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Abstract—This study aims at finding the relationship be-
tween EEG signals and human emotional states. Movie clips are
used as stimuli to evoke positive, neutral and negative emotions
of subjects. We introduce a new effective classifier named
discriminative graph regularized extreme learning machine
(GELM) for EEG-based emotion recognition. The average
classification accuracy of GELM using differential entropy (DE)
features on the whole five frequency bands is 80.25%, while
the accuracy of SVM is 76.62%. These results indicate that
GELM is more suitable for emotion recognition than SVM.
Additionally, the accuracies of GELM using DE features on
Beta and Gamma bands are 79.07%, 79.93% respectively. This
suggests that these two bands are more relevant to emotion. The
experimental results indicate that the EEG patterns for emotion
are generally stable among different experiments and subjects.
By using minimal-redundancy-maximal-relevance (MRMR) al-
gorithm and correlation coefficients to select effective features,
we get the distribution of top 20 subject-independent features
and build a manifold model to monitor the trajectory of
emotion changes with time.

I. INTRODUCTION

Emotional states significantly affect the cognition and
behaviors of people. In human-human interaction, besides
words and gestures, emotion is one of the most important
feedbacks for us to understand each other better. With the
development of artificial intelligence and machine learning
technology, human-machine interaction tends to be more
and more intelligent. Therefore, how to detect and model
users’ emotional states becomes a key factor to make human-
computer interface more natural and enjoyable. In the 1990s,
Picard firstly proposed the definition of Affective Computing
(AC) [1]. She introduced the emotion-related signals, the
emotion modeling approaches, and the potential applications
of AC. Nowadays, automatic emotion recognition, which
plays a huge role of affective computing, has been one of the
most popular research topics in the fields of computer vision,
speech recognition, brain-machine interface, and computa-
tional neuroscience [2].

As the importance of emotion recognition increases,
researchers from different fields have studied this topic
and proposed various kinds of methods, including some
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basic prototype systems. Approaches to emotion recog-
nition can be divided into two categories: one is based
on non-physiological signals such as facial expression [3]
and voice [4]; the other one is based on physiological
signals [5] which refer to electroencephalography (EEG) [6],
electromyogram (EMG) [7], electrocardiogram (ECG) [8],
skin resistance (SR) [9] and pulse rate [9]. However, even if
physiological signals need contact detection which seems not
to be convenient, in some specific environments, especially
when our emotional states remain internal rather than ex-
ternal, emotion recognition based on physiological signals
would be more appropriate and effective than that based
on non-physiological signals. As we all know, brain is the
nerve center controlling most emotional activities of people.
Recently, functional magnetic resonance imaging (fMRI) has
been used to reveal how emotions are processed in the
brain [10]. Unfortunately, it is too difficult for us to use
fMRI to collect data from brain in practical application. By
contrast, collecting data from EEG signals, which also con-
tain useful information of brain activities, is much simpler
[11].

So far, various approaches have been developed for
EEG-based emotion recognition using machine learning
approaches. In one kind of studies, the energy spectrum
(ES) features and their combinations are chosen as emotion
features. Also, the support vector machine (SVM) is a
traditional effective classifier for emotion classification. Lin
et al. [12] extracted ES features from EEG signals and used
the SVM to classify four kinds of emotions, which got
average performance of 82.29%. Nie et al. [13] also used
SVM to classify positive and negative emotions based on ES
features, and found that the right occipital lobe and parietal
lobe for the alpha band, the central site for beta band, and
the left frontal lobe and right temporal lobe for gamma band
are most associated with positive and negative emotional
states. Recently, the differential entropy (DE) features and
their combinations were introduced to EEG-based emotion
recognition [14], and their performance is better than that of
ES features.

In this paper, we adopt DE as time-frequency domain
features and introduce a new classifier called discriminative
graph regularized extreme learning machine (GELM) to
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emotion recognition. We focus on relationship between EEG
data patterns and three emotional states (positive, neutral
and negative). To confirm the stable common pattern of
EEG signals changing with emotional states, we invited six
subjects to participate in the experiment for three times each
and chose the training set and testing set from different
experiments and different subjects. We also used minimal-
redundancy-maximal-relevance (MRMR) algorithm and cor-
relation coefficients to select effective features and find the
key encephalic regions associated with emotion recognition.
We finally got the distribution of top 20 subject-independent
features. By putting these features into a manifold model,
we achieved the trajectory of emotion changes with time.

