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Finite Horizon Stochastic Optimal Control of Nonlinear Two-Player
Zero-Sum Games under Communication Constraint

Hao Xu and S. Jagannathan

Abstract—In this paper, the finite horizon stochastic optimal
control of nonlinear two-player zero-sum games, referred to as
Nonlinear Networked Control Systems (NNCS) two-player zero-
sum game, between control and disturbance input players in the
presence of unknown system dynamics and a communication
network with delays and packet losses is addressed by using
neuro dynamic programming (NDP). The overall objective
being to find the optimal control input while maximizing the
disturbance attenuation. First, a novel online neural network
(NN) identifier is introduced to estimate the unknown control
and disturbance coefficient matrices which are needed in the
generation of optimal control input. Then, the critic and two
actor NNs have been introduced to learn the time-varying
solution to the Hamilton-Jacobi-Isaacs (HJI) equation and
determine the stochastic optimal control and disturbance
policies in a forward-in-time manner. Eventually, with the
proposed novel NN weight update laws, Lyapunov theory is
utilized to demonstrate that all closed-loop signals and NN
weights are uniformly ultimately bounded (UUB) during the
finite horizon with ultimate bounds being a function of initial
conditions and final time. Further, the approximated control
input and disturbance signals tend close to the saddle-point
equilibrium within finite-time. Simulation results are included.

I. INTRODUCTION

ONLINEAR Networked Control Systems (NNCS) [1],
which brings in a communication network to close the
feedback loop between the nonlinear system and the
controller, has been considered as the next-generation control
system since many benefits such as high -efficiency,
flexibility, low installation cost, so on can be harvested.
However, the unreliable communication network in the
feedback-loop causes several challenging issues such as
performance degradation and instability due to network
imperfections such as random delays and packet losses while
exchanging feedback among the plant and remote controller.
Recently, authors in [2] considered asymptotic behavior
of NNCS with network-induced delays alone. A discrete-time
framework has been proposed in [3] to analyze NNCS
stability in presence of both delays and packet losses. All the
schemes [2-3] need the knowledge of system dynamics and
network imperfections for maintaining stability of NNCS.
However, due to uncertain network imperfections, the NCS
dynamics cannot be assumed to be known a priori.
Moreover, besides stability, optimality is more preferred [4-
5] for NCS. Thus, authors in [5] proposed an infinite horizon
optimal control of NNCS under uncertain dynamics and
unknown network imperfections. However, finite horizon
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optimal of NCS is not considered.

Finite horizon optimal problem is more difficult due to
terminal constraints [8]. In addition, existing designs ignored
the worst case disturbance issues referred to as NCS two-
player zero-sum game [6] whereas there are several practical
engineering applications including smart grid, aircraft, where
the influence of disturbance has to be considered with the
controller design. Other practical examples of two-player
zero sum game include rock-paper-scissors, chess, go, or
checkers to name a few. To optimize performance of zero-
sum game, two-player min-max optimization z  control

problem [6] is introduced, where controller is a minimizing
player and the disturbance is a maximizing player. The
overall objective of the two-player zero-sum game is the
force the players to attain the saddle-point equilibrium [11]
by using adaptive decision strategy within an infinite horizon.

This paper for the first time considers the finite horizon
optimal solution for NNCS two-player zero-sum games with
uncertain dynamics by using neuro dynamic programming [7]
(NDP) while incorporating terminal constraints. In [8], the
disturbance effects are not considered. In [9], authors utilized
synchronous policy iteration to attain optimal design of
nonlinear two-player zero-sum games. However, iteration-
based NDP methods [7-9] require significant number of
iterations [10] within a fixed sampling interval which is not
practical and hence time-based ADP approach is needed [10].

However, the existing NDP schemes [7-10] are unsuitable
for finite horizon NNCS two-player zero-sum game since a)
worst case disturbance has not been considered even though
the authors in [6] had proven that there exists a saddle-point
equilibrium in two-player zero-sum game [11], b) network
imperfections stemming from unreliable communication
network are ignored, and c) only infinite horizon optimal
control [11] is addressed with partial system dynamics.

