][11], the optimal control and disturbance 

policies, *

,
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where  is a positive parameter. Substituting (8),(9) into (6), 

the discrete-time HJI equation (6) is given by 
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III. FINITE HORIZON STOCHASTIC OPTIMAL DESIGN 

The control and disturbance coefficient matrices are needed 

for selecting an optimal strategy for the nonlinear two-player 

zero-sum game [6] whereas these are unknown. To 

circumvent this issue, a novel NN-based identifier is 

proposed. 

A. Online NN-identifier Design  

 According to [5], the NNCS two-player zero-sum game 

internal dynamics, control and disturbance coefficient 

matrices can be represented on a compact set  as 
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with FW ℝ𝑝𝑓×𝑛, GW ℝ𝑝𝑔×𝑛 HW, ℝ𝑝ℎ×𝑛denote the target 

NN weights, )(F ℝ𝑝𝑓 )(, G ℝ𝑝𝑔 , )(H ℝ𝑝ℎare 

activation functions and kF , ℝ𝑝𝑓 kG, ℝ𝑝𝑔 , kH , ℝ𝑝ℎ are 

reconstruction errors respectively. 

    Substituting (11) into NNCS two-player zero-sum game 

dynamics (2), we get 
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,
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proven via Lyapunov given a bounded initial condition, the 
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functions ),(F )(G , )(H )(and I , )(zG , )(zH  can 

be identified while the NN identifier weight, IW , is being 

tuned. 

    The NNCS two-player zero-sum game system state kz can 

be approximated by using the NN identifier as 
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ˆ is the estimated weight matrix of the NN identifier 
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    Next, the identification error can be expressed as 
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Moreover, similar to [10] and using the history of NNCS 

two-player zero-sum game, the auxiliary identification error 

vector can be represented as 
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    For tuning NN identifier target weights within the finite 
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where the tuning parameter I satisfies 0 1I . Utilizing 

the update law (17) into the auxiliary error dynamics (15), the 
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In order to learn the NNCS control and disturbance 

coefficient matrices )(),( zHzG by using proposed online NN 

identifier, ])([
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where kIIkI WWW ,,
ˆ~

 is NN identifier weight estimation 

error at time skT .  

B. Stochastic Value Function Setup and Critic NN Design 

According to the value function defined in [5][10], the 

stochastic value function for NNCS two-player zero-sum 

game can be expressed in terms of augment state kz as 
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with 0)( kz zQ and zz SR , are positive definite matrices,  is a 

positive constant (i.e. 0  ). In contrast to stochastic value 

function under infinite horizon, a terminal constraint (i.e.

 
,

( , ) ( )N N N NV z N E z
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 ) is incorporated while deriving the 

finite horizon stochastic optimal design. 

     According to [10], the stochastic value function (20) can 

be represented by using a critic NN as 

NkkNzWEkzV kVk

T

Vk ,...,1,0),),((),( ,
,

 


        (21) 

with VW ℝ𝑟, kV , ℝ represent the critic NN target weight 

matrix and reconstruction error respectively, and

 ),( kNzk ℝ𝑟denotes the time-dependent critic NN 

activation function. It is important to note that the activation 

function explicitly dependent upon time and this makes the 

finite horizon problem different and difficult over the infinite 

horizon case [10].  Moreover, the critic NN target weight and 

reconstruction errors are bounded in the mean as

VMkVVMV EWWE 


 )(,)( ,
,,

with VMW , VM being positive 

constants [10]. In addition, the reconstruction error gradient is 

assumed to be bounded in the mean as
'

,
,

)( VMkkV zE 




with '

VM being a positive constant [10]. 

    Next, the critic NN approximation of stochastic value 

function (21) can be expressed as 

NkkNzWEkzV k
T

kVk ,...,1,0)),,(ˆ(),(ˆ
,

,
 


                     (22) 

where )ˆ( ,
,

kVWE


is the estimated critic NN weight matrix and 

time dependent activation function ),( kNzk  has been 

selected from a basis function set whose elements in the set 

are linearly independent [10]. Also, since the activation 

function is continuous and smooth, two time independent 

functions )(min kz , )(max kz can be found such that 

),()(min kNzz kk    )(max kz , Nk ,...,0 . 

