Integrating Self-Organizing Neural Network and Motivated Learning for Coordinated Multi-Agent Reinforcement Learning in Multi-Stage Stochastic Game

Teck-Hou Teng, Ah-Hwee Tan, Janusz A. Starzyk, Yuan-Sin Tan, Loo-Nin Teow

Abstract—Most non-trivial problems require the coordinated performance of multiple goal-oriented and timecritical tasks. Coordinating the performance of the tasks is required due to the dependencies among the tasks and the sharing of resources. In this work, an agent learns to perform a task using reinforcement learning with a selforganizing neural network as the function approximator. We propose a novel coordination strategy integrating Motivated Learning (ML) and a self-organizing neural network for multi-agent reinforcement learning (MARL). Specifically, we adapt the ML idea of using pain signal to overcome the resource competition issue. Dependency among the agents is resolved using domain knowledge of their dependence. To avoid domineering agents, the task goals are staggered over multiple stages. A stage is completed by attaining a particular combination of task goals. Results from our experiments conducted using a popular PC-based game known as Starcraft Broodwar show goals of multiple tasks can be attained efficiently using our proposed coordination strategy.

I. INTRODUCTION

I N application domains such as distributed control, robotics and automated trading [16], coordinated performance of tasks is required due to the dependencies among the tasks and the sharing of resources. Dependencies among the tasks exist as the pre-requisites to the more advanced tasks. Competition for resources among the tasks exists due to the finite amount and the finite replenishment rate of the shared resources. Using multiagent reinforcement learning (MARL), an agent learns the performance of a task using reinforcement learning with a self-organizing neural network as the function approximator.

Many works are known for applying MARL on small and large problems [1][16]. Use of MARL on small problems comprising of agents with different patterns of interaction includes [2][3][17][18][19]. Use of MARL on larger problems such as pursuit problem and adversarial food-collecting world (AFCW) problem includes [20][21][22]. However, the use of MARL is not seen from our survey of works [4][5][6][7] for problems similar to this work.

In this work, we proposed a novel coordination strategy for conducting MARL in large problems of practical interest illustrated using a popular PC-based game known as Starcraft Broodwar (SCBW). Capable of incremental learning in real time, an ART-based neural network known as FALCON [23] is used as the function approximator for learning the performance of the task. Inspired by [24], the agents are coordinated using *pain* signal derived with respect to the task goals. The stochastic game is segmented into several stages. Different sets of task goals for the same set of tasks are used for the stages. Results from our experiments conducted using SCBW show that multiple tasks can be performed most effectively using our proposed coordinated learning strategy.

The presentation of this work continues in Section II with survey of MARL works and recent works based on the SCBW. The problem formulation is provided in Section III. Details of the coordination strategy are presented in Section IV. This is followed by a succinct presentation of FALCON in Section V. The SCBW game is briefly introduced in Section VI. Section VII presents the experiments and the analysis of the experimental results. Section VIII contains the conclusion.

II. RELATED WORK

In this section, we survey existing coordination strategies for multi-agent reinforcement learning (MARL) and the use of learning techniques in the Starcraft Broodwar (SCBW) problem domain. The SCBW is a popular choice for AI research because it is a challenging real-time strategy game with multiple goal-oriented and time-critical tasks.

The coordination problem in MARL has been addressed for fully cooperative, fully competitive and mixed tasks [16]. In [25], a Fuzzy Subjective Task Structure was proposed to solve fully cooperative tasks problem using reinforcement learning. Team-Q learning [19] is applied to dynamic fully cooperative tasks while FMQ algorithm [2] was proposed for the static version. On the other hand, fully competitive tasks can be addressed using MiniMax-Q [3]. Static problems comprising of tasks with a mixture of these two types of interactions can be addressed using GIGA-WoLF[17] while WoLF-PHC [18] addresses the dynamic version of such problem. Many of these techniques address specific type of task interaction in small problems represented using matrices [16].

The MiniMax-Q algorithm [3] adapted standard Qlearning to stochastic games. However, considering opponent's action in the value function of MiniMax-Qmay be impractical. In contrast, our proposed coordination strategy does not need to have such consideration. In [8], coordination of multiple agents is learned using the local state information of other agents. However, it is impractical to assume the availability of state information of other agents in this work. In [9], a channelbased exogenous coordination language known as Reo

Corresponding author: Teck-Hou Teng (email: thteng@ntu.edu.sg). This work is supported by the DSO National Laboratories under Research Grant DSOCL11258 and by the National Science Centre under Research Grant DEC-2011/03/B/ST7/02518.

was proposed for specifying the dynamic composition of multi-agent system. In [10], expert coordination knowledge was used to restrict the joint action space and direct exploration.

Uses of approximate MARL in large and more practical problems are also known. Two coordination mechanisms [20] were proposed for the AFCW problem. A heterogeneous multiagent architecture [21] was proposed to address pursuit problem with continuous states. In another work, normalized Gaussian network was used as the function approximator [22] in a twochasers-one-prey problem. While they are successful in solving their chosen problems, none of them addresses the type of problem addressed here.

Different approaches are known for problems similar to this work. Reinforcement learning was used to discover strategies to score close to 100% win against the built-in AI [6]. Evolutionary computation was also used to evolve tactical combat AI [4]. Capable of playing the full SCBW game, the EISBot [5] was a reactive planning agent with goal-driven autonomy while the SCAIL [7] employed a task-based architecture. In [15], an Adaptive Strategy Decision mechanism was proposed to play the SCBW game in stages. However, none of them addresses the same problem using MARL.

III. THE PROBLEM FORMULATION

We begin this section with a motivating problem domain in Section III-A. This is followed by the problem statement in Section III-B.

A. A Motivating Problem Domain

A motivating problem domain is included here to illustrate the task dependency and resource competition issues. The SCBW game is chosen because it suitably illustrates these two issues. Seen in Figure 1, there are four categories of tasks - Task 1 Resource Management, Task 2 Unit Production, Task 3 Building Construction and Task 4 Tactical Command - with the complex interaction seen in Figure 2.