In contrast, a time-based NDP based approach is
undertaken with the overall objective, being to find the
optimal control input while maximizing the disturbance input,
formulated as a two-player zero sum game in the presence of
uncertain system dynamics and network imperfections such
as delays and packet losses. First, to relax the need for partial
system dynamics, a novel NN identifier is proposed to learn
both control and disturbance coefficient matrices online.
Then, a critic NN is introduced and tuned forward-in-time to
learn stochastic value function of NNCS two-player zero-sum
game within a finite time by using Hamilton-Jacob-Isaacs
(HJI) equation [6], given the terminal constraint. Eventually,
the proposed two actor NNs are utilized to estimate both the
stochastic optimal control and disturbance inputs by
minimizing and maximizing tuned stochastic value function
respectively. It can be shown that the overall game reaches



close to the saddle-point equilibrium [11].

II. BACKGROUND

A. NNCS Zero-sum Game

The block diagram of NNCS is same as [5] where the
nonlinear feedback control-loop is closed by wusing a
communication network. Since the communication network
is shared [5], the NNCS in this paper considers the network-
induced delays and packet losses including: (a) 7. (¢) : sensor-

to-controller delay, (b)7,,(?): controller-to-actuator delay,
and (c) y(¢) : indicator of network-induced packet losses.

Assumption 1: a) Due to the wide area communication
network, the two types of network-induced delays are
considered independent, ergodic and unknown whereas their
probability distribution functions are considered known. The
sensor-to-controller delay is assumed to be less than a
sampling interval. b) The sum of two delays is considered to
be bounded while initial state of system is assumed to be
deterministic [4].

Incorporating the network-induced delays and packet
losses, the original nonlinear two-player zero-sum game in
affine form can be represented as

x(t) = f (@) + (g (x(@O)ult = 7(0) + y (Oh(x()d(t ~ (1)) (1)

s . . . .
with (0 = { I"™" if controlinputis received by theactuatorat timet

B

0™" if controlinputislostat timet
1™ is nx nidentity matrix, x(¢)e R", u(t)eR™, d(f)eR!,
f(x) € R g(x) e R™™ and h(x) e R™! represent system
state, control inputs, disturbance inputs, nonlinear internal
dynamics, control coefficient and disturbance coefficient
matrix respectively.

Similar to [5], integrating (1) over a sampling interval
[AT,,(k+1)T,) with network-induced delays and packet

losses and introducing a new augment state as
=[x ol oy’ rodqdrar n+b(m+1)
z, =[x, u, u,; d, dk—l;] eR s the

NNCS two-player zero-sum game can be represented in
compact form as

Zyn = F(2,) + Gz )uy + H(z,)d, (2)
with [, e R™*™ [, € R™!are the identity matrices,

F(z,)= [ZTTJ (z) 0 ”111 ukr,g dkT—l dkT,g]T )
Gz)=|P'(z) 1, 0 « 0 0 - 0] and
H(z)=[K" () 0 0 - 1, 0 -« of . Moreover,

b T, is upper bound on network-induced delay, 7, is sampling
X, =x(kT) s uy; =u((k=DT)), d,;=d((k—=0)T)
Vi=0,,..p are discretized current NNCS system state,

previous control inputs and disturbance signals. Additionally,
X,,(®), P_(®), K, (o) for NNCS two-play zero-sum game

interval,

has been derived as

Xw (Zk) =x, + J‘(k+1)Ts

kT

SO+ 7, (17 e, -
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N P 10 Y TS (T )
+7ia (LTZI:;}TT h(x(t))dt)dk—l > Pr,;/ (z) =7 ([T(:IH)TS g(x(t))dt) and

K.z =7, (7 Al

Further, note that F'(e),G(e)and H(e)in (2) represent
NNCS two-player zero-sum game internal dynamics, control
and disturbance coefficient matrices with”G(zk)”F <G,,and

||H (zk)" - <H, [10] where ||0|| , denotes the Frobenius norm

[12] and G,, , H,, are positive constants [10]. Moreover, since
network-induced delays and packet losses have been
considered in the NNCS two-player zero-sum game
representation, equation (2) becomes uncertain and stochastic
thus needing adaptive control methods.

