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Abstract— Most non-trivial problems require the coor-
dinated performance of multiple goal-oriented and time-
critical tasks. Coordinating the performance of the tasks
is required due to the dependencies among the tasks and
the sharing of resources. In this work, an agent learns to
perform a task using reinforcement learning with a self-
organizing neural network as the function approximator.
We propose a novel coordination strategy integrating
Motivated Learning (ML) and a self-organizing neural
network for multi-agent reinforcement learning (MARL).
Specifically, we adapt the ML idea of using pain signal
to overcome the resource competition issue. Dependency
among the agents is resolved using domain knowledge
of their dependence. To avoid domineering agents, the
task goals are staggered over multiple stages. A stage is
completed by attaining a particular combination of task
goals. Results from our experiments conducted using a
popular PC-based game known as Starcraft Broodwar
show goals of multiple tasks can be attained efficiently
using our proposed coordination strategy.

I. INTRODUCTION

IN application domains such as distributed control,
robotics and automated trading [16], coordinated per-

formance of tasks is required due to the dependencies
among the tasks and the sharing of resources. Depen-
dencies among the tasks exist as the pre-requisites to the
more advanced tasks. Competition for resources among
the tasks exists due to the finite amount and the finite
replenishment rate of the shared resources. Using multi-
agent reinforcement learning (MARL), an agent learns
the performance of a task using reinforcement learning
with a self-organizing neural network as the function
approximator.

Many works are known for applying MARL on
small and large problems [1][16]. Use of MARL on
small problems comprising of agents with different
patterns of interaction includes [2][3][17][18][19]. Use
of MARL on larger problems such as pursuit problem
and adversarial food-collecting world (AFCW) problem
includes [20][21][22]. However, the use of MARL is not
seen from our survey of works [4][5][6][7] for problems
similar to this work.

In this work, we proposed a novel coordination
strategy for conducting MARL in large problems of
practical interest illustrated using a popular PC-based
game known as Starcraft Broodwar (SCBW). Capable
of incremental learning in real time, an ART-based
neural network known as FALCON [23] is used as the
function approximator for learning the performance of
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the task. Inspired by [24], the agents are coordinated
using pain signal derived with respect to the task goals.
The stochastic game is segmented into several stages.
Different sets of task goals for the same set of tasks
are used for the stages. Results from our experiments
conducted using SCBW show that multiple tasks can
be performed most effectively using our proposed co-
ordinated learning strategy.

The presentation of this work continues in Section II
with survey of MARL works and recent works based
on the SCBW. The problem formulation is provided
in Section III. Details of the coordination strategy are
presented in Section IV. This is followed by a succinct
presentation of FALCON in Section V. The SCBW
game is briefly introduced in Section VI. Section VII
presents the experiments and the analysis of the exper-
imental results. Section VIII contains the conclusion.

II. RELATED WORK

In this section, we survey existing coordination strate-
gies for multi-agent reinforcement learning (MARL)
and the use of learning techniques in the Starcraft
Broodwar (SCBW) problem domain. The SCBW is a
popular choice for AI research because it is a challeng-
ing real-time strategy game with multiple goal-oriented
and time-critical tasks.

The coordination problem in MARL has been ad-
dressed for fully cooperative, fully competitive and
mixed tasks [16]. In [25], a Fuzzy Subjective Task
Structure was proposed to solve fully cooperative tasks
problem using reinforcement learning. Team-Q learn-
ing [19] is applied to dynamic fully cooperative tasks
while FMQ algorithm [2] was proposed for the static
version. On the other hand, fully competitive tasks can
be addressed using MiniMax-Q [3]. Static problems
comprising of tasks with a mixture of these two types
of interactions can be addressed using GIGA-WoLF[17]
while WoLF-PHC [18] addresses the dynamic version
of such problem. Many of these techniques address
specific type of task interaction in small problems
represented using matrices [16].

The MiniMax-Q algorithm [3] adapted standard Q-
learning to stochastic games. However, considering op-
ponent’s action in the value function of MiniMax-Q
may be impractical. In contrast, our proposed coordina-
tion strategy does not need to have such consideration.
In [8], coordination of multiple agents is learned using
the local state information of other agents. However, it
is impractical to assume the availability of state infor-
mation of other agents in this work. In [9], a channel-
based exogenous coordination language known as Reo
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was proposed for specifying the dynamic composition
of multi-agent system. In [10], expert coordination
knowledge was used to restrict the joint action space
and direct exploration.