II. METHODS

A. Feature extraction

In this paper, we used time-frequency domain features
to extract emotion information from EEG signals. Duan
et al. had applied DE features and their combinations on
symmetrical electrodes as EEG features to classify positive
and negative emotional states [14]. They found that the
average accuracy using DE features was 84.22%, while the
accuracy using ES features was only 76.56%. Therefore, we
chose DE instead of ES as features for emotion recognition.
We extracted features on the five common frequency bands
of EEG, which are Delta (1-3Hz), Theta (4-7Hz), Alpha (8-
13Hz), Beta (14-30Hz) and Gamma (31-50Hz). A short-time
Fourier transform (STFT) with a 1s non-overlapped Hanning
window had been used to calculate the average DE features
of each channel on five frequency bands. Differential entropy
is originally defined as

h(X) = −
∫
X

f(x) log(f(x))dx. (1)

Here, the time series X obeys the Gaussian distribution
N(µ, σ2), and the length of EEG sequence is fixed. Thus,
differential entropy can be calculated by

h(X)=−
∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 log(
1√
2πσ2

e−
(x−µ)2

2σ2 )dx

=
1

2
log(2πeσ2).

(2)

And also, it has been proven that DE described above is
equivalent to the logarithm of ES [15].

The EEG signals at each frequency band had 62 channels,
so we totally extracted DE features of 310 dimensions for
one sample. As the effective experiment time lasted about
57 minutes, we finally got about 3400 samples for each
experiment.

B. Feature smoothing

In this paper, we assumed that the trends of emotion
changes with time were smooth and continuous. So, severe
concussions and rapid changes of EEG features are less
relevant to emotional states. Previous researches have also
found that, the feature smoothing methods, such as moving
average (MA) and linear dynamical system (LDS) [16], help
to improve the performance of classifiers during emotion

classification, and the LDS method performs more stable
than the MA method [6] [14]. Therefore, we applied the
LDS method to smoothing EEG features, in order to remove
noises effectively and get more reliable data.

C. Classification

In this paper, we got about 3400 samples in one ex-
periment and chose about 2000 samples to form a training
set, and the rest 1400 samples from the same experiment
were used as a testing set. In order to investigate the stable
performance of the trained model, we also chose the data
from one experiment as training set and the data from
another experiment as testing set. Since we had collected
data from the same subject for three times, training sets and
testing sets would not only come from the same subject’s
different experiments, but also come from different subjects.

We introduced a new classifier called discriminative
graph regularized extreme learning machine (GELM) [17] to
classify emotional states based on EEG signals. To evaluate
the performance of GELM, the traditional classifier, support
vector machine (SVM), was used as a baseline classifier.

Extreme learning machine (ELM) is a single hidden layer
neural network using a least square based training algorithm.
Given a training data set, L = {(xi, ti)|xi ∈ Rd, ti ∈
Rm, i = 1, 2, ..., N}, where xi = (xi1, xi2, ..., xid)

T and
ti = (ti1, ti2, ..., tid)

T . An ELM with K hidden nodes and
activation function g can be modeled as :

βTH = T, (3)

where

H =

 g(w1 · x1 + b1) . . . g(w1 · xN + b1)
...

. . .
...

g(wK · x1 + bK) . . . g(wK · xN + bK)


K×N

β =


βT1
βT2
...
βTK


K×m

, T = [t1, t2, ..., tN ]m×N ,

wj = (wj1, wj2, ..., wjd) is the input weight vector con-
necting the jth hidden node with input nodes, βj =
(βj1, βj2, ..., βjm)T is the weight vector connecting the jth
hidden node with the output nodes, and bj is the bias of the
jth hidden node.

The output of (3) can be estimated by

β̃ = argmin
β

∥∥βTH − T∥∥ = H†T. (4)

As the consistency property of data is not considered in
ELM, GELM was proposed to balance the discriminative and
consistency property of high dimension data, and to enforce
the output of samples in the same class to be similar. In
the GELM model, the labels of training samples are used to
construct an adjacent graph and the graph regularization term
is formulated to constrain the output weights. This constraint
is added to the objective function of the basic ELM model,
which also makes the output weights be solved analytically.
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For GELM, suppose that there is a data set with C classes
and N samples. And the tth class has Nt samples. Then, the
adjacent matrix W is defined as

Wij =

{
1/Nt, if both hi and hj belong to the tth class
0, otherwise

(5)
where hi = (g1(xi), ..., gK(xi))

T and hj =
(g1(xj), ..., gK(xj))

T are hidden layer representations
for two input samples xi and xj , respectively. If we define
a diagonal matrix D with column sums of W as its entries,
the graph Laplacian can be calculated by L = D −W . We
choose two vectors yi and yj from hi and hj , which are
mapped by output weight matrix β.