Moreover, the stochastic value function (15) can be bounded 

as
2

2

min min
, ,

|| ( ) |||| ( ) || ( , ) || ( ) |||| ( ) ||V k VM k V kE W z V z k E W z
   

    
2

VM . In 

addition, recalling (21) and (22), value function estimation 

error, ),(
~

),(
~

, kNzWkzV k
T

kVk   kV , , can also be bounded as  

2

min,
,

2
2

min,
,

)()
~

(),()()
~

( VMkkVkVMkkV zWEkzVzWE 


  

    Recalling HJI equation [6][9], the following can be derived 

by substituting (20) into the HJI equation as 

))],()1,(([)( 1
,

1,,
,

kNzkNzWEE kk
T

VkVkV   


 

1,...,1,0),(
,

 NkdSduRuzQzE kz
T
kkz

T
kkz

T
k


            (23) 

In the other words, 

1,..,0,),,()),(( ,
,

 NkduzrkNzWE kVkkkk
T

V 


         (24) 

where ),()1,(),( 1 kNzkNzkNz kkk    ,

),,( kkk duzr )(
,

kz
T
kkz

T
kkz

T
k dSduRuzQzE 


and )( 1,,

,
,  kVkVkV E 



with VMkV   , , 1,...,0  Nk  [10]. However, when an 

estimated value of critic NN, ),(ˆ kzV k  from (22), is utilized 

instead of ideal critic NN output, ),( kzV k , equation (23) does 

hold. Then using ideas similar to [10], and incorporating 

delay values for convenience, the temporal difference (TD) 

error dynamics associated with (24) are introduced as 

, ,
, ,

ˆ( ) ( ( , )) ( , , ), 0,..., 1T

HJI k V k k k k kE e E W z N k r z u d k N
   

                (25) 

with )( ,
,

kHJIeE


denotes the HJI equation TD error for the finite 

horizon case (i.e. ],0[ sNTt ).  Moreover, since ),,( kkk duzr  

NkkNzWE k
T

VkV ,...,1,0)),,((
,

,  


(24), the HJI 

equation TD error dynamics can be derived as 

1,...,0,)),(
~

()( ,,
,

,
,

 NkkNzWEeE kVk
T

kVkHJI 


 (26) 

where )ˆ()()
~

( ,
,,

,
,

kVVkV WEWEWE


 represents the critic NN 

weight estimation error. 

     Next, in order to incorporate the terminal constraint, the 

estimation error )( ,
,

kFCeE


can be defined as 

  NkzWEzEeE kN

T

kVNNkFC ,...,1,0)),0,ˆ(ˆ()()( ,,
,,

,
,

 


  (27) 

where
kNz ,

ˆ is the estimated final NNCS two-player zero-sum 

game system state at time skT by using NN identifier (i.e.

)(ˆ),(ˆ),(ˆ  HGF ).  

    Considering the HJI TD error and terminal constraint 

estimation error jointly and using the gradient descent 

technique, update law for critic NN weight can be derived by 


















1)0,ˆ()0,ˆ(

)0,ˆ(
)ˆ()ˆ(

,,

,,

,
,

,
1,

,
kNkN

T

T
kFCkN

VkVkV
zz

ez
EWEWE







         (28) 

1,..,0 ,
1),(),(

),( ,

,



















 Nk

kNzkNz

ekNz
E

kk
T

T
kHJIk

V






 

C. Actor NN Estimation of Control and Disturbance Inputs 

Similar to [10], the ideal finite horizon NNCS optimal 

control and disturbance inputs can be expressed by using 

actor NNs as 

NkkzWEzd

NkkzWEzu

kdk
T
dk

kuk
T

uk

,...,1,0],),([)(

,...,1,0],),([)(

,
,

*

,
,

*












                        (29) 

where uW ℝ𝑠, ku, ℝ represent two actor NN target weight 

matrix and reconstruction errors for control input 
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respectively, dW ℝ𝑏, kd , ℝ denote actor NN target 

weight matrix and reconstruction error, and ),( kzk ℝ𝑠,

),( kzk ℝ𝑏 represent smooth time-varying activation 

function for control and disturbance actor NNs respectively. 

Moreover, time independent functions )(min kz , )(max kz

)(min kz and )(max kz can be found such that

)(),()( maxmin kkk zkzz   and ),()(min kzz kk  

)(max kz Nk ,...,0 . Additionally, actor NN weight 

matrices, activation functions and reconstruction errors are 

considered.  