Uses of approximate MARL in large and more
practical problems are also known. Two coordination
mechanisms [20] were proposed for the AFCW prob-
lem. A heterogeneous multiagent architecture [21] was
proposed to address pursuit problem with continuous
states. In another work, normalized Gaussian network
was used as the function approximator [22] in a two-
chasers-one-prey problem. While they are successful in
solving their chosen problems, none of them addresses
the type of problem addressed here.

Different approaches are known for problems similar
to this work. Reinforcement learning was used to dis-
cover strategies to score close to 100% win against the
built-in AI [6]. Evolutionary computation was also used
to evolve tactical combat AI [4]. Capable of playing
the full SCBW game, the EISBot [5] was a reactive
planning agent with goal-driven autonomy while the
SCAIL [7] employed a task-based architecture. In [15],
an Adaptive Strategy Decision mechanism was pro-
posed to play the SCBW game in stages. However, none
of them addresses the same problem using MARL.

III. THE PROBLEM FORMULATION

We begin this section with a motivating problem do-
main in Section III-A. This is followed by the problem
statement in Section III-B.

A. A Motivating Problem Domain
A motivating problem domain is included here to

illustrate the task dependency and resource competition
issues. The SCBW game is chosen because it suitably
illustrates these two issues. Seen in Figure 1, there are
four categories of tasks - Task 1 Resource Management,
Task 2 Unit Production, Task 3 Building Construction
and Task 4 Tactical Command - with the complex
interaction seen in Figure 2.

Fig. 1. The tasks performed using multiple agents

From Figure 2, Space Construction Vehicles (SCVs)
are used to perform the sub-tasks of Task 1. Therefore,
Task 1-1, Task 1-2 and Task 1-3 compete with each
other for the use of SCVs. Supply level is replenished
using Task 1-3 by constructing Supply Depot. Task 1-2
depends on Task 3-1 to construct a Refinery over an
unoccupied gas well. This is because gas can only be
gathered by the SCVs using a refinery. In turn, Task 2
and Task 3 depend on Task 1 for the resources.

The sub-tasks of Task 2 compete with each other,
Task 3 and Task 1-3 for the resources. In addition,
Task 2-2 to Task 2-4 are dependent on Task 3-2 for the
construction of Barrack. Task 2-3 and Task 2-4 are also
dependent on Task 3-4 for the construction of Academy.
In turn, Task 4-1 to Task 4-4 depends on Task 2-1 to
Task 2-4 respectively. In addition, Task 2-3 and Task
2-4 depend on Task 1-2 for the gas resource and is
transitively dependent on Task 3-1.

Fig. 2. The complex interactions among the tasks

Task 3 depends on Task 1 for the minerals. Yet, Task
3 also competes with Task 1 for use of SCVs. This
is because SCVs are required for the construction of
buildings in Task 3 and for the replenishment of the
resources in Task 1. Task 3-3 and Task 3-4 depend
on Task 3-2 for the construction of Barrack. From the
onset, only Task 3-1, Task 3-2 and Task 3-5 compete
with each other for resources. Task 3-1 competes with
Task 3-3 and Task 3-4 for resources only after it builds
the first Barrack.

Task 4-1 and Task 4-2 depends on Task 3-3 for the
construction of Bunker. This is because Task 4-1 and
Task 4-2 command their respective units to move into
the Bunker. In addition, Task 4-1 depends on Task 2-2
for the production of Marines and Task 4-2 depends on
Task 2-3 for the production of FireBat. In general, Task
4 does not compete with Task 1 and Task 3 and it is
only transitively dependent on Task 1 and Task 3.

B. The Problem Statement

This work addresses a MARL problem in a stochastic
game defined as follows

Definition 1 (Stochastic Game): A stochastic game is a
tuple (Q,N,A,P, r) where:

• Q is a finite set of games;
• N is a finite set of agents, indexed by h;
• Γ = τ1 × · · · × τh, where τh is a finite set of actions

available to Agent h.
• P : Q × Γ × Q �→ [0, 1] is the transition probability

function.
• R = (r1, · · · , rh), where rh : Q × Γ �→ R is a real-

value payoff function for Agent h.
The stochastic game does not have a normal form

because a function approximator [23] is used to gener-
alize on the states. Using reinforcement learning, P is
approximated based on the actual distribution of states
reached in the game [27]. The real-value payoff function
R is derived using our proposed method described in
Section IV-A.
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In this stochastic game, Agent h performs Task τh ∈
Γ to build up a particular aspect of the stochastic game.
We aim to get multiple agents to perform multiple tasks
efficiently in a coordinated and self-organizing manner.