According to the basic idea of GELM, when hi and hj
are from the same class, yi and yj should share similar
properties. Thus, we need to minimize the objective function
as follows:

min
∑
i,j

‖yi − yj‖2Wij = Tr(Y LY T ), (6)

where Y = βTH . Therefore, the objective function of
GELM is defined as follows:

minβ
∥∥βTH − T∥∥2

2
+ λ1Tr

(
βTHLHTβ

)
+ λ2 ‖β‖22 , (7)

where Tr
(
βTHLHTβ

)
is the graph regularization term,

‖β‖2 is the l2-norm regularization term, λ1 and λ2 are
regularization parameters to balance the impact of these two
terms. It can be calculated as follows:

β =
(
HHT + λ1HLH

T + λ2I
)−1

HTT . (8)

D. Feature selection

The 62-channel electrode cap provides 62 features for
one frequency band. Thus, there are actually 310 features
for one sample on total five bands. However, our training
set only has over 2000 samples for one experiment, which
implies that the 310 dimensions are too high for us to train a
robust model using only 2000 samples. Therefore, minimal-
redundancy-maximal-relevance (MRMR) algorithm [18] is
used to select effective features and reduce the feature
dimension for us. It would also help us investigate brain
regions and frequency oscillations most related to emotional
states and speed up computing procedure.

Furthermore, since cerebral cortices have different func-
tions in different regions, we calculate correlation coef-
ficients to find emotion-related features, emotion-related
bands, and emotion-related encephalic regions.

E. Manifold learning

In order to find the trajectory of emotion changes in-
tuitively, we reduced the feature dimension to 1, so that
we could draw a curve of feature value changing with time
during the whole experiment. In this paper, we first used
correlation coefficients to select relevant features, and then
put them into a manifold learning model so as to monitor
the trajectory of emotion changes with time.

III. EXPERIMENTS

A. Stimuli

In order to evoke emotions of subjects, we chose movie
clips which lasted about 4 minutes each as stimuli. These
movie clips could be divided into three kinds of categories:
positive, neutral and negative. There were 15 clips in one
experiment, 5 clips for each emotional state. All the movies
were in Chinese for native subjects to understand better. The
stimuli were only made up of popular movies which are
After Shock, Lost in Thailand, Just Another Pandora’s Box,
World Heritage in China, Back to 1942, and Flirting Scholar.
Posters of these movies are showed in Figure 1. We also
supposed that the 4-minute movie clip contained a vivid and
relatively complete story, so that subjects were able to stay
in the typical emotional state during this 4 minutes.

Fig. 1. Movie clips used as stimuli in this experiment.

Fig. 2. The actual scene of this experiment.

B. Subjects

Three men and three women aged between 20 to 27
participated in the experiment for three times each, at the
interval of about one week or longer. They were all right-
handed and had no history of mental illness. The experiments
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Fig. 3. Procedure of stimuli playing.

were performed in the day time and subjects were asked
to have adequate sleep the day before experiment. Before
the experiments, subjects were informed of the purpose and
procedure of the experiment and also the harmlessness of
the equipment.

C. Procedure

A 62-channel electrode cap according to the extended
international 10-20 system and ESI NeuroScan System were
used to record EEG data at a sampling rate of 1000Hz.
Figure 2 shows the actual scene of the experiment. Fifteen
movie clips were played with a 10s rest and a 15s hint
between two clips. During the rest time, subjects were asked
to fill a form as feedback to tell whether their emotions had
been successfully evoked. Figure 3 shows the procedure of
the experiment.