B. Traditional Stochastic Optimal Strategies

Consider the nonlinear two-player zero-sum game as

Xpraa = Jor Cpri) + &pr Xpr i pr i + Aoy (pr i ) pr e (3)

d

input and disturbance signals and £, (x,;,) > &pr (Xpr )

where x represent the system state, control

DT,k’u

DT .k > ** DTk
h,, (x,,,)denote the internal dynamics, control and

disturbance coefficient matrices respectively in discrete-time.
According to traditional optimal control [6][11] of two-player
zero-sum game, the finite horizon optimal strategies can be
derived to minimize the value function which is expressed as

NI
Vk(xDT,k k)= E[¢N(XDT,N) + Zr(xm,/:”m,/adm,/)]’k =0,.,N-1

1=k

V:v (xDT,N ,N)= EW\/ (xDT.N )]
with cost-to-go is denoted as r(x,; . upr > Dprs) = Opr (Xpr i)
the

final time instant, yis a positive constant (i.e. y>0),

4)

+urr)T.kRDruDT,k 7}/2dgT,kSDTdDT,k’ Vk=0,.,N-1, NTv is

0, ()20, ¢, (x)=0and R,; , Sy, are symmetric positive
definite matrices. In contrast to infinite horizon design [6],
@, (x)is the terminal constraint which needs to be satisfied in

the finite horizon two-player zero-sum game optimal design.
According to dynamic programming technique [7], equation
(4) can also be represented for k =0,...,N —1 as

Vi(epr k) = ELr(xDT,k Upr i dpr i) +Vea (Ko gk + I)J (%)
Similar to [5], whenx=0,V, (x,k)=0, the value function

V.(x,k)serves as the Lyapunov function [12]. Based on
Bellman principle of optimality [7], the optimal value
function also satisfies discrete-time Hamilton-Jacob-Isaacs
(HJT) equation described by

Vt(xm,k’k) = IIB’H) 1}?} LE[QDT(xDT,k) + u;T,ARDTuDT,k _dgT,kSDTdDT,k + V*(xur.m )M
V*(xur,;\'7N) = E[¢N (xur,ev )}

For finite horizon nonlinear two-player zero-sum game,
controller, is viewed as the player minimizing the cost

(6)

function while the disturbance d, maximizes the cost.

According to [6][11], this two-player zero-sum game optimal
design has a unique solution while Nash condition holds as



()

According to [6][11], the optimal control and disturbance

min max V(x,0)= max minV (x,0)

policies,u; . ,d; ., can be derived by differentiating (6) as
. 1| V' (xpp gk +1)
U (xpp)===E RDITgLCT(xDT.k)L , k=0,..,N-1 (®)
2 N g
. 1 . OV (Xpp ok +1)
d (xDT,k) :_gE SDlrhgr(xDr,k)LkI ’ k :Oa"'vN_l (9)
r | Xy

where ) is a positive parameter. Substituting (8),(9) into (6),
the discrete-time HJI equation (6) is given by
aV*T (xDT.kH )

OXpran

V*('XDT,I{ K)=E gDT(xDT.k)RZ)ITg;T(xDT,k)

1
Opr(Xpry) + n

« o’ (xDT,/m ) _ L o'’ (xDT,k+I )
4y*

hpy (xDTJ( ) ( 1 0)

axurv/m 6xDr,k+|

v’
XS (e ) O o)

+V (pr ok + I)J,k =0,..N—1

OXprpan

III.  FINITE HORIZON STOCHASTIC OPTIMAL DESIGN
The control and disturbance coefficient matrices are needed
for selecting an optimal strategy for the nonlinear two-player
zero-sum game [6] whereas these are unknown. To
circumvent this issue, a novel NN-based identifier is
proposed.
A. Online NN-identifier Design

According to [5], the NNCS two-player zero-sum game
internal dynamics, control and disturbance coefficient
matrices can be represented on a compact set {2 as

F(z,)=EW;v.(z,)+&,] Vk=01..N
.y

G(z,) = EW505(z,) +€6,] Vk=01,...N (11)
.y

H(z)=EWv,(z)+¢&,,] Vk=0L...N
Ty

with W, € RPF*™ W, € RPo*™ W, € RPh*"denote the target
NN U, (®) e RPf ,u,(®) €RPI, L, (9) € RPhare

activation functions ande,., e R’/ g, e RP9, ¢, e RPh are

weights,

reconstruction errors respectively.
Substituting (11) into NNCS two-player zero-sum game
dynamics (2), we get