The performance of Task τ is dependent on the
availability of a set of depletable resources Λτ ⊂ Λ and
a set of non-depletable resource known as technologies
Ωτ ⊂ Ω where Λ is the set of all resources and Ω is
the set of all technologies.

When the agent performs task τ , it consumes λτ
amount of resource λ where λ ∈ Λτ . Given two tasks τ1
and τ2, resource competition between τ1 and τ2 exists
according to Definition 2.

Definition 2 (Resource Competition): Competition for re-
source λ occurs between Task τ1 and Task τ2 when the
following conditions exist.

• Task τ1 consumes λτ1 amount of resource λ and Task
τ2 consumes λτ2 amount of resource λ

• For λc amount of resource λ, there is insufficient amount
of resource λ to satisfy Task τ1 and Task τ2 when λc <
λτ1 + λτ2

Due to competition for resource λ between Task τ1
and Task τ2, either Task τ1 or Task τ2 may fail to per-
form. Therefore, performance of the tasks is coordinated
to satisfy the following coordination criterion.
Coordination Criterion 1: Let s1 denote the state where Task
τ1 is performed and Task τ2 is blocked and s2 denote the state
where Task τ1 is blocked and Task τ2 is performed.

From Definition 1, for state s1, agent h has payoff rh(s1)
and, for state s2, agent h has payoff rh(s2).

Assuming λτ1 < λτ2 and rh(s2) > rh(s1), Task τ1 will
have to be blocked to allow resource λ to accumulate to λτ2

amount such that Task τ2 can be performed.
Besides resource competition, multiple tasks may

depend on each other such that task τ1 produces a
technology needed by task τ2. In this respect, a task
dependency scenario between Task τ1 and Task τ2 exists
according to Definition 3.

Definition 3 (Task Dependency): We consider Task τ1 to
be dependent on Task τ2 when the following condition exists

• Performance of Task τ1 is dependent on a set of tech-
nologies Ωτ1

• Performance of Task τ2 advances a set of technologies
Ωτ2

• Ωτ1 ∩ Ωτ2 �= ∅
From Definition 3, performance of Task τ1 and Task

τ2 is coordinated to satisfy the following coordination
criterion.
Coordination Criterion 2: Assume there is sufficient resource
λ for Task τ1 and Task τ2 and Task τ1 is dependent on Task
τ2 as defined in Definition 3.

Let s1 denote the state where Task τ1 is performed before
Task τ2 and s2 denote the state where Task τ2 is performed
before Task τ1.

From Definition 1, for state s1, we have payoff rh(s1) and,
for state s2, we have payoff rh(s2).

It is known that rh(s1) < rh(s2) because Task τ1 is
dependent on Task τ2.
∴ Task τ1 will have to be blocked to allow Task τ2 to perform.

IV. COORDINATED MULTIAGENT REINFORCEMENT
LEARNING

Task τ is performed to either replenish resource
λτ ∈ Λ or advance technology Ωτ ∈ Ω. Performance
of multiple tasks is learned and coordinated using a
Motivated Learning-inspired [28] approach.

A. The Pain Signal
Complementing reinforcement learning, Motivated

Learning (ML) [24] was proposed as a pain-based
neuronal structure to get agent to respond dynamically
to non-stationary hostile environments. In this work,
we adopt the concept of the pain signal to coordinate
learning and performance of multiple tasks. Unlike [24],
an agent here needs to only satisfy the goal of a task.

In the context of this work, pain is defined as follows.
Definition 4: Pain is defined as a task deficiency of the

agent due to the failure to meet its task goal.
Over time, by addressing the cause in a consistent and

effective manner, pain can be reduced and eliminated.
Action policies identifying the appropriate actions are
identified using reinforcement learning.

From Definition 4, pain is correlated to the task goals.
In this respect, the pain signal pτ for Task τ is derived
using the task goal ζτ and the current level γτ below.

pτ =
ζτ − γτ

ζτ
(1)

From (1), the pain signal pτ will be pτ > 0 when
γτ < ζτ , pτ < 0 when γτ > ζτ and pτ = 0 for when
γτ = ζτ . Task τ becomes inactive when γτ = ζτ and
active when γτ < ζτ .