Fig. 1. The tasks performed using multiple agents

From Figure 2, Space Construction Vehicles (SCVs) are used to perform the sub-tasks of Task 1. Therefore, Task 1-1, Task 1-2 and Task 1-3 compete with each other for the use of SCVs. Supply level is replenished using Task 1-3 by constructing Supply Depot. Task 1-2 depends on Task 3-1 to construct a Refinery over an unoccupied gas well. This is because gas can only be gathered by the SCVs using a refinery. In turn, Task 2 and Task 3 depend on Task 1 for the resources.

The sub-tasks of Task 2 compete with each other, Task 3 and Task 1-3 for the resources. In addition, Task 2-2 to Task 2-4 are dependent on Task 3-2 for the construction of Barrack. Task 2-3 and Task 2-4 are also dependent on Task 3-4 for the construction of Academy. In turn, Task 4-1 to Task 4-4 depends on Task 2-1 to Task 2-4 respectively. In addition, Task 2-3 and Task 2-4 depend on Task 1-2 for the gas resource and is transitively dependent on Task 3-1.

Fig. 2. The complex interactions among the tasks

Task 3 depends on Task 1 for the minerals. Yet, Task 3 also competes with Task 1 for use of SCVs. This is because SCVs are required for the construction of buildings in Task 3 and for the replenishment of the resources in Task 1. Task 3-3 and Task 3-4 depend on Task 3-2 for the construction of Barrack. From the onset, only Task 3-1, Task 3-2 and Task 3-5 compete with each other for resources. Task 3-1 competes with Task 3-3 and Task 3-4 for resources only after it builds the first Barrack.

Task 4-1 and Task 4-2 depends on Task 3-3 for the construction of Bunker. This is because Task 4-1 and Task 4-2 command their respective units to move into the Bunker. In addition, Task 4-1 depends on Task 2-2 for the production of Marines and Task 4-2 depends on Task 2-3 for the production of FireBat. In general, Task 4 does not compete with Task 1 and Task 3 and it is only transitively dependent on Task 1 and Task 3.

B. The Problem Statement

This work addresses a MARL problem in a stochastic game defined as follows

Definition 1 (Stochastic Game): A stochastic game is a tuple (Q, N, A, P, r) where:

- **Q** is a finite set of games;
- **N** is a finite set of agents, indexed by h;
- $\Gamma = \tau_1 \times \cdots \times \tau_h$, where τ_h is a finite set of actions available to Agent *h*.
- $P: \mathbf{Q} \times \mathbf{\Gamma} \times \mathbf{Q} \mapsto [0, 1]$ is the transition probability function.
- $\mathbf{R} = (r_1, \cdots, r_h)$, where $r_h : \mathbf{Q} \times \mathbf{\Gamma} \mapsto \mathbb{R}$ is a real-value payoff function for Agent h.

The stochastic game does not have a normal form because a function approximator [23] is used to generalize on the states. Using reinforcement learning, P is approximated based on the actual distribution of states reached in the game [27]. The real-value payoff function **R** is derived using our proposed method described in Section IV-A.

In this stochastic game, Agent h performs Task $\tau_h \in$ Γ to build up a particular aspect of the stochastic game. We aim to get multiple agents to perform multiple tasks efficiently in a coordinated and self-organizing manner.

The performance of Task τ is dependent on the availability of a set of depletable resources $\Lambda_{\tau} \subset \Lambda$ and a set of non-depletable resource known as technologies $\Omega_{\tau} \subset \Omega$ where Λ is the set of all resources and Ω is the set of all technologies.

When the agent performs task τ , it consumes λ_{τ} amount of resource λ where $\lambda \in \Lambda_{\tau}$. Given two tasks τ_1 and τ_2 , resource competition between τ_1 and τ_2 exists according to Definition 2.

Definition 2 (Resource Competition): Competition for resource λ occurs between Task τ_1 and Task τ_2 when the following conditions exist.

- Task au_1 consumes $\lambda_{ au_1}$ amount of resource λ and Task • For λ_c amount of resource λ , there is insufficient amount
- of resource λ to satisfy Task τ_1 and Task τ_2 when $\lambda_c <$ $\lambda_{\tau_1} + \lambda_{\tau_2}$

Due to competition for resource λ between Task τ_1 and Task τ_2 , either Task τ_1 or Task τ_2 may fail to perform. Therefore, performance of the tasks is coordinated to satisfy the following coordination criterion.

Coordination Criterion 1: Let s_1 denote the state where Task τ_1 is performed and Task τ_2 is blocked and s_2 denote the state where Task τ_1 is blocked and Task τ_2 is performed.

From Definition 1, for state s_1 , agent h has payoff $r_h(s_1)$ and, for state s_2 , agent h has payoff $r_h(s_2)$.

Assuming $\lambda_{\tau_1} < \lambda_{\tau_2}$ and $r_h(s_2) > r_h(s_1)$, Task τ_1 will have to be blocked to allow resource λ to accumulate to λ_{τ_2} amount such that Task τ_2 can be performed.

Besides resource competition, multiple tasks may depend on each other such that task τ_1 produces a technology needed by task τ_2 . In this respect, a *task* dependency scenario between Task τ_1 and Task τ_2 exists according to Definition 3.

Definition 3 (Task Dependency): We consider Task τ_1 to be dependent on Task τ_2 when the following condition exists

- Performance of Task τ_1 is dependent on a set of technologies Ω_{τ_1}
- Performance of Task τ_2 advances a set of technologies

 τ_2 is coordinated to satisfy the following coordination criterion.

Coordination Criterion 2: Assume there is sufficient resource λ for Task τ_1 and Task τ_2 and Task τ_1 is dependent on Task τ_2 as defined in Definition 3.

Let s_1 denote the state where Task τ_1 is performed before Task τ_2 and s_2 denote the state where Task τ_2 is performed before Task τ_1

From Definition 1, for state s_1 , we have payoff $r_h(s_1)$ and, for state s_2 , we have payoff $r_h(s_2)$.

It is known that $r_h(s_1) < r_h(s_2)$ because Task τ_1 is dependent on Task τ_2 .

 \therefore Task τ_1 will have to be blocked to allow Task τ_2 to perform.

IV. COORDINATED MULTIAGENT REINFORCEMENT LEARNING

Task τ is performed to either replenish resource $\lambda_{\tau} \in \Lambda$ or advance technology $\Omega_{\tau} \in \Omega$. Performance of multiple tasks is learned and coordinated using a Motivated Learning-inspired [28] approach.