IV. RESULTS AND DISCUSSIONS

A. Classification

1) Using training sets and testing sets from the same
experiment: Table I shows the classification accuracies of
linear-SVM and GELM classifiers using differential entropy
features on Delta, Theta, Alpha, Beta, and Gamma frequency
bands as input. In this table, the training data and the testing
data are from the same experiment. Cross-validation is used
to determine parameters of classifiers. All data have been
smoothed by LDS algorithm. From the results showed in
Table I, we can find that, for the same training and testing
data set on the same band, the classification accuracies of
GELM are higher than accuracies of SVM in most cases. For
the total 310 features on all bands, the classification accuracy
of GELM on average is 80.25%, almost 4% higher than
76.62%, the result of SVM. We also compare the average
accuracies of each frequency bands and find that all the
results of GELM are over 3% higher than SVM. All of
these results indicate that GELM classifier outperforms SVM
classifier, so that GELM is more suitable for EEG-based
emotion recognition than SVM.

Secondly, we compare the classification accuracies of
each frequency bands and find that the accuracies of Beta and
Gamma bands are much higher than Alpha, Theta and Delta
bands. In some cases, the results of 62 features on Beta or
Gamma bands are even better than the results of 310 features
on the whole five bands. This consequence intuitively reflects
that high frequency oscillations are more associated with
emotion processing [21].

Thirdly, also from Table I, we see that the emotion
recognition performance varies from person to person and

experiment to experiment. For the results of 310 features
classified by GELM, the highest accuracy reaches to 96.89%,
while the lowest accuracy is just 59.25%. Moreover, in some
cases, there are also big difference among classification
results of the same subject’s three experiments. Previous
researches and theories suggest that two personality dimen-
sions, extroversion and neuroticism, differentially influence
people’s reaction to emotional stimuli [19] and the ability
for emotion recognition [20]. In these studies, persons with
passible and stable characters are thought to perform better in
emotion recognition experiment than those with phlegmatic
or volatile characters.

Table II is the average confusion matrix of classifying
310 DE features by GELM and linear-SVM. The row index
represents the actual labels of testing samples and the column
index represents the estimated labels. Values here show
proportions that certain kinds of samples are estimated to
be negative, neutral or positive. Examining the results of
GELM, we can see that on average, only 60.63% of negative
samples have been predicted accurately, while 85.63% of
neutral samples and 93.07% of positive samples have been
correctly estimated. The results are similar in SVM matrix.
This observation suggests that the negative emotion is the
most difficult to be predicted, and the neutral emotion is less
difficult, the positive emotion is the easiest to be estimated.
We can also find that 24.01% of negative samples are
predicted to be neutral, 8.65% higher than the proportion
that the negative ones are predicted to be positive. And also,
the proportion that the neutral samples are predicted to be
negative is 0.95% higher than that they are predicted to be
positive. These results imply that the negative emotion and
the neutral emotion share much more similar DE features,
yet the positive emotion has relatively large differences from
the other two emotional states.

2) Using training sets and testing sets from different
experiments: We use data from one experiment to train a
model, and data from another experiment to test it. We
choose training sets and testing sets in two ways. One
way is that these two sets are both from the same subject
but different experiments, such as the 1st and the 2nd
experiments of subject A. The other way is that we choose
data of the highest performance as training set (which is
the 1st experiment of D in this paper), and data from other
5 subjects as testing sets (such as the 1st experiment of
subject E). The results are described in Table III measured in
percentage, where the row index of the table represents the
training set, and the column index of the table represents
the testing set. The EEG features used here are 310 DE
features smoothed by LDS. We used both GELM and SVM
to classify these features.

Comparing the accuracies of these two classifiers in Table
III as well, GELM performs much better than linear-SVM,
which is just the same conclusion as we have drawn from
Table I. Then, for the same subject, we compare the classi-
fication accuracies using training and testing sets from the
same experiment, to the accuracies using training and testing
sets from different experiments. The average accuracy using
GELM of the former is 80.25%, while the average accuracy
of the latter is 70.19%. The decline of average accuracy
by about 10% is partly because environmental disturbances,
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TABLE I. CLASSIFICATION ACCURACIES OF TWO CLASSIFIERS USING TRAINING AND TESTING SETS FROM THE SAME EXPERIMENT

Subject Experiment Classifier Frequency Band
Delta (%) Theta (%) Alpha (%) Beta (%) Gamma (%) Total1 (%)