To guide reinforcement learning, the pain signal
pτ (n) is used at training iteration n to derive reward
rτ (n) of task τ using

rτ (n) = στH1(|pτ (n− 1)| − |pτ (n)|) (2)

where pτ (n − 1) is the pain signal at iteration n − 1,
στ is the reward factor and H1(c) is a Heaviside step
function defined as

H1(c) =

{

1 c > 0
0 c ≤ 0

From (2), a reward of στ is given for reducing the
pain signal pτ of task τ . In addition, coordination
criterion 1 can be satisfied by using the pain signal
pτ to coordinate MARL.

B. The Coordination Strategy
We propose a novel coordination strategy to satisfy

the coordination criteria defined in Section III-B. Using
this strategy, tasks with larger pain signal have priority
over tasks with smaller pain signal. Unlike [16], with
the use of pain signal, our coordination strategy does
not consider the actions of the other agents.

Using the winner-take-all (WTA) approach, the win-
ning task τ∗ is a permissible task. The tasks are
organized into |Γ| categories of sub-tasks where Γ is
the set of main tasks. From a set of sub-tasks Γq of
main task q, a winning sub-task τ∗q is identified using
the Subtask Competition process defined below.

τ∗q = arg max
τi∈Γq

H2(ϕτi)pτi (3)

where Γq ∈ Γ and H2(c) is a Heaviside step function
defined as below

H2(c) =

{

1 c ≡ true
0 c ≡ false
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and the conditional qualifier ϕτi is evaluated using
propositional rule set Rτi ≡ {rτi1 , . . . , rτi|Rτi

|}. Specif-
ically, ϕτi is true iff ∀m ∈ {1, |Rτi|}(rτim). The term
H2(ϕτq ) is included to satisfy coordination criterion 2.

Propositional rule r
τq
m for m ∈ {1, . . . , |Rτq |} is

defined as
Rule rτqm : IF Xr

τq
m THEN Yr

τq
m ( REWARD Rr

τq
m )

where Xr
τq
m is the antecedent set, Yr

τq
m is the consequent

set and Rr
τq
m ∈ [0, 1] is the Q-value estimated using (5).

At training iteration n, sub-task τq is permissible
when H2(ϕτq ) = 1.0. There can be no winning sub-
task τ∗q when ∀τqH2(ϕτq ) = 0 or when ∀τqpτq = 0.

From (3), we see that MARL is not coordinated using
just the pain signal. The conditions for the tasks to
perform are also checked using knowledge on the task
dependencies which is specified as Propositional rule
r
τq
m .

Self-Organizing Property: There is a non-zero prob-
ability where pτ1 = pτ2 and H2(ϕτ1) = H2(ϕτ2) = 1.
In such a circumstance, it is sufficient to randomly
decide on either task τ1 or task τ2. This is because by
performing either of the tasks, the circumstance where
pτ1 = pτ2 shall cease to exist.

After selecting a winning sub-task τ∗q for main task
q, a winning main task q∗ ∈ Q is identified using the
Main Task Competition process defined below.

q∗ = max
q∈Γ

pτ∗
q

(4)

where pτ∗
q

is the pain signal of winning sub-task τ∗q
of main task q. Using (3) and (4), we distinguish our
proposed approach from those surveyed in [16] by not
having any centralized coordination policy.

C. Stochastic Game with multiple stages

Like [15], the stochastic game is partitioned into
multiple stages (MS) to focus the performance of spe-
cific tasks. For τ ∈ Γ, attainment of task goal ζτ ,
i.e., γτ = ζτ is equivalent to attaining a stage of the
stochastic gameplay. We define a stage as below.

Definition 5 (Stage): A stage is defined as a segment of
the stochastic game marked by the need to satisfy a specific
set of task goals.

Specifically, we propose to attain Stage e using a set
of task goals Ge where Ge = {ζeτ} for τ ∈ Γ and e ∈ E
for E is the set of all stages of the stochastic game.

Fig. 3. Forward and Backward Transition of the stages

Illustrated in Figure 3, a forward transition e → f
from stage e to stage f where e < f (semantically) is
made when

e → f when ∀τ ∈ Γ(γτ ≥ ζeτ )

where γτ is the current reading of task τ and ζeτ is the
goal of task τ based on the active task goal set Ge.