A. The Pain Signal

Complementing reinforcement learning, Motivated Learning (ML) [24] was proposed as a pain-based neuronal structure to get agent to respond dynamically to non-stationary hostile environments. In this work, we adopt the concept of the pain signal to coordinate learning and performance of multiple tasks. Unlike [24], an agent here needs to only satisfy the goal of a task.

In the context of this work, *pain* is defined as follows. Definition 4: Pain is defined as a task deficiency of the agent due to the failure to meet its task goal.

Over time, by addressing the cause in a consistent and effective manner, pain can be reduced and eliminated. Action policies identifying the appropriate actions are identified using reinforcement learning.

From Definition 4, *pain* is correlated to the task goals. In this respect, the pain signal p_{τ} for Task τ is derived using the task goal ζ_{τ} and the current level γ_{τ} below.

$$p_{\tau} = \frac{\zeta_{\tau} - \gamma_{\tau}}{\zeta_{\tau}} \tag{1}$$

From (1), the pain signal p_{τ} will be $p_{\tau} > 0$ when $\gamma_{ au} < \zeta_{ au}, \ p_{ au} < 0$ when $\gamma_{ au} > \zeta_{ au}$ and $p_{ au} = 0$ for when $\gamma_{\tau} = \zeta_{\tau}$. Task τ becomes inactive when $\gamma_{\tau} = \zeta_{\tau}$ and active when $\gamma_{\tau} < \zeta_{\tau}$.

To guide reinforcement learning, the pain signal $p_{\tau}(n)$ is used at training iteration n to derive reward $r_{\tau}(n)$ of task τ using

$$r_{\tau}(n) = \sigma_{\tau} H_1(|p_{\tau}(n-1)| - |p_{\tau}(n)|)$$
(2)

where $p_{\tau}(n-1)$ is the pain signal at iteration n-1, σ_{τ} is the reward factor and $H_1(c)$ is a Heaviside step function defined as

$$H_1(c) = \begin{cases} 1 & c > 0 \\ 0 & c \le 0 \end{cases}$$

From (2), a reward of σ_{τ} is given for reducing the pain signal p_{τ} of task τ . In addition, *coordination* criterion 1 can be satisfied by using the pain signal p_{τ} to coordinate MARL.

B. The Coordination Strategy

We propose a novel coordination strategy to satisfy the coordination criteria defined in Section III-B. Using this strategy, tasks with larger *pain* signal have priority over tasks with smaller *pain* signal. Unlike [16], with the use of *pain* signal, our coordination strategy does not consider the actions of the other agents.

Using the winner-take-all (WTA) approach, the winning task τ^* is a *permissible* task. The tasks are organized into $|\Gamma|$ categories of sub-tasks where Γ is the set of main tasks. From a set of sub-tasks Γ_q of main task q, a winning sub-task τ_q^* is identified using the Subtask Competition process defined below.

$$\tau_q^* = \arg \max_{\tau_i \in \Gamma_q} H_2(\varphi_{\tau_i}) p_{\tau_i} \tag{3}$$

where $\Gamma_q \in \Gamma$ and $H_2(c)$ is a Heaviside step function defined as below

$$H_2(c) = \begin{cases} 1 & c \equiv \text{true} \\ 0 & c \equiv \text{false} \end{cases}$$

and the conditional qualifier φ_{τ_i} is evaluated using propositional rule set $R_{\tau_i} \equiv \{r_1^{\tau_i}, \ldots, r_{|R_{\tau_i}|}^{\tau_i}\}$. Specifically, φ_{τ_i} is true iff $\forall m \in \{1, |R_{\tau_i}|\}(r_m^{\tau_i})$. The term $H_2(\varphi_{\tau_q})$ is included to satisfy *coordination criterion 2*. Propositional rule $r_m^{\tau_q}$ for $m \in \{1, \ldots, |R_{\tau_q}|\}$ is defined as

Rule
$$r_m^{\tau_q}$$
: IF $\mathbf{X}^{r_m^{\tau_q}}$ THEN $\mathbf{Y}^{r_m^{\tau_q}}$ (REWARD $R^{r_m^{\tau_q}}$)

where $\mathbf{X}^{r_m^{\tau_q}}$ is the antecedent set, $\mathbf{Y}^{r_m^{\tau_q}}$ is the consequent set and $R^{r_m^{\tau_q}} \in [0, 1]$ is the Q-value estimated using (5).

At training iteration n, sub-task τ_q is permissible when $H_2(\varphi_{\tau_q}) = 1.0$. There can be no winning subtask τ_q^* when $\forall \tau_q H_2(\varphi_{\tau_q}) = 0$ or when $\forall \tau_q p_{\tau_q} = 0$. From (3), we see that MARL is not coordinated using

From (3), we see that MARL is not coordinated using just the *pain* signal. The conditions for the tasks to perform are also checked using knowledge on the *task* dependencies which is specified as Propositional rule $r_m^{\tau_q}$.

Self-Organizing Property: There is a non-zero probability where $p_{\tau_1} = p_{\tau_2}$ and $H_2(\varphi_{\tau_1}) = H_2(\varphi_{\tau_2}) = 1$. In such a circumstance, it is sufficient to randomly decide on either task τ_1 or task τ_2 . This is because by performing either of the tasks, the circumstance where $p_{\tau_1} = p_{\tau_2}$ shall cease to exist.

After selecting a winning sub-task τ_q^* for main task q, a winning main task $q^* \in \mathbf{Q}$ is identified using the *Main Task Competition* process defined below.

$$q^* = \max_{q \in \Gamma} p_{\tau_q^*} \tag{4}$$

where $p_{\tau_q^*}$ is the pain signal of winning sub-task τ_q^* of main task q. Using (3) and (4), we distinguish our proposed approach from those surveyed in [16] by not having any centralized coordination policy.

C. Stochastic Game with multiple stages

Like [15], the stochastic game is partitioned into multiple stages (MS) to focus the performance of specific tasks. For $\tau \in \Gamma$, attainment of task goal ζ_{τ} , i.e., $\gamma_{\tau} = \zeta_{\tau}$ is equivalent to attaining a stage of the stochastic gameplay. We define a *stage* as below.

stochastic gameplay. We define a *stage* as below. *Definition 5 (Stage):* A stage is defined as a segment of the stochastic game marked by the need to satisfy a specific set of task goals.