A

1 GELM 54.84 61.20 70.01 85.19 86.64 84.39
SVM 49.93 60.26 65.17 84.10 81.50 82.59

2 GELM 46.10 49.78 55.35 66.18 75.07 70.09
SVM 37.57 49.35 54.41 65.46 67.27 75.65

3 GELM 50.14 59.54 54.26 66.26 61.92 63.95
SVM 46.75 58.31 48.13 57.15 59.54 59.90

B

1 GELM 58.09 63.44 82.73 88.08 90.90 89.45
SVM 53.47 57.59 72.83 90.17 89.52 88.15

2 GELM 51.30 58.89 65.10 69.65 69.22 69.15
SVM 38.73 55.92 65.75 69.44 70.66 65.82

3 GELM 54.55 58.82 71.32 82.30 77.75 79.48
SVM 52.02 52.38 65.10 78.97 77.24 71.82

C

1 GELM 58.45 67.05 61.34 79.19 80.92 82.37
SVM 50.79 69.44 61.13 77.24 76.37 76.52

2 GELM 40.97 50.58 52.89 90.75 89.96 92.99
SVM 35.77 49.57 50.43 90.03 89.45 91.11

3 GELM 46.97 40.75 45.07 54.62 58.45 67.85
SVM 44.73 43.93 49.21 58.60 59.18 61.20

D

1 GELM 78.61 84.90 88.01 96.89 96.60 96.68
SVM 75.87 73.92 70.16 92.99 90.68 96.68

2 GELM 58.96 61.34 85.33 95.30 96.89 96.89
SVM 60.33 56.00 80.56 88.09 91.98 91.04

3 GELM 62.72 60.91 90.10 96.82 95.74 96.53
SVM 58.09 55.78 80.27 97.18 96.32 97.25

E

1 GELM 56.50 65.17 58.02 74.64 80.35 73.19
SVM 58.89 66.47 46.89 67.12 76.89 70.01

2 GELM 58.45 43.61 51.30 74.35 73.92 73.19
SVM 55.85 40.25 34.39 53.90 70.66 60.19

3 GELM 53.18 43.71 63.58 73.77 66.98 74.57
SVM 48.70 40.10 60.69 63.08 63.29 73.99

F

1 GELM 72.25 59.47 64.74 80.20 85.98 84.32
SVM 69.65 58.24 60.48 73.19 69.80 73.19

2 GELM 40.25 49.21 57.08 57.88 57.08 59.25
SVM 45.16 46.82 53.11 59.25 58.82 56.50

3 GELM 57.73 64.38 69.15 91.18 94.29 90.10
SVM 55.85 63.44 66.84 88.29 93.86 87.50

Average GELM 55.56 57.93 65.85 79.07 79.93 80.25
SVM 52.12 55.43 60.31 75.24 76.84 76.62

Standard Deviation GELM ±9.60 ±10.49 ±13.34 ±12.94 ±13.24 ±11.92
SVM ±10.46 ±9.46 ±12.10 ±14.00 ±12.76 ±13.12

1 The condition “Total” means that data on all the five frequency bands are used to train and test together.

random noise signals, and the position of the EEG cap would
not remain the same during different experiments. However,
70.19% is well above chance level which is only 33.33% in
this experiment. It implies that the patterns of EEG changing
with emotions among different passages of time are stable
for the same subject, which has also been mentioned by
Duan et al. before [14].

We investigate whether there are stable common patterns
across subjects by choosing data set from one subject to train
a model and data set from another subject to test this model.
Here, we choose experiment D1 as training data set for its
most stable performance among the total 18 experiments.
The testing data sets are from the 15 experiments of the
rest 5 subjects that are subject A, B, C, E, and F. Thus,
the average accuracy of GELM using training and testing
sets from different subjects’ experiments is 62.20%, which
is also well above chance level. This result implies that
there are common patterns for EEG data changing with
emotional states across subjects. However, since the average
performance using training and testing sets from the same
subject’s different experiments reaches 70.19%, there must

TABLE II. AVERAGE CONFUSION MATRIX OF CLASSIFYING 310 DE
FEATURES USING GELM AND SVM CLASSIFIERS

GELM Negative (%) Neutral (%) Positive (%)
Negative 60.63±29.23 24.01±20.02 15.36±14.87
Neutral 7.66±12.08 85.63±15.83 6.71±7.95
Positive 3.93±6.26 3.00±3.88 93.07±7.54

SVM Negative (%) Neutral (%) Positive (%)
Negative 58.73±31.53 24.16±22.28 17.11±15.91
Neutral 10.97±11.68 79.17±16.24 9.86±9.52
Positive 6.58±7.75 2.80±4.08 90.62±10.15

be some points differ from person to person which would
reduce the stability and universality of the computational
model. This should be studied in the further research.