A backward transition f → e from stage f to stage
e is made when

f → e when ∃τ ∈ Γ(γτ < ζeτ )
By segmenting the stochastic game into multiple

stages, multiple sets of task goals are used to phase
in the task goals during the stochastic game. The goal
tasks are used to derive the pain signals.

V. THE SELF-ORGANIZING NEURAL NETWORK

A self-organizing neural network [23] that derives
from FALCON [11] is used for Task τ . Capable of
learning incrementally in real time, FALCON is a
function approximator that generalizes on the vector
patterns without compromising on its prediction accu-
racy. Action policies are discovered through real-time
interactions with the environment using reinforcement
learning [26]. The value of applying the action choices
on the states is estimated using Q-Learning.

Fig. 4. The FALCON Architecture.

A. Structure and Operating Modes
Structurally, the FALCON network [11] has a two-

layer architecture (see Figure 4), comprising of an
input/output (IO) layer and a knowledge layer. The IO
layer has a sensory field F c11 for accepting state vector
S, an action field F c21 for accepting action vector A,
and a reward field F c31 for accepting reward vector R.
The category field F c2 in the knowledge layer stores
the committed and uncommitted cognitive nodes. Each
cognitive node j has three fields of template weights
wck for k = {1, 2, 3}.

FALCON has three modes of operation - INSERT,
PERFORM and LEARN. The Fusion ART algorithm
outlined in Algorithm 1 is used to find a winning
cognitive node J in these three modes of operation.
FALCON operates in the PERFORM mode to select
action choices for the states. It operates in the LEARN
mode to learn the effect of these action choices on
the states. Though not used in this work, FALCON
can operate in the INSERT mode to assimilate domain
knowledge into itself [12].

B. Incorporating Temporal Difference Method
Using Algorithm 2, a temporal difference (TD)

method is used to estimate the Q-value of state-action
pairs Q(s, a) using feedback from the environment on
the performed action a selected using Algorithm 1 [26].
At state s′, this estimated Q-value is used as the
teaching signal to learn the association of state s and
the performed action a.
Iterative Value Estimation: The temporal difference
method incorporated into FALCON is known as the
Bounded Q-Learning [26]. It estimates the value of
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Algorithm 1 The Fusion ART algorithm
Require: Activity vectors xck and all weights vector wck

j

1: for each F c
2 node j do

2: Code Activation: Derive choice function T c
j using

T c
j =

3∑

k=1

γck |xck ∧ wck
j |

αck + |wck
j |

where the fuzzy AND operation (p ∧ q)i ≡ min(pi, qi), the norm
‖.‖ is defined by |p| ≡ ∑

i pi for vectors p and q, αck ∈ [0, 1] is
the choice parameters, γck ∈ [0, 1] is the contribution parameters and
k = {1, 2, 3}

3: end for
4: repeat
5: Code Competition: Index of winning cognitive node J is found using

J = argmax
j

{T c
j : for all F c

2 node j}

6: Template Matching: Check whether the match functions mck
J of

cognitive node J meet the vigilance criterion

mck
J =

‖xck ∧ wck
J ‖

|xck| ≥ ρck

where ρck ∈ [0, 1] for k = {1, 2, 3} are the vigilance parameters
7: if vigilance criterion is satisfied then
8: Resonance State is attained
9: else

10: Match Tracking: Modify state vigilance ρc1 using

ρc1 = min{mck
J + ψ, 1.0}

where ψ is a very small step increment to match function mck
J

11: Reset: mck
J = 0.0

12: end if
13: until Resonance State is attained
14: if operating in LEARN/INSERT mode then
15: Template Learning: modify weight vector wck

J using

w
ck(new)
J = (1 − βck)w

ck(old)
J + βck(xck ∧ w

ck(old)
J )

where βck ∈ [0, 1] is the learning rate
16: else if operating in PERFORM mode then
17: Activity Readout: Read out the action vector A of cognitive node J

using
xc2(new) = xc2(old) ∧ wc2

J

Decode xc2(new) to derive recommended action choice a
18: end if

applying action choice a to state s iteratively. The
updated Q-value function Q(new)(s, a) is estimated
using

Q(new)(s, a) = Q(s, a) + αTDerr(1 −Q(s, a)), (5)

where α ∈ [0, 1] is the learning parameter and TDerr

is the temporal error term which is derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a),

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the
next state s′ and r is the immediate reward value derived
using (2)

C. Knowledge Pruning

Ineffective learned knowledge is pruned to facilitate
more efficient operation. A confidence-based pruning
strategy similar to [11] is adapted to prune the cognitive
nodes that encode the ineffective knowledge.