= 5[“7“1 (z) B +&als Vk=0,1,.,N (12)

withw, =[w; wg wyiT and v, (z,) = diadvp(z ) U6(z,) Ly (24)]
are NN identifier target weight and activation function
respectively, B, =[I] u; , d,]" eR™™* which includes
I,=[11---1]" eR™?! | historical control and disturbance
inputsu,_,,d,_, is defined as augment input at time (k —1)7,
and &, =&, +&q, U +&y,.d,, denotes NN identifier
reconstruction error. Moreover, TI:; (®) is expectation operator.
Since the NN activation function and augmented input

from previous time instants are bounded, which will be
proven via Lyapunov given a bounded initial condition, the
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E[U/ (zi) B ]

<¢,, where ¢, is a positive constant [5][10]. In addition, the
NN

term HTE/ [v,(z,) B ]

‘ will be bounded i.e.

identifier reconstruction error is considered to be

bounded such that <&, [10], a

TE[&,,k_l] withg, ,, is

SV
positive constant. Using (11) and given NN activation
functions v, (e), U;(®) ,0y(®) andv,(e), G(z),H(z) can
be identified while the NN identifier weight, W, , is being
tuned.

The NNCS two-player zero-sum game system state z, can
be approximated by using the NN identifier as

& = EDVL0, (2 )i ), VE =01, (13)

with Vf/,‘k is the estimated weight matrix of the NN identifier
at timekT,, E[v,(z,)B,]is activation function of NN
Yy

identifier.
Next, the identification error can be expressed as

5(31,/() = g(zk —Z)= g(zk)—g[l/fffkl), (z,-) B ] (14)

Moreover, similar to [10] and using the history of NNCS
two-player zero-sum game, the auxiliary identification error
vector can be represented as

EE,)=E(Z~2)=E(Z) - EW0,Z, )Ba] - (19)

with Z, =[z, z,, -+~ 2,51, 0,(Z, ) =[v,(2) v, (z,,) -
U, (Zk—i)] 5 Bk—] = diag[ﬂkr—l o ﬁ/if]r and 51,/{71 = [‘91,/(71 51,1(7[]

withO <i <k —1. The I previous identification errors (14)
are recomputed by using most recently NN identifier weights.

Next, auxiliary identification error dynamics can be
derived

EE)= EZ) = EWu0/(Z)B 1, 9k =0L..N =1 (16)
For tuning NN identifier target weights within the finite
horizon, the update law for £ (VIA/I ) can be expressed as
7.7 ’
E,0)= EU5,Z)0] Z)0[ 05,2 (7 -2,0] (17)

where the tuning parameter ¢, satisfies 0 < o, <1. Utilizing
the update law (17) into the auxiliary error dynamics (15), the
auxiliary error dynamics E(Z, ;,,) can be represented as

7

(18)

In order to learn the NNCS control and disturbance
coefficient matrices G(z), H(z) by using proposed online NN

E@E )= EE,p). Vk=0L..N-1

identifier, E[U,(Zk)ﬁk]has to be persistently existing (PE)
.y

[5][10] long enough. In other words, there exists a positive

constant £, such  thato<¢,, < ”E[GI (z)B, ]| holds  for
.y

min

k=0,1,...,N.
Next, identification error dynamics (15) can be expressed as
g(el,lﬁ—l) = TE;/[VVI]:kHUI B+ &4, Vk=0,1., N—1 (19)




where VTN/M =W, —Vf/,,k is NN identifier weight estimation

error at time k7, .

B. Stochastic Value Function Setup and Critic NN Design
According to the value function defined in [5][10], the
stochastic value function for NNCS two-player zero-sum
game can be expressed in terms of augment state z, as
N-1
Viz,k)=E ¢N(ZN)+Z(Q_7(ZI)+MITR:I'{1 _yzd/TS:dl) Jk=0,.,N-1
(20)
V(2 N) = E[d ()]

with Q. (z,) 2 0and R_, S, are positive definite matrices, y is a
positive constant (i.e.  >0). In contrast to stochastic value

function under infinite horizon, a terminal constraint (i.e.
Vy(zy.N)=E[#y(z,)]) is incorporated while deriving the
Ty

finite horizon stochastic optimal design.
According to [10], the stochastic value function (20) can
be represented by using a critic NN as

V(ze k)= EOVl oz, N k) +&,,), Vk=0,L...,N  (21)
7.y

with, eR", ¢, €R represent the critic NN target weight

matrix and reconstruction error respectively, and
@(z,,N —k) e R"denotes the time-dependent critic NN

activation function. It is important to note that the activation
function explicitly dependent upon time and this makes the
finite horizon problem different and difficult over the infinite
horizon case [10]. Moreover, the critic NN target weight and
reconstruction errors are bounded in the mean as