B. Feature selection

There are 310 DE features on the whole five frequency
bands, which must contain some redundant information since
the classification accuracies of features on Delta and Theta
bands are much lower than other three bands. So we tried
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TABLE III. CLASSIFICATION ACCURACIES OF TWO CLASSIFIERS USING TRAINING AND TESTING SETS FROM DIFFERENT EXPERIMENTS

Classifier
Train

Test A1∗ A2 A3
Train

Test B1 B2 B3

GELM A1 84.39 63.95 55.49 B1 89.45 61.56 77.67
SVM 82.59 53.83 47.25 88.15 37.21 61.05

GELM A2 66.91 70.09 50.79 B2 72.90 69.15 73.70
SVM 67.27 75.65 48.34 51.95 65.82 64.52

GELM A3 74.06 65.10 63.95 B3 69.65 65.46 79.48
SVM 37.57 53.61 59.90 68.42 52.24 71.82

GELM D1 75.87 60.40 51.01 D1 67.27 49.21 59.47
SVM 66.33 52.46 41.98 49.71 58.02 57.66

Classifier
Train

Test C1 C2 C3
Train

Test D1 D2 D3

GELM C1 82.37 89.02 67.05 D1 96.68 89.60 88.58
SVM 76.52 82.88 67.63 96.68 91.11 88.22

GELM C2 67.77 92.99 74.71 D2 88.08 96.89 95.23
SVM 55.92 91.11 61.71 90.17 91.04 96.89

GELM C3 75.29 80.42 67.85 D3 80.49 95.95 96.53
SVM 76.52 75.29 61.20 76.95 92.49 97.25

GELM D1 65.82 71.75 73.41 D1 96.68 89.60 88.58
SVM 58.89 57.15 53.76 96.68 91.11 88.22

Classifier
Train

Test E1 E2 E3
Train

Test F1 F2 F3

GELM E1 73.19 66.69 53.11 F1 84.32 42.34 59.54
SVM 70.01 58.31 57.15 73.19 44.65 51.45

GELM E2 68.28 73.19 51.08 F2 77.60 59.25 64.38
SVM 54.99 60.19 45.09 59.03 56.50 44.51

GELM E3 62.43 58.16 74.57 F3 74.35 59.47 90.10
SVM 47.69 47.69 73.99 60.69 58.89 87.50

GELM D1 61.20 52.96 60.84 D1 52.82 59.25 71.75
SVM 58.67 40.03 46.03 48.19 48.98 70.89

Classifier
Train

Ave. Test
1 2 3

Train

Std. Test
1 2 3

GELM 1 85.07 68.86 66.91 1 ±7.79 ±18.01 ±13.86
SVM 81.19 61.33 62.13 ±10.01 ±21.34 ±14.65

GELM 2 73.59 76.93 68.32 2 ±8.16 ±14.77 ±16.82
SVM 63.22 73.39 60.18 ±14.20 ±15.15 ±19.91

GELM 3 72.71 70.76 78.75 3 ±6.11 ±14.66 ±12.66
SVM 61.31 63.37 75.28 ±15.97 ±17.18 ±14.70

GELM D1 64.60 58.71 63.30 D1 ±8.46 ± 8.61 ±9.29
SVM 56.36 51.33 54.06 ±7.45 ±7.30 ±11.26

∗ The experiment “A1” means the first experiment of subject A, and so on.

minimal-redundancy-maximal-relevance (MRMR) algorithm
to select the effective features. Figure 4 demonstrates the
performance of MRMR algorithm in feature selection. Each
curve in the figure represents the average accuracies of the
single subject’s three experiments. The training and testing
data are from the same experiment and classified by the
GELM. As the feature dimension is reduced from 310 to 40,
the accuracies of these four subjects are generally staying
stable with a very slight decline. But building a simpler
model using 40 features is considerably faster than building
a model using 310 features.