Algorithm 2 TD-FALCON algorithm
1: Initialize FALCON
2: Sense the environment and formulate a state representation s
3: Choose to explore at a probability of ε
4: if Exploration then
5: Use Exploration Strategy [13] to select an action choice a
6: else if Exploitation then
7: Use Direct Code Access [14] to select an action choice from existing

knowledge
8: end if
9: Use action choice a on state s for state s′

10: Evaluate effect of action choice a to derive a reward r from the environ-
ment

11: Estimate the Q-value function Q(s, a) following a temporal difference
formula given by ΔQ(s, a) = αTDerr

12: Present S, A and R for Learning
13: Update the current state s = s′
14: Repeat from Step 2 until s is a terminal state

Specifically, cognitive node j has a confidence level
cj where cj ∈ [0.0, 1.0]and an age σj where σj ∈
[0,R]. A newly committed cognitive node j has an
initial confidence level cj(0) and an initial age σj(0).
The confidence level cJ of winning cognitive node J is
reinforced using

cnewJ = coldJ + η(1 − coldJ ),

where η is the reinforcement rate of the confidence
level. After each training iteration, the age σj of cog-
nitive node j is incremented and its confidence level cj
is decayed using

cnewj = coldj − ζcoldj

where ζ is the decay rate of the confidence level.
The age attribute σj of cognitive node j prevents pre-
mature pruning. Cognitive node j is pruned only when
cj < crec where crec is the recommended confidence
threshold and σj ≥ σold where σold is the old age
threshold.

VI. THE SIMULATION PLATFORM

The stochastic game is illustrated using a PC-based
game known as Starcraft Broodwar (SCBW). This
SCBW game has a very rich gameplay and contains
a rich body of knowledge and a very rich gameplay.
Numerous works [4][5][6][15][7] are known using the
SCBW. Like these works, we illustrate our proposed
coordination strategy for MARL by implementing a
virtual player of the SCBW game. Since year 2009,
AI competitions are organized annually at conferences
such as CIG and AIIDE.

Fig. 5. A snapshot of the SCBW gameplay.

4233



There are the macro and the micro gameplay. At the
macro gameplay, tasks such as the resource gathering,
building construction, unit production and advancement
of technology are performed. The micro gameplay
involves the tasks of commanding the units to perform
reconnaissance, defend own bases and own units, attack
enemy units and to raze the enemy bases.

The game is won by eliminating the opponents. There
is a selection of three races - terran, zerg or protoss
- for the player. The race can either be chosen or
randomly assigned to the players. Illustrated in Figure 5,
the players of the SCBW game are controlled using
the built-in AI, an implementation of our proposed
approach and the other benchmark approaches.

VII. PERFORMANCE EVALUATION

Experiments were conducted to identify an effective
approach to coordinate MARL. We denote our Pain-
based Coordination (PC) Strategy in multi-stage (MS)
stochastic game using PC-MS. The PC-SS approach
uses the PC strategy in single-stage (SS) stochastic
game, a Random Response (RR) approach, an unco-
ordinated MARL (UC) approach and an EK approach
similar to [10] are included for comparison.

The experiments based on these approaches share a
number of common settings. Reinforcement learning is
conducted using a variant of FALCON [23] with the
parameters seen in Table I. Each experiment was con-
ducted for 100 training iterations. Each training iteration
lasts for 10, 000 frames. A total of 200 decisions are
made at 50 frames interval. The experimental results are
averaged using 20 runs of the same experiment. Subse-
quently, these experimental results are further averaged
using a sliding window of 10 training iterations.

TABLE I
PARAMETERS OF FALCON AND TD LEARNING

FALCON for k = {1, 2, 3}
Choice Parameters αck {0.1, 0.1, 0.1}
Learning Rates βck {1.0, 1.0, 1.0}
Contribution Parameters γck {0.33, 0.33, 0.33}
Vigilance ρck {0.95, 0.0/1.0, ρc3}
ρc3 Adaptation Rate ν 0.95
Confidence (cj(0), ζ, η) 0.5, 0.0005, 0.5
Pruning - Age threshold σold 50 iterations
Pruning - Confidence Level crec 0.65
TD-Learning
Learning Rate α 0.5
Discount Factor γ 0.1
Initial Q-Value 0.5

A. Evaluation Method

An Asset Scoring Methodology (ASM) is proposed
to provide an aggregated view of the goal attainment
status of the tasks. Given that the tasks are organized
hierarchically, the asset scores are first derived for the
sub-tasks. The asset scores of the sub-tasks are then
aggregated to give an asset score of the main task.