Specifically, we propose to attain Stage e using a set of task goals \mathbf{G}_e where $\mathbf{G}_e = \{\zeta_{\tau}^e\}$ for $\tau \in \Gamma$ and $e \in \mathcal{E}$ for \mathcal{E} is the set of all stages of the stochastic game.

Fig. 3. Forward and Backward Transition of the stages

Illustrated in Figure 3, a *forward* transition $e \rightarrow f$ from stage e to stage f where e < f (semantically) is made when

$$e \to f$$
 when $\forall \tau \in \Gamma(\gamma_{\tau} \geq \zeta_{\tau}^{e})$

where γ_{τ} is the current reading of task τ and ζ_{τ}^{e} is the goal of task τ based on the active task goal set \mathbf{G}_{e} .

A backward transition $f \to e$ from stage f to stage e is made when

$$f \to e \text{ when } \exists \tau \in \Gamma(\gamma_{\tau} < \zeta_{\tau}^{e})$$

By segmenting the stochastic game into multiple stages, multiple sets of task goals are used to *phase in* the task goals during the stochastic game. The goal tasks are used to derive the *pain* signals.

V. THE SELF-ORGANIZING NEURAL NETWORK

A self-organizing neural network [23] that derives from FALCON [11] is used for Task τ . Capable of learning incrementally in real time, FALCON is a function approximator that generalizes on the vector patterns without compromising on its prediction accuracy. Action policies are discovered through real-time interactions with the environment using reinforcement learning [26]. The value of applying the action choices on the states is estimated using *Q*-Learning.

A. Structure and Operating Modes

Structurally, the FALCON network [11] has a twolayer architecture (see Figure 4), comprising of an input/output (IO) layer and a knowledge layer. The IO layer has a sensory field F_1^{c1} for accepting state vector **S**, an action field F_1^{c2} for accepting action vector **A**, and a reward field F_2^{c1} for accepting reward vector **R**. The category field F_2^c in the knowledge layer stores the committed and uncommitted cognitive nodes. Each cognitive node *j* has three fields of template weights \mathbf{w}^{ck} for $k = \{1, 2, 3\}$.

FALCON has three modes of operation - INSERT, PERFORM and LEARN. The Fusion ART algorithm outlined in Algorithm 1 is used to find a winning cognitive node J in these three modes of operation. FALCON operates in the *PERFORM* mode to select action choices for the states. It operates in the *LEARN* mode to learn the effect of these action choices on the states. Though not used in this work, FALCON can operate in the *INSERT* mode to assimilate domain knowledge into itself [12].

B. Incorporating Temporal Difference Method

Using Algorithm 2, a temporal difference (TD) method is used to estimate the Q-value of state-action pairs Q(s, a) using feedback from the environment on the performed action a selected using Algorithm 1 [26]. At state s', this estimated Q-value is used as the teaching signal to learn the association of state s and the performed action a.

Iterative Value Estimation: The temporal difference method incorporated into FALCON is known as the Bounded Q-Learning [26]. It estimates the value of

Algorithm 1 The Fusion ART algorithm

Require: Activity vectors \mathbf{x}^{ck} and all weights vector \mathbf{w}_{i}^{ck} 1: for each F_2^c node j do

Code Activation: Derive choice function T_i^c using 2.

$$T_j^c = \sum_{k=1}^3 \gamma^{ck} \frac{|\mathbf{x}^{ck} \wedge \mathbf{w}_j^{ck}|}{\alpha^{ck} + |\mathbf{w}_j^{ck}|}$$

where the fuzzy AND operation $(\mathbf{p} \land \mathbf{q})_i \equiv min(p_i, q_i)$, the norm $\|.\|$ is defined by $|\mathbf{p}| \equiv \sum_i p_i$ for vectors \mathbf{p} and \mathbf{q} , $\alpha^{ck} \in [0, 1]$ is the choice parameters, $\gamma^{ck} \in [0, 1]$ is the contribution parameters and $k = \{1, 2, 3\}$

3: end for

10

5: Code Competition: Index of winning cognitive node J is found using

$$I = \arg\max_{i} \{T_j^c : \text{ for all } F_2^c \text{ node } j\}$$

Template Matching: Check whether the match functions m_{I}^{ck} of 6: cognitive node J meet the vigilance criterion

$$m_J^{ck} = \frac{\|\mathbf{x}^{ck} \wedge \mathbf{w}_J^{ck}\|}{|\mathbf{x}^{ck}|} \ge \rho^{ck}$$

where $\rho^{ck} \in [0, 1]$ for $k = \{1, 2, 3\}$ are the vigilance parameters if vigilance criterion is satisfied **then** Resonance State is attained

- 8: 9: else
 - Match Tracking: Modify state vigilance ρ^{c1} using

$$\rho^{c1} = \min\{m_{L}^{ck} + \psi, 1.0\}$$

where ψ is a very small step increment to match function m_J^{ck} ${\bf Reset}; \; m_J^{ck} = 0.0$

- 12: end if
- 13: **until** *Resonance State* is attained 14: **if** operating in LEARN/INSERT mode **then**
- 15:

Template Learning: modify weight vector \mathbf{w}_J^{ck} using

$$\mathbf{w}_{J}^{ck(\text{new})} = (1 - \beta^{ck})\mathbf{w}_{J}^{ck(\text{old})} + \beta^{ck}(\mathbf{x}^{ck} \wedge \mathbf{w}_{J}^{ck(\text{old})})$$

where $\beta^{ck} \in [0, 1]$ is the learning rate 16: else if operating in PERFORM mode then 17: Activity Readout: Read out the action vector **A** of cognitive node J using $\mathbf{x}^{c2(new)} = \mathbf{x}^{c2(old)} \wedge \mathbf{w}_{I}^{c2}$

Decode
$$\mathbf{x}^{c2(new)}$$
 to derive recommended action choice a 18: end if

applying action choice a to state s iteratively. The updated Q-value function $Q^{(new)}(s, a)$ is estimated using

$$Q^{(new)}(s,a) = Q(s,a) + \alpha T D_{err}(1 - Q(s,a)),$$
 (5)

where $\alpha \in [0,1]$ is the learning parameter and TD_{err} is the temporal error term which is derived using

$$TD_{err} = r + \gamma \max_{a'} Q(s', a') - Q(s, a),$$

where $\gamma \in [0,1]$ is the discount parameter and the $\max_{a'} Q(s', a')$ is the maximum estimated value of the next state s' and r is the immediate reward value derived using (2)

C. Knowledge Pruning

Ineffective learned knowledge is pruned to facilitate more efficient operation. A confidence-based pruning strategy similar to [11] is adapted to prune the cognitive nodes that encode the ineffective knowledge.