    Next, similar to [5][10], estimated actor NNs for control 

and disturbance inputs can be represented as 

, ,
, ,

ˆˆ ˆˆ( ) [ ( , )], ( ) [ ( , )], 0,1,...,T T

k u k k k d k ku z E W z k d z E W z k k N
   

        (30) 

with )ˆ( ,
,

kuWE


, )ˆ( ,
,

kdWE


denote the estimated weights for 

control and disturbance actor NNs respectively.  Further, the 

actor NN estimation errors will be considered as the 

difference between the actual control and disturbance (30) 

inputs applied to the NNCS where the control policy is 

considered to be obtained by minimizing the tuned stochastic 

value function whereas the disturbance policy can be 

obtained by maximizing  the tuned stochastic value function 

(22), i.e. )(maxmin zV
du

, with identified control and 

disturbance coefficient matrices (i.e. )(ˆ
kzG , )(ˆ

kzH ) within 

the finite horizon. The estimation errors are expressed as 

1 1
, , ,

, ,
1

( , 1)1 ˆˆ ˆ( ) ( , ) ( )
2

T
T T k

u k u k k z k V k

k

z N k
E e E W z k R G z W

z   


  



   
  

 

 

1 1
, , ,2, ,

1

( , 1)1ˆ ˆ ˆ( ) ( , ) ( )
2

T
T T k

d k d k k z k V k

k

z N k
E e E W z k S H z W

z   






 



   
  

 
  (31) 

   Using gradient descent scheme, the update law for the two 

estimated actor NNs weight matrices can be represented as 

1,..,0,
1),(),(

),(
)ˆ()ˆ(

1,..,0,
1),(),(

),(
)ˆ()ˆ(

,
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,
,
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
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


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
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


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EWEWE

Nke
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EWEWE

T
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T

k
dkdkd

T
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kk
T

k
ukuku















  (32) 

where the two actor NNs tuning parameters u , d satisfies

10  u and 10  d . 

D. Closed-loop Stability 

The initial NNCS two-player zero-sum system state is 

considered to reside in a compact set [5][10] due to the 

initial admissible policy )(0 kzu , )(0 kzd . In addition, two 

actor NNs activation functions, the critic NN activation 

function and its gradient are all considered to be bounded in a 

compact set  satisfying. Mk kzE 


)),((
,

, '

,

( , )k
M

k

z k
E

z 




 
 

 
,

,
( ( , ))kE z k

 
 M  and )),((

,
kzE k


M [5][10]) since the 

activation functions of NNs are selected to a bounded smooth 

continuous functions. Moreover, the PE condition will be 

held by adding exploration noise [5][10] and NN tuning 

parameters VI  , and u , d will be chosen to ensure that all 

future system state remain in the compact set.  In order to 

proceed, the following lemma is needed before demonstrating 

the main theorem.  

 
Lemma 3 [5][10]: Let the optimal control and disturbance 
policies be utilized on the NNCS two-player zero-sum game 
(2) such that (2) is asymptotically stable in the mean [5]. 
Then, the closed-loop NNCS two-player zero-sum game 

dynamics, )]()()()()([
,

kkkkk zdzHzuzGzFE  


 can be 

expressed as 
2

,

2

,
)()]()()()()([ kokkkkk zElzdzHzuzGzFE


                  (33) 

with )(),( **

kk zdzu are optimal control and disturbance signal 

policies respectively where 210  ol is a positive constant. 

 

Theorem 1 (Convergence of optimal control and disturbance 

inputs) Given )(0 kzu , )(0 kzd be any initial admissible control 

and disturbance policy for the NNCS two-player zero-sum 

game (2) such that (36) holds with 210  ol . Consider the 

NN weight update laws for identifier, critic and  two actor 

NNs as (17), (30) and (35) respectively, then there exists 

positive tuning parameters duVI  ,,, satisfying

min1
0 min ,

2 2
I

M M




 

  
   

  

, 0 V
2

5









with 2

)1)(1(

2
0

2

min

2

min

2

min

2

min 










and
3

1
0  u ,

3

1
0  d such that the system state )(

,
kzE


, 

identification error )( ,
,

kIeE


, NN identifier weight estimation 

error )
~

( ,
,

kIWE


, critic and two actor NNs weight estimation 

errors )
~

( ,
,

kVWE


, )
~

( ,
,

kuWE


, )
~

( ,
,

kdWE


are all UUB in the mean 

within ],0[ sNTt . Further, the ultimate bounds are a 

function of the final time, sNT , bounded initial system state

0,zB , identification error
0,IB and initial weight estimation 

error for NN identifier, critic and two actor NNs
0,WIB ,

0,WVB ,

0,WuB ,
0,WdB  respectively. Moreover,

* ˆ
k k uu u B  and

* ˆ
k k dd d B  with uB and dB are small bounds.  