An asset score μτ based on the pain signal pτ
described in Section IV-A is derived for sub-task τ
using

μτ = 1.0−min

{ |ζτ − γτ |
ζτ

, 1.0

}

(6)

where ζτ is the target level and γτ is the current reading
of task τ .

For when γτ < 2ζτ , the asset score μτ is guaranteed
to be 0.0 ≤ μτ ≤ 1.0. The asset score μτ saturates
at 0.0 when γτ ≥ 2ζτ . Further differentiation of the
performance of task τ is not necessary when γτ ≥ 2ζτ .

Each main task q has sub-task τi where i ∈
{1, . . . , |Γq|} and Γq is the set of sub-tasks for main
task q. Therefore, from (6), the asset score μq of main
task q is derived using

μq =
1

∑|Γq|
i ωτi

|Γq|
∑

i

ωτiμτi (7)

where ωτ is an empirical value that indicates the relative
significance of sub-task τ1 over sub-task τ2 where
{τ1, τ2} ∈ Γq and Γq is the set of sub-tasks for main
task q.
From (7), the final asset score ϕ is then derived using

ϕ =
1

∑|Γ|
q ωq

|Γ|
∑

q

ωqμq

where Γ is the set of main tasks. In this work, the asset
score sϕ is the main task performance indicator.

B. The Results

The performance of the coordination strategies is
illustrated using the Asset Scores, Active Stages, Node
Population and Decision-Making (DM) Time. The
weights of the tasks and task goals from three stages
- opening, post-opening and mid-game - are presented
in Table II. The task goals of the PC-MS approach are
based on the active stage of the stochastic game while
those of the other approaches are based on a single stage
stochastic game.

TABLE II
WEIGHTS AND GOALS OF THE TASKS

Main Task q Sub-Task p Target ζτ Weight ωτ

Resource Mine Mineral 250, 250, 500 0.95
Management Gather Gas 100, 100, 200 0.75
ωrsc = 1.0 Increase Supply 26, 26, 48 0.80

Unit Produce SCV 12, 12, 16 0.5
Production Produce Marine 0, 6, 18 0.75
ωunit = 1.0 Produce FireBat 0, 2, 6 0.75

Produce Medic 0, 2, 6 0.75
Building Refinery 1, 1, 1 0.5

Construction Supply Depot 2, 2, 6 0.65
ωbldg = 1.0 Barrack 0, 2, 2 0.85

Bunker 0, 2, 6 0.75
Academy 0, 1, 1 0.65

Engineering Bay 0, 0, 1 0.65

Task Performance: From Figure 6 Top Plot, the
asset scores illustrate the effectiveness of the different
approaches. Similar outcome is observed for all ap-
proaches up to the 40th decision. The PC-SS approach
has the highest asset score up to the 140th decision
where it is overtaken by the EK approach. Our proposed
PC-MS approach outperforms the PC-SS approach at
around the 170th decision and the EK approach at
around the 180th decision. In comparison, the UC
approach is observed with similar performance to the
RR approach.
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Fig. 6. Comparison of the aggregated asset scores and active stages.

From Figure 6 Bottom Plot, the PC-MS approach is
observed forward transitioning to more advanced stage
at around the 100th. According Figure 6 Top Plot, this
is also where the asset scores of the PC-MS approach
begin to improve at increasing rate. In contrast, all the
other approaches begin with the targeted stage from the
onset. However, the asset scores of these approaches
are observed lower than the PC-MS approach after 200
decisions. Only the EK approach is observed with asset
scores close to the PC-MS approach after 200 decisions.
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Fig. 7. Comparison of the node population and decision-making
time.

Space Complexity: In the MARL framework, a
FALCON is used to learn the performance of a task.
From Figure 1, this means 16 FALCONs are used for
the 16 tasks performed during the gameplay. Plots of
the node population in Figure 7 Top Plot provide an
aggregated view of the number of cognitive nodes of
the 16 FALCONs. Zero node population is observed for
the RR approach because it does not use any FALCON
for the tasks. Therefore, with the exception of the RR
approach, the pruning technique presented in Section V-
C is used in all FALCON-based approaches.