E (5V,k)
.y

E()

<Wuy,

<gy withW,, , &,,being positive

constants [10]. In addition, the reconstruction error gradient is
TE;/(agV,k /azk)

assumed to be bounded in the mean as <&y

with g,,, being a positive constant [10].
Next, the critic NN approximation of stochastic value
function (21) can be expressed as

V(zy, k)= EOV] oz, N =K)), Yk =0,1,.., N (22)
(24

where F (I/IA/V,,C) is the estimated critic NN weight matrix and
.y

time dependent activation function@(z,, N—k)has been

selected from a basis function set whose elements in the set
are linearly independent [10]. Also, since the activation
function is continuous and smooth, two time independent

functions @,.;,(2,) , @,.x(z;)can  be  found such that

[Puin O < Xz, N =) [Pz K =0, N
Moreover, the stochastic value function (15) can be bounded

| EPR ) iz | =i |ED) (2| +5,0, [ - n

addition, recalling (21) and (22), value function estimation

2
as <z <

error, V(z;, k) = W @(z;, N — k) +&y, , can also be bounded as

2
<Gkl <

‘HT&;(WVJ() [NE TEy(VT/V,k) [NE By
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Recalling HJI equation [6][9], the following can be derived
by substituting (20) into the HJI equation as

TE;/(gV,k =&y pn) = TE;[WVT (@(z411> N =k =D —(z;, N —k))]

+ E(z} Q.2 +ul Ru, —dl'S.d,), Vk=0]1,.,N-1 (23)
7.7
In the other words,
EW/} Ap(z, N =) + 1z up,dy) = Asy k= 0,., N -1 24)
.y

where Ap(z,.. N k) = (2,1, N~k 1) = p(z,. N k),

Mzt dy) = TEy(Z/{Qsz +ug R —di S.dy) and Agy = Tb;(gv,k ~&yka1)
with ||A5V‘k|| =Agyy,Vk=0,.,N—-1 [10]. However, when an

estimated value of critic NN, I}(Zk,k) from (22), is utilized
instead of ideal critic NN output, V' (z,,k) , equation (23) does

hold. Then using ideas similar to [10], and incorporating

delay values for convenience, the temporal difference (TD)

error dynamics associated with (24) are introduced as

TEV(eHJI.I;) = TE;(WVT,kAl//(Z/;aN_k)) + r(Zkau/;adk ), k=0,.,N-1 (25)

with E (e, ) denotes the HJI equation TD error for the finite
Ty

horizon case (i.e.? €[0,NT,]). Moreover, since r(z,,u,,d,) =
Agy , — EW/ Ap(z,, N =),k = 0.1,.., N (24), the HIT
.y

equation TD error dynamics can be derived as

E (eppi) = — E L pAJ(zi, N — I + Asy gk = 0,.., N —1 (20)
T,y .7

where F (VIN/V!,() =EW,)-E (Vf/,,,k) represents the critic NN

T,y 4 .y

weight estimation error.
Next, in order to incorporate the terminal constraint, the

estimation error E (e, ) can be defined as
Ty ’

TE;(ch,k) = TE;:[¢N (ZN)]_ TE}:(WVYZkgo(EN,k ,0)), Vk=01,...N (27)
where Z,  is the estimated final NNCS two-player zero-sum
game system state at time k7, by using NN identifier (i.e.
F(9),G(e), H(®)).

Considering the HJI TD error and terminal constraint

estimation error jointly and using the gradient descent
technique, update law for critic NN weight can be derived by

. N 2 .,0)ek
E(WV,lc+1) = E(WV,k) +ay, E T fﬂ( L )A s (28)
oy w7 N @ 2y 002y ,0) +1
—a E A(/’(Zk’N_k)e:lJl,k k=0.. N—-1

Vel AQT (i, N-B)Ap(z(, N=K)+1 [ 7

C. Actor NN Estimation of Control and Disturbance Inputs

Similar to [10], the ideal finite horizon NNCS optimal
control and disturbance inputs can be expressed by using
actor NN as

u'(z,)= EW,} 9z, k) +,,], Vk =01, N
V4

. ; 29)
d’(z) = EWV w(z,k) +£4,), Yk =0 N
4

where W, e R®, ¢, , € Rrepresent two actor NN target weight

matrix and reconstruction errors for control input



respectively, W, €R”, g, eR denote actor NN target

weight matrix and reconstruction error, and 9(z,,k) €R,
w(z,,k)€RP represent smooth time-varying activation
function for control and disturbance actor NNs respectively.
Moreover, time independent functions$ ;. (z,),%...(2;)
Von(z)andy,, (z,)can be that
[in GOl < 191 O] < [z A0 Wi (210 < 0z, )

<|Wmax(z0)] £=0,...N.  Additionally, actor NN weight

matrices, activation functions and reconstruction errors are
considered.