Algorithm 2 TD-FALCON algorithm

- 1: Initialize FALCON
- 2: Sense the environment and formulate a state representation s Choose to explore at a probability of ϵ
- if Exploration then
- 4: 5: Use Exploration Strategy [13] to select an action choice a
- 6: 7:
- else if Exploitation then Use Direct Code Access [14] to select an action choice from existing knowledge 8: end if
- 9: Use action choice a on state s for state s'10: Evaluate effect of action choice a to derive a reward r from the environment
- 11: Estimate the Q-value function Q(s, a) following a temporal difference formula given by $\Delta Q(s, a) = \alpha T D_{err}$ 12: Present S, A and R for Learning
- 13: Update the current state s = s'14: Repeat from Step 2 until s is a terminal state

Specifically, cognitive node j has a confidence level c_j where $c_j \in [0.0, 1.0]$ and an age σ_j where $\sigma_j \in$ $[0, \mathcal{R}]$. A newly committed cognitive node j has an initial confidence level $c_i(0)$ and an initial age $\sigma_i(0)$. The confidence level c_J of winning cognitive node J is reinforced using

$$c_J^{new} = c_J^{old} + \eta (1 - c_J^{old}),$$

where η is the reinforcement rate of the confidence level. After each training iteration, the age σ_i of cognitive node j is incremented and its confidence level c_i is decayed using

$$c_j^{new} = c_j^{old} - \zeta c_j^{old}$$

where ζ is the decay rate of the confidence level. The age attribute σ_i of cognitive node j prevents premature pruning. Cognitive node j is pruned only when $c_j < c^{rec}$ where c^{rec} is the recommended confidence threshold and $\sigma_i \geq \sigma^{old}$ where σ^{old} is the old age threshold.

VI. THE SIMULATION PLATFORM

The stochastic game is illustrated using a PC-based game known as Starcraft Broodwar (SCBW). This SCBW game has a very rich gameplay and contains a rich body of knowledge and a very rich gameplay. Numerous works [4][5][6][15][7] are known using the SCBW. Like these works, we illustrate our proposed coordination strategy for MARL by implementing a virtual player of the SCBW game. Since year 2009, AI competitions are organized annually at conferences such as CIG and AIIDE

Fig. 5. A snapshot of the SCBW gameplay.

There are the macro and the micro gameplay. At the macro gameplay, tasks such as the resource gathering, building construction, unit production and advancement of technology are performed. The micro gameplay involves the tasks of commanding the units to perform reconnaissance, defend own bases and own units, attack enemy units and to raze the enemy bases.

The game is won by eliminating the opponents. There is a selection of three races - terran, zerg or protoss - for the player. The race can either be chosen or randomly assigned to the players. Illustrated in Figure 5, the players of the SCBW game are controlled using the built-in AI, an implementation of our proposed approach and the other benchmark approaches.

VII. PERFORMANCE EVALUATION

Experiments were conducted to identify an effective approach to coordinate MARL. We denote our Painbased Coordination (PC) Strategy in multi-stage (MS) stochastic game using PC-MS. The PC-SS approach uses the PC strategy in single-stage (SS) stochastic game, a Random Response (RR) approach, an uncoordinated MARL (UC) approach and an EK approach similar to [10] are included for comparison.

The experiments based on these approaches share a number of common settings. Reinforcement learning is conducted using a variant of FALCON [23] with the parameters seen in Table I. Each experiment was conducted for 100 training iterations. Each training iteration lasts for 10,000 frames. A total of 200 decisions are made at 50 frames interval. The experimental results are averaged using 20 runs of the same experiment. Subsequently, these experimental results are further averaged using a sliding window of 10 training iterations.