From Figure 7 Top Plot, the PC-MS and the PC-
SS approaches are observed with similar number of
cognitive nodes because both approaches coordinate
MARL using the same technique. However, the PC-
MS approach uses multiple stages to achieve these final
goals while the PC-SS approach directly aim for these
final goals from the onset. Therefore, such observations
imply the use of multiple stages have no impact on

the node population. However, significant difference is
observed in the asset scores of these two configurations
in Figure 6 Top Plot.

Also from Figure 7, the EK approach has larger node
population than the PC-MS and the PC-SS approaches.
Such observations indicate the use of expert knowledge
to coordinate MARL is less efficient than our proposed
coordination strategy. In addition, the UC approach is
observed with the largest node population while the RR
approach has zero node population.
Time Complexity: Plots of decision-making (DM)
time in Figure 7 Bottom Plot capture the dynamic
aspect, i.e., the activities of the implemented models
while being correlated to the node population. The DM
time is the average amount of time taken to select action
choices for the tasks. The tasks in the PC-MS and PS-
SS approaches are coordinated using the proposed ML-
based technique, expert knowledge is used in the EK
approach to coordinate MARL while the UC and RR
approaches execute the tasks in sequential order.

From Figure 7 Bottom Plot, the RR approach is
observed with the lowest decision-making time because
no FALCON is used. In contrast, the UC approach
has an average decision-making time of around 450μs.
The DM time of the PC-MS and PC-SS approaches
fluctuates between 23μs and 28μs. This is significantly
less than DM time of the EK approach fluctuates
between 62μs and 68μs.
Self-Organizing Property: In contrast to reactive plan-
ning [5], the order of execution of the tasks are de-
termined in real time. Task dependencies with other
tasks and the competition for resources are overcome
using the proposed coordination strategy seen in Sec-
tion IV. Using this approach, tasks become permissible
for execution when their pre-requisites are satisfied by
other tasks. Priority to the shared resources is allocated
to the permissible tasks with the less satisfied goals.
Over time, the goals of the tasks are satisfied in a self-
organizing manner.

The efficacy of our approach can be observed from
Figure 8 Top Plot where the number of combat units
produced is illustrated. Four agents perform four tasks
for producing each type of unit. By just specifying the
task goals as seen in Table II, the PC-MS approach
is seen close to satisfying the task goals of the Unit
Production task at the Post-Opening (1) stage.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

N
um

be
r 

of
 U

ni
ts

 

 

PC−MS:SCV−Population
PC−MS:Marine−Population
PC−MS:FireBat−Population
PC−MS:Medic−Population

0 20 40 60 80 100 120 140 160 180
0

0.5

1

Decision

A
ct

iv
e 

S
ta

ge

Fig. 8. Production of combat units in correlation to the active stages

4235



VIII. CONCLUSION

Inspired by [24], we propose a novel coordination
strategy that integrates motivated learning (ML) and
self-orgnaizing neural network to coordinate multi-
agent reinforcement learning (MARL) in stochastic
game with issues of resource competition and task
dependency. The stochastic game is partitioned into
multiple stages where each stage is characterized by a
specific set of task goals. The pain signals are derived
using the task goals of the active stage. Resources are
allocated to the winning task for satisfying its goal. Over
time, the task goals are satisfied in a coordinated and
self-organizing manner.

We compare our proposed coordination strategy for
MARL with four other approaches. The Random Re-
sponse approach is included as a baseline. The effect
of coordinating MARL is highlighted using the un-
coordinated approach. The effect of staging the task
goals is highlighted using a single stage version of the
task goals. Considering expert-guided coordination [10]
as an accurate approximation of the ground truth, we
had included such an approach for comparison. The
performance of these approaches is illustrated using
asset scores, node population and decision-making time.
The resultant self-organizing property is also illustrated
using the unit production task. Results from experiments
conducted using a computer game show the Multi-
Stage approach has the highest asset score while having
similar node population than the other approaches.

In this work, the task goals for the stages are pre-
determined. These task goals are used without any
adaptation to the situations. Such an approach is rigid
and may lead to sub-optimal outcome for the entire
gameplay. Currently, only experienced human gamers
can adapt the task goals optimally in real time. There-
fore, a computational model with similar capability is
seen as natural progression of this work. In addition,
we are working towards an integrated solution capable
of winning the SCBW game against the built-in AI and
the human players.
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