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Abstract— Vehicle side slip angle is a critical variable used in 

car safety systems like Electronic Stability Control. Due to the 

practical difficulty in direct measurement of side slip angle, 

accurate estimation of vehicle side slip angle using available 

signals is becoming important. This paper presents a novel 

algorithm for estimating the side slip angle of a vehicle in real 

time using inertial motion sensors. The algorithm uses a J48 

decision tree classifier to assist the Extended Kalman Filter 

(EKF) predictions of the vehicle side slip angle. The decision 

tree classifies the inertial data into classes based on the condition 

the slip angle is expected to be in. Using the class information 

asserted by the classifier, the error covariance parameter of the 

EKF is adjusted to compensate for changes in disturbances and 

nonlinearities. The results show that the decision tree assisted 

EKF technique presented in this paper is capable of predicting 

the slip angle with sound accuracy using inertial motion data.  

I. INTRODUCTION 

HE estimation