FALCON for $k = \{1, 2, 3\}$ Choice Parameters α^{ck} $\{0.1, 0.1, 0.1\}$ Learning Rates β^{ck} $\{1.0, 1.0, 1.0\}$ Contribution Parameters γ^{ck} $\{0.33, 0.33, 0.33\}$ Vigilance ρ^{ck} $\{0.95, 0.0/1.0, \rho^{c3}\}$ ρ^{c3} Adaptation Rate ν 0.95 Confidence $(c_j(0), \zeta, \eta)$ $0.5, 0.0005, 0.5$ Pruning - Age threshold σ^{old} 50 iterations Pruning - Confidence Level c^{rec} 0.65 TD-Learning Learning Learning Rate α 0.5 Discount Factor γ 0.1 Divid O-Value 0.5	PARAMETERS OF FALCON AND TD LEARNING		
Choice Parameters α^{ck} {0.1, 0.1, 0.1} Learning Rates β^{ck} {1.0, 1.0, 1.0} Contribution Parameters γ^{ck} {0.33, 0.33, 0.33} Vigilance ρ^{ck} {0.95, 0.0/1.0, $\rho^{c3}}$ ρ^{c3} Adaptation Rate ν 0.95 Confidence $(c_j(0), \zeta, \eta)$ 0.5, 0.0005, 0.5 Pruning - Age threshold σ^{old} 50 iterations Pruning - Confidence Level c^{rec} 0.65 TD-Learning Learning Learning Rate α 0.5 Discount Factor γ 0.1 Initial O -Value 0.5	FALCON for $k = \{1, 2, 3\}$		
Learning Rates β^{ck} {1.0, 1.0, 1.0} Contribution Parameters γ^{ck} {0.33, 0.33, 0.33} Vigilance ρ^{ck} {0.95, 0.0/1.0, ρ^{c3} } ρ^{c3} Adaptation Rate ν 0.95 Confidence $(c_j(0), \zeta, \eta)$ 0.5, 0.0005, 0.5 Pruning - Age threshold σ^{old} 50 iterations Pruning - Confidence Level c^{rec} 0.65 TD-Learning 0.5 Learning Rate α 0.5 Discount Factor γ 0.1 Initial O-Value 0.5	Choice Parameters α^{ck}	$\{0.1, 0.1, 0.1\}$	
Contribution Parameters γ^{ck} $\{0.33, 0.33, 0.33\}$ Vigilance ρ^{ck} $\{0.95, 0.0/1.0, \rho^{c3}\}$ ρ^{c3} Adaptation Rate ν 0.95 Confidence $(c_j(0), \zeta, \eta)$ $0.5, 0.0005, 0.5$ Pruning - Age threshold σ^{old} 50 iterationsPruning - Confidence Level c^{rec} 0.65 TD-LearningLearning Rate α Learning Rate α 0.5 Discount Factor γ 0.1 Initial Q-Value 0.5	Learning Rates β^{ck}	$\{1.0, 1.0, 1.0\}$	
Vigilance ρ^{ck} $\{0.95, 0.0/1.0, \rho^{c3}\}$ ρ^{c3} Adaptation Rate ν 0.95 Confidence $(c_j(0), \zeta, \eta)$ $0.5, 0.0005, 0.5$ Pruning - Age threshold σ^{old} 50 iterationsPruning - Confidence Level c^{rec} 0.65 TD-LearningLearning Rate α Learning Rate α 0.5 Discount Factor γ 0.1 Initial O -Value 0.5	Contribution Parameters γ^{ck}	$\{0.33, 0.33, 0.33\}$	
$ \begin{array}{cccc} \rho^{c3} & \text{Adaptation Rate } \nu & 0.95 \\ \text{Confidence } (c_j(0), \zeta, \eta) & 0.5, 0.0005, 0.5 \\ \text{Pruning - Age threshold } \sigma^{old} & 50 \text{ iterations} \\ \text{Pruning - Confidence Level } c^{rec} & 0.65 \\ \hline \hline \textbf{TD-Learning} \\ \hline \text{Learning Rate } \alpha & 0.5 \\ \text{Discount Factor } \gamma & 0.1 \\ \text{Initial } O-\text{Value} & 0.5 \\ \end{array} $	Vigilance ρ^{ck}	$\{0.95, 0.0/1.0, \rho^{c3}\}$	
Confidence $(c_j(0), \zeta, \eta)$ 0.5, 0.0005, 0.5 Pruning - Age threshold σ^{old} 50 iterations Pruning - Confidence Level c^{rec} 0.65 TD-Learning	ρ^{c3} Adaptation Rate ν	0.95	
Pruning - Age threshold σ^{old} 50 iterations Pruning - Confidence Level c^{rec} 0.65 TD-Learning	Confidence $(c_j(0), \zeta, \eta)$	0.5, 0.0005, 0.5	
Pruning - Confidence Level c^{rec} 0.65 TD-Learning	Pruning - Age threshold σ^{old}	50 iterations	
TD-Learning Learning Rate α 0.5 Discount Factor γ 0.1 Initial Q-Value 0.5	Pruning - Confidence Level c ^{rec}	0.65	
Learning Rate α 0.5 Discount Factor γ 0.1 Initial Q-Value 0.5	TD-Learning		
Discount Factor γ 0.1 Initial Q-Value 0.5	Learning Rate α	0.5	
Initial Q-Value 0.5	Discount Factor γ	0.1	
	Initial Q-Value	0.5	

TABLE I

A. Evaluation Method

An Asset Scoring Methodology (ASM) is proposed to provide an aggregated view of the goal attainment status of the tasks. Given that the tasks are organized hierarchically, the asset scores are first derived for the sub-tasks. The asset scores of the sub-tasks are then aggregated to give an asset score of the main task.

An asset score μ_τ based on the pain signal p_τ described in Section IV-A is derived for sub-task τ using

$$\mu_{\tau} = 1.0 - \min\left\{\frac{|\zeta_{\tau} - \gamma_{\tau}|}{\zeta_{\tau}}, 1.0\right\}$$
(6)

where ζ_{τ} is the target level and γ_{τ} is the current reading of task τ .

For when $\gamma_{\tau} < 2\zeta_{\tau}$, the asset score μ_{τ} is guaranteed to be $0.0 \leq \mu_{\tau} \leq 1.0$. The asset score μ_{τ} saturates at 0.0 when $\gamma_{\tau} \geq 2\zeta_{\tau}$. Further differentiation of the performance of task τ is not necessary when $\gamma_{\tau} \geq 2\zeta_{\tau}$. Each main task q has sub-task τ_i where $i \in$ $\{1, \ldots, |\Gamma_q|\}$ and Γ_q is the set of sub-tasks for main task q. Therefore, from (6), the asset score μ_q of main task q is derived using

$$\mu_q = \frac{1}{\sum_i^{|\Gamma_q|} \omega_{\tau_i}} \sum_i^{|\Gamma_q|} \omega_{\tau_i} \mu_{\tau_i}$$
(7)

where ω_{τ} is an empirical value that indicates the relative significance of sub-task τ_1 over sub-task τ_2 where $\{\tau_1, \tau_2\} \in \Gamma_q$ and Γ_q is the set of sub-tasks for main task q.

From (7), the final asset score φ is then derived using

$$\varphi = \frac{1}{\sum_{q}^{|\Gamma|} \omega_q} \sum_{q}^{|\Gamma|} \omega_q \mu_q$$

where Γ is the set of main tasks. In this work, the asset score s φ is the main task performance indicator.

B. The Results

The performance of the coordination strategies is illustrated using the Asset Scores, Active Stages, Node Population and Decision-Making (DM) Time. The weights of the tasks and task goals from three stages - *opening*, *post-opening* and *mid-game* - are presented in Table II. The task goals of the PC-MS approach are based on the active stage of the stochastic game while those of the other approaches are based on a single stage stochastic game.