Next, similar to [5][10], estimated actor NNs for control
and disturbance inputs can be represented as

ﬁ(Zk)=E[ L9z, (z) = £l Wizl Vk=01,..N

found such

(30)
with £ (Wu,k),E (Wd!k)denote the estimated weights for
Yy .y

control and disturbance actor NNs respectively. Further, the
actor NN estimation errors will be considered as the
difference between the actual control and disturbance (30)
inputs applied to the NNCS where the control policy is
considered to be obtained by minimizing the tuned stochastic
value function whereas the disturbance policy can be
obtained by maximizing the tuned stochastic value function
(22), i.e. minmdaxV(z), with identified control and

disturbance coefficient matrices (i.e. é(zk),I:I (z,)) within
the finite horizon. The estimation errors are expressed as

Ele,)= E[WB( B+ LRIG(z )WN"“”WJ
J (31)

8Zk+1

o (2 Nk
W
Z](+|

Using gradient descent scheme, the update law for the two
estimated actor NNs weight matrices can be represented as

E(edk) E

dl‘//(zk’ IHT(

3z, k)
E W E Rl k=0, N-1
( LH) ( uk) W{Sr(z,‘,k)g(zk,k)+l u,kJ (32)
Jk
E(de) E(de) ay {#z)k)ﬂ d,k:|ak—0,--7N—1
ko> ko

where the two actor NNs tuning parameters a, , o, satisfies
O<a,<land0<a, <1.

D. Closed-loop Stability

The initial NNCS two-player zero-sum system state is
considered to reside in a compact set Q2 [5][10] due to the
initial admissible policy u,(z,),d,(z,). In addition, two
actor NNs activation functions, the critic NN activation
function and its gradient are all considered to be bounded in a

o9(z, ,k
E(p(z,,0) E{m} )

compact set Q) satisfying. <oy, -
Zy
‘ <w,, [5][10]) since the

M

“g(g(zk,k))“ <9, and HE(‘//(Zkak))

activation functions of NNs are selected to a bounded smooth
continuous functions. Moreover, the PE condition will be
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held by adding exploration noise [5][10] and NN tuning
parameters &, and a, , o, will be chosen to ensure that all

u>
future system state remain in the compact set. In order to
proceed, the following lemma is needed before demonstrating
the main theorem.

Lemma 3 [5][10]: Let the optimal control and disturbance
policies be utilized on the NNCS two-player zero-sum game
(2) such that (2) is asymptotically stable in the mean [5].
Then, the closed-loop NNCS two-player zero-sum game

dynamics, TE;[F(Z/() +G(z, )“* (z,)+H(z, )d” (z)] can be
expressed as
E[F(z)+G(z )u'(z,)+ H(z,)d (z,)] i NE(z,) i (33)

withu'(z,),d (z,) are optimal control and disturbance signal

policies respectively where 0 </ <1/2 s a positive constant.

Theorem 1 (Convergence of optimal control and disturbance
inputs) Givenu,(z,),d,(z,)be any initial admissible control
and disturbance policy for the NNCS two-player zero-sum
game (2) such that (36) holds with0 </, <1/2. Consider the

NN weight update laws for identifier, critic and two actor
NNs as (17), (30) and (35) respectively, then there exists

positive tuning parameters o, ,a, ,Q,, c, satisfying
2— . 2 2
0<a,<mm{ L },0<0(V < ZWlth0<Z: '/fmln+A'//m1;+2 <2
2y \f{M x+5 Wain T DAY, + 1)

and0 <, < % ,0<a, < % such that the system state £(z,),
.y

identification error E(e;;), NN identifier weight estimation
14

error E(W]k), critic and two actor NNs weight estimation

errors E(WVk) E(
within ¢ €[0,NT.].

function of the final time, N7, , bounded initial system state

k) E(de)are all UUB in the mean

Further, the ultimate bounds are a

B_, , identification error B, jand initial weight estimation

error for NN identifier, critic and two actor NNs B, ., B, ,

respectively.

* A
B0 Buao Moreover, ”uk —u, " <B, and

—d,||< B, with B, and B, are small bounds.

Proof: Omitted due to space limitation.

IV. SIMULATION RESULTS

Consider continuous-time version of the original nonlinear
two-player zero-sum game in affine form from [9] given by

x=f(x)+g(x)u+h(x)d (34)

where f(x)= {

—Xx, +x,
—0.5x,(1 —(cos(2x1)+2)2)J ’

0
d p(x) = .
" Lin(4xl)+ 2J

—-0.5x,

0
8= L()S(ZxI )+ ZJ o



The parameter of NNCS two-player zero-sum game are
selected as [5]: 1) Sampling time: 7, =100ms ; 2) The upper
bound of network-induced delay is given as two, i.e. b=2;
3) The network-induced delays are E(z,, ) =80ms and E(7) =
150ms ; 4) Network-induced packet losses follow Bernoulli
distribution with 7 = 0.3 and 5) Final time is set as t;, =20s.

For incorporating network parameters and proposed
design into NNCS two-player zero-sum game, the augment
state is defined asz, =[x/ u/  ul , d’, dl ,]" e R and the
the
admissible control and disturbance policies are given as
u,(z)=[2-25-1-10 llz,and d,(z,)=[-1-2 —1-1 1 0]z,
respectively. Similar to [5], activation function for NN

initial state is chosen asx, =[6 -3.5] while initial

identifier is taken as tanh{(z;)".2;,12 55+ (201) (242 (21 6)°}
, the critic NN state dependent part activation function is
chosen as sigmoid of sixth order polynomial, that is,
sigmoid{(z,,)°, 2, 2420 +A241) (24 2)ws (246)°}) and  time-
dependent part of critic NN activation function is given as
saturation  polynomial  time  function,  that is,
Sat{(N_k)ms(N_k)gs-'-al;'";L(N_k)loa "'3N_k} )3
and activation function of two actor NNs are all selected as
the gradient of critic NN activation function.
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For the NN identifier, 39 hidden neurons are used. Hidden
layer NN weights are initialized at random within (0,1] and
input layer NN weights are all ones. Moreover, critical NN
and two actor NNs use 55 hidden layer neurons. Further,
hidden layer NN weights for critic NN are initialized to zero
whereas the initial weights for two actor NNs weights are
selected to reflect initial admissible policy. The input layer
NN weights for critic NN and actor NN are set as all ones.

As show in Figures 1, the proposed stochastic optimal
control and disturbance inputs can force the NNCS two-
player zero-sum game state regulation errors tend to zero
closely within finite horizon. In other words, the proposed
finite horizon strategies can maintain the NNCS two-player
zero-sum game UUB in the mean even in the presence of
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uncertain  NNCS dynamics and network imperfections.
Moreover, in Figure 2, the approximated weights for critic
and two actor NNs are demonstrated. It is important to note
that the estimated weights of critic and two actor NNs
converge to constant values and maintain UUB in the mean
within the finite horizon, which is consistent as Theorem 1.
Next, as shown in Figure 3, during the interval # €[0,20s],

both HJI equation and terminal errors converge close to zero,
which indicates the game solution satisfies optimality and the
terminal constraint. Moreover, when the final time instant

NT, increases, the upper bound of sum of HJI equation and
terminal constraint errors will decrease as shown in Figure 4.

V. CONCLUSIONS

In this paper, a novel time-based finite horizon NDP
scheme was proposed for NNCS two-player zero-sum game
by using NN identifier, critic and two actor NNs to solve the
NNCS two-player zero-sum game in the presence of
uncertain system dynamics and network imperfections. By
using historical inputs and NN identifier, the requirement on
both system internal dynamics, control and disturbance
coefficient matrices was relaxed. Further, critic NN
approximated the HJI equation solution online while
satisfying the terminal constraint. An initial admissible
control ensured that the system is stable when NNs were
trained. Using Lyapunov theory, the closed-loop signals were
shown to be UUB in the mean. When the final time N7,

increases, all the ultimate bounds will converge to zero as
time goes to infinity.
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