Proof:  Omitted due to space limitation. 

IV. SIMULATION RESULTS 

Consider continuous-time version of the original nonlinear 

two-player zero-sum game in affine form from [9] given by 

dxhuxgxfx )()()(                                                    (34) 

where 









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
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0
)(

1x
xg  and 












2)4sin(

0
)(

1x
xh . 
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     The parameter of NNCS two-player zero-sum game are 

selected as [5]: 1) Sampling time: msTs 100 ; 2) The upper 

bound of network-induced delay is given as two, i.e. 2b ; 

3) The network-induced delays are msE sc 80)(  and )(E

ms150 ; 4) Network-induced packet losses follow Bernoulli 

distribution with 3.0 and 5) Final time is set as st f 20 .   

  For incorporating network parameters and proposed 

design into NNCS two-player zero-sum game, the augment 

state is defined as  
TT

k
T
k

T
k

T
k

T
kk dduuxz ][ 2121 ℝ6×1 and the 

initial state is chosen as Tx ]3.5-  6[0  while the initial 

admissible control and disturbance policies are given as

kko zzu ]101  1  5.2  2[)(  and kko zzd ]011 1  2 1[)( 

respectively. Similar to [5], activation function for NN 

identifier is taken as ,,)tanh{( 2,1,
2

1, kkk zzz })(),...,()(, 6
6,2,

5
1, kkk zzz

, the critic NN state dependent part activation function is 

chosen as sigmoid of sixth order polynomial, that is, 

,){(sigmoid 2
1,kz ,2,1, kk zz ),...,()...( 2,

5
1, kk zz })( 6

6,kz ) and time-

dependent part of critic NN activation function is given as 

saturation polynomial time function, that is, 

,)(,1;;1,...,)(,){( 10910 kNkNkNsat   }..., kN  ), 

and activation function of two actor NNs are all selected as 

the gradient of critic NN activation function.  

 
   Fig. 1. NNCS state regulation errors.           Fig. 2. The NN weights. 

Fig. 3. HJI equation and terminal errors       Fig. 4. Increasing final time 
 

 For the NN identifier, 39 hidden neurons are used.  Hidden 

layer NN weights are initialized at random within (0,1] and 

input layer NN weights are all ones. Moreover, critical NN 

and two actor NNs use 55 hidden layer neurons. Further, 

hidden layer NN weights for critic NN are initialized to zero 

whereas the initial weights for two actor NNs weights are 

selected to reflect initial admissible policy. The input layer 

NN weights for critic NN and actor NNs are set as all ones.   

     As show in Figures 1, the proposed stochastic optimal 

control and disturbance inputs can force the NNCS two-

player zero-sum game state regulation errors tend to zero 

closely within finite horizon. In other words, the proposed 

finite horizon strategies can maintain the NNCS two-player 

zero-sum game UUB in the mean even in the presence of 

uncertain NNCS dynamics and network imperfections. 

Moreover, in Figure 2, the approximated weights for critic 

and two actor NNs are demonstrated. It is important to note 

that the estimated weights of critic and two actor NNs 

converge to constant values and maintain UUB in the mean 

within the finite horizon, which is consistent as Theorem 1. 

Next, as shown in Figure 3, during the interval ]20,0[ st , 

both HJI equation and terminal errors converge close to zero, 

which indicates the game solution satisfies optimality and the 

terminal constraint. Moreover, when the final time instant 

sNT increases, the upper bound of sum of HJI equation and 

terminal constraint errors will decrease as shown in Figure 4. 

V. CONCLUSIONS 

In this paper, a novel time-based finite horizon NDP 

scheme was proposed for NNCS two-player zero-sum game 

by using NN identifier, critic and two actor NNs to solve the 

NNCS two-player zero-sum game in the presence of 

uncertain system dynamics and network imperfections. By 

using historical inputs and NN identifier, the requirement on 

both system internal dynamics, control and disturbance 

coefficient matrices was relaxed. Further, critic NN 

approximated the HJI equation solution online while 

satisfying the terminal constraint. An initial admissible 

control ensured that the system is stable when NNs were 

trained. Using Lyapunov theory, the closed-loop signals were 

shown to be UUB in the mean. When the final time sNT

increases, all the ultimate bounds will converge to zero as 

time goes to infinity. 
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