Besides MRMR approach, we also use correlation co-
efficients to find subject-independent features relevant to
emotional states. These features are of highest correlation
coefficients’ values and remain the same among different
subjects. Figure 5 shows each subject’s average classification
accuracy using subject-independent features. It is obvious
that the results of top 10 features and the results of top
100 features remain almost the same. The top 20 subject-
independent features are from FT7, FC4, FC6, FT8, T7, C5,
T8, TP7, P7, PO8 of Beta band and FT7, FC6, FT8, T7, C5,

TP7, CP5, TP8, P7, P8 of Gamma band. Figure 6 shows the
positions of these subject-independent features. The regions
of these two bands are almost overlap, which are called
left temporal lobe and right temporal lobe biologically. The
average classification accuracy of these 20 features using
GELM is 76.89%, about 3.5% less than the result of 310
features. This result implies that EEG acquisition equipment
for emotion recognition doesn’t need as many channels as
62. Fewer channels of EEG signals in left and right temporal
lobes will also do good jobs.

Furthermore, comparing the results in Figure 4 and Fig-
ure 5, we find that when the feature dimension is below 100,
the accuracies of features selected by correlation coefficients
are higher than those selected by MRMR algorithm. It
suggests that MRMR algorithm be less suitable for feature
selection than computing correlation coefficients. This is
partly because the MRMR algorithm removes features con-
taining analogous information, but the most relevant features
are in small fixed regions so that they share similar patterns.
Under this circumstance, some effective features would be
excluded by MRMR algorithm.
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Fig. 4. Average classification accuracies of different feature dimensions
for each subject using MRMR method.

Fig. 5. Average classification accuracies of subject-independent features
for each subject.

C. Manifold learning

From above, we finally reduce the feature dimension to
20. However, it is also unintuitive for us to find the relation-
ship between the feature values and the emotional states.
In order to visualize the trajectory of emotion changes with
time, we try to put the top 20 subject-independent features
into a manifold model so as to get one-dimension emotion
values during the whole experiment, which is showed in
Figure 7. A series of actual labels of the stimuli is also
showed in this figure, where 0.5 represents positive emotion,
0.25 represents neutral emotion, and 0 represents negative
emotion. It is implied that the value of positive emotion
remains higher, while the value of neutral emotion becomes
lower, and the value of negative emotion stays the lowest.
We can also find that there are obvious step signals between
the positive emotion and the other two kinds of emotions,
These steps are coherent with the changes of actual labels
entirely. On the contrary, the emotion values of neutral and
negative states do not have such big difference. This result is
consistent with the confusion matrix in Table II, which may
be the reason why positive emotions can be classified most
accurately, while neutral emotions and negative emotions are
more easily confused with each other.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we tried to classify the three emotional
states (positive, neutral and negative) using EEG signals
collected during watching movies. A new classifier named
discriminative graph regularized extreme learning machine
(GELM) was introduced in this study to classify differential

(a) Beta band

(b) Gamma band

Fig. 6. Distribution of the top 20 subject-independent features.

Fig. 7. The trajectory of emotion changes during the experiment 1 from
subject D.

entropy (DE) features extracted from multichannel EEG
data and smoothed by linear dynamical systems (LDS).
According to the results, GELM classifier had a much
better performance than linear SVM. We also calculated
the average confusion matrix of classifying 310 differential
entropy (DE) features using GELM and SVM, and found
that the accuracy for classifying positive emotions was
the highest, the accuracy for neutral emotions was lower
and the accuracy for negative emotion was the lowest. We
chose training set and testing set not only from the same
experiment, but also from different experiments of different
subjects. It was indicated that the relationship between
emotional states and EEG signals remained stable among
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different experiments and different persons. In addition,
minimal-redundancy-maximal-relevance (MRMR) algorithm
and correlation coefficients were examined to select effective
features and we got 20 subject-independent features which
were most relevant to emotion changes. Mapping these
features to the cerebral cortices and frequency bands, it was
implied that EEG signals related to emotional states during
watching movies were usually on Gamma band and Beta
band, produced by left temporal lobe and right temporal
lobe. Finally, manifold learning was used to visualize the
changes of emotion values with time.

However, this study deserves more comprehensive and
thorough researches. The three emotional states (positive,
neutral and negative) seem to be too simple to express
human’s emotions. The number, age group, and nationality
of subjects are also restricted in this paper. Furthermore,
the stimuli used in experiments are only made up of one
single series of movie clips. Thus, for our future work, it
is quite essential to confirm the conclusions of this study
in more complex situations to make them more convincing.
Since there is no generally accepted theoretic foundation
to explain the relationships between brain activities and
emotional states, it is still an enormous challenge to find
and prove these relationships.
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