TABLE II Weights and Goals of the Tasks

Main Task q	Sub-Task p	Target ζ_{τ}	Weight ω_{τ}
Resource	Mine Mineral	250, 250, 500	0.95
Management	Gather Gas	100, 100, 200	0.75
$\omega_{rsc} = 1.0$	Increase Supply	26, 26, 48	0.80
Unit	Produce SCV	12, 12, 16	0.5
Production	Produce Marine	0, 6, 18	0.75
$\omega_{unit} = 1.0$	Produce FireBat	0, 2, 6	0.75
	Produce Medic	0, 2, 6	0.75
Building	Refinery	1, 1, 1	0.5
Construction	Supply Depot	2, 2, 6	0.65
$\omega_{bldg} = 1.0$	Barrack	0, 2, 2	0.85
	Bunker	0, 2, 6	0.75
	Academy	0, 1, 1	0.65
	Engineering Bay	0, 0, 1	0.65

Task Performance: From Figure 6 Top Plot, the asset scores illustrate the effectiveness of the different approaches. Similar outcome is observed for all approaches up to the 40^{th} decision. The PC-SS approach has the highest asset score up to the 140^{th} decision where it is overtaken by the EK approach. Our proposed PC-MS approach outperforms the PC-SS approach at around the 170^{th} decision and the EK approach at around the 180^{th} decision. In comparison, the UC approach is observed with similar performance to the RR approach.

Fig. 6. Comparison of the aggregated asset scores and active stages.

From Figure 6 Bottom Plot, the PC-MS approach is observed forward transitioning to more advanced stage at around the 100^{th} . According Figure 6 Top Plot, this is also where the asset scores of the PC-MS approach begin to improve at increasing rate. In contrast, all the other approaches begin with the targeted stage from the onset. However, the asset scores of these approaches are observed lower than the PC-MS approach after 200 decisions. Only the EK approach is observed with asset scores close to the PC-MS approach after 200 decisions.

Fig. 7. Comparison of the node population and decision-making time.

Space Complexity: In the MARL framework, a FALCON is used to learn the performance of a task. From Figure 1, this means 16 FALCONs are used for the 16 tasks performed during the gameplay. Plots of the node population in Figure 7 Top Plot provide an aggregated view of the number of cognitive nodes of the 16 FALCONs. Zero node population is observed for the RR approach because it does not use any FALCON for the tasks. Therefore, with the exception of the RR approach, the pruning technique presented in Section V-C is used in all FALCON-based approaches.

From Figure 7 Top Plot, the PC-MS and the PC-SS approaches are observed with similar number of cognitive nodes because both approaches coordinate MARL using the same technique. However, the PC-MS approach uses multiple stages to achieve these final goals while the PC-SS approach directly aim for these final goals from the onset. Therefore, such observations imply the use of multiple stages have no impact on the node population. However, significant difference is observed in the asset scores of these two configurations in Figure 6 Top Plot.

Also from Figure 7, the EK approach has larger node population than the PC-MS and the PC-SS approaches. Such observations indicate the use of expert knowledge to coordinate MARL is less efficient than our proposed coordination strategy. In addition, the UC approach is observed with the largest node population while the RR approach has zero node population.

Time Complexity: Plots of decision-making (DM) time in Figure 7 Bottom Plot capture the dynamic aspect, i.e., the activities of the implemented models while being correlated to the node population. The DM time is the average amount of time taken to select action choices for the tasks. The tasks in the PC-MS and PS-SS approaches are coordinated using the proposed ML-based technique, expert knowledge is used in the EK approach to coordinate MARL while the UC and RR approaches execute the tasks in sequential order.

From Figure 7 Bottom Plot, the RR approach is observed with the lowest decision-making time because no FALCON is used. In contrast, the UC approach has an average decision-making time of around $450\mu s$. The DM time of the PC-MS and PC-SS approaches fluctuates between $23\mu s$ and $28\mu s$. This is significantly less than DM time of the EK approach fluctuates between $62\mu s$ and $68\mu s$.

Self-Organizing Property: In contrast to reactive planning [5], the order of execution of the tasks are determined in real time. Task dependencies with other tasks and the competition for resources are overcome using the proposed coordination strategy seen in Section IV. Using this approach, tasks become *permissible* for execution when their pre-requisites are satisfied by other tasks. Priority to the shared resources is allocated to the *permissible* tasks with the less satisfied goals. Over time, the goals of the tasks are satisfied in a self-organizing manner.

The efficacy of our approach can be observed from Figure 8 Top Plot where the number of combat units produced is illustrated. Four agents perform four tasks for producing each type of unit. By just specifying the task goals as seen in Table II, the PC-MS approach is seen close to satisfying the task goals of the Unit Production task at the Post-Opening (1) stage.

Fig. 8. Production of combat units in correlation to the active stages

VIII. CONCLUSION

Inspired by [24], we propose a novel coordination strategy that integrates motivated learning (ML) and self-orgnaizing neural network to coordinate multiagent reinforcement learning (MARL) in stochastic game with issues of resource competition and task dependency. The stochastic game is partitioned into multiple stages where each stage is characterized by a specific set of task goals. The *pain* signals are derived using the task goals of the active stage. Resources are allocated to the winning task for satisfying its goal. Over time, the task goals are satisfied in a coordinated and self-organizing manner.

We compare our proposed coordination strategy for MARL with four other approaches. The Random Response approach is included as a baseline. The effect of coordinating MARL is highlighted using the uncoordinated approach. The effect of staging the task goals is highlighted using a single stage version of the task goals. Considering expert-guided coordination [10] as an accurate approximation of the ground truth, we had included such an approach for comparison. The performance of these approaches is illustrated using asset scores, node population and decision-making time. The resultant self-organizing property is also illustrated using the unit production task. Results from experiments conducted using a computer game show the Multi-Stage approach has the highest asset score while having similar node population than the other approaches.

In this work, the task goals for the stages are predetermined. These task goals are used without any adaptation to the situations. Such an approach is rigid and may lead to sub-optimal outcome for the entire gameplay. Currently, only experienced human gamers can adapt the task goals optimally in real time. Therefore, a computational model with similar capability is seen as natural progression of this work. In addition, we are working towards an integrated solution capable of winning the SCBW game against the built-in AI and the human players.

REFERENCES

- [1] Y.-C. Choi and H.-S. Ahn, "A survey on multi-agent rein-forcement learning: Coordination problems," in Proceedings of the IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, 2010, pp 81-86
- [2] S. Kapetanakis and D. Kudenko, "Reinforcement learning of co-ordination in cooperative multi-agent systems," in Proceedings of the National Conference on Artificial Intelligence, 2002, pp. 326-331
- [3] M. L. Littman, "Markov games as a framework for multi-agent reinforcement learning," in Proceedings of the *International*
- *Conference on Machine Learning*, 1994, pp. 157-163. N. Othman, J. Decraene, W. Cai, N. Hu, Y.-H. Low and A. Gouaillard, "Simulation-based optimization of StarCraft tactical [4] AI through evolutionary computation," in Proceedings of the IEEE Conference on Computational Intelligence and Games,
- B. G. Weber, M. Mateas, A. Jhala, "Building human-level AI for real-time strategy games," in Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems, 2011, pp 329-227 [5] 336.
- S. Wender and I. Watson, "Applying reinforcement learning to small scale combat in the real-time strategy game StarCraft: Broodwar," in Proceedings of the *IEEE Conference on Compu-*[6] tational Intelligence and Games, 2012, pp. 402-408.

- [7] J. Young, F. Smith, C. Atkinson, K. Poyner and T. Chothia, "SCAIL: An integrated Starcraft AI system," in Proceedings of the IEEE Conference on Computational Intelligence and Games, 2012, pp. 438-445.
- [8] F. S. Melo and M. Veloso, "Learning of coordination: exploiting sparse interactions in multiagent systems," in Proceedings of the International Conference on Autonomous Agents and Multiagent
- Systems, 2009, pp. 773-780.
 [9] M. Dastani, F. Arbab and F. de Boer, "Coordination and composition in multi-agent systems," in Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, 2005, pp. 439-446.
- [10] Q. Lau, M.-L. Lee and W. Hsu, "Coordination guided reinforce-ment learning," in Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, 2012, pp. 215-
- [11] A.-H. Tan, "FALCON: A Fusion Architecture for Learning, COgnition, and Navigation," in Proceedings of the International Joint Conference on Neural Networks, 2004, pp. 3297-3302.
- [12] T.-H. Teng, Z.-M. Tan and A.-H. Tan, "Self-organizing neu-ral models integrating rules and reinforcement learning," in
- Proceedings of the *International Joint Conference on Neural Networks*, 2008, pp. 3770-3777.
 [13] T.-H. Teng and A.-H. Tan, "Knowledge-based exploration for reinforcement learning in self-organizing neural networks," in Proceedings of the *IEEE/WIC/ACM International Conference on Vertilized Append Technology* 2012 are 222 220 on Intelligence Agent Technology, 2012, pp. 332-339
- [14] A.-H. Tan, "Direct code access in self-organizing neural net-works for reinforcement learning," in Proceedings of the Inter-national Joint Conference on Artificial Intelligence, 2007, pp. 1071-1076.
- [15] S. Yi, Adaptive strategy decision mechanism for StarCraft AI, in Proceedings of the EU-Korea Conference on Science and Technology, 2010, pp. 47-57.
 [16] L. Busoniu, R. Babuska and B. de Schutter, "A comprehensive survey of multiagent reinforcement learning," *IEEE Trans. Syst. Mar. Cohem. C Appl. Rev.* vol. 38, no. 2, pp. 156–172, 2008.
- Man Cybern. C, Appl. Rev., vol. 38, no. 2, pp. 156-172, 2008. [17] M. Bowling, "Convergence and no-regret in multiagent learn-
- [11] M. Bowling, Convergence and no-regret in mutilagent learning, *Advances in Neural Information Processing Systems*, vol. 17, pp. 209-216, 2005.
 [18] M. Bowling and M. Veloso, "Multiagent learning using a variable learning rate," *Artificial Intelligence*, vol. 136, no. 2, pp. 215-250, 2002.
- M. L. Littman, "Value-function reinforcement learning in markov games," *Cognitive Systems Research*, vol. 2, no. 1, pp. [19] 5-66, 2001
- [20] O. Abul, F. Polat and R. Alhaji, "Multiagent reinforcement learning using function approximation," *IEEE Trans. Syst. MAn Cybern. C, Appl Rev.*, vol. 30, no. 4, pp. 485-497, 2000.
 [21] Y.Ishiwaka, T. Sato and Y. Kakazu, "An approach to the pursuit formation of the second s
- [21] J.Ishiwaka, I. Sato and T. Kakaza, An approach to the pusht problem on a heterogeneous multiagent system using reinforce-ment learning," *Robotics and Autonomous Systems*, vol. 43, no. 4, pp. 245-256, 2003.
 [22] H. Tamakoshi and S, Ishii, "Multiagent reinforcement learning"
- applied to a chase problem in a continuous world," Life and Robotics, vol. 5, no. 4, pp. 202-206, 2001. [23] T.-H. Teng, A.-H. Tan and L.-N. Teow, "Adaptive computer-
- [23] I.-H. Ieng, A.-H. Ian and L.-N. Ieów, "Adaptive computer-generated forces for simulator-based training," *Expert Systems with Applications*, vol. 40, no. 18, pp. 7341-7353, 2013.
 [24] J. A. Starzyk, J. T. Graham, P. Raif and A.-H. Tan, "Motivated learning for the development of autonomous systems," *Cognitive Systems Research*, vol. 14, no. 1, pp. 10-25, 2012.
 [25] G. Chen, Z. Yang, H. He, K.-M. Goh, "Coordinating Multiple Agents via Pairforsment Learning".
- Agents via Reinforcement Learning," Autonomous Agents and Multi-Agent Systems, vol. 10, no. 3, pp. 273-328, 2005. A.-H. Tan, N. Lu and X. Dan, "Integrating temporal difference
- [26] methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback," *IEEE Trans. Neural Netw.*, vol. 19, no. 2, pp. 230-244, Feb, 2008. Y. Shoham and K. Leyton-Brown, "Multiagent systems: algo-
- [27] inthmic, game-theoretic and logical foundations," Cambridge University Press, 2009.
- [28] J. A. Starzyk, "Motivation in embodied intelligence," in Frontiers in Robotics, Automation and Control, I-Tech Education and Publishing, 2008, pp. 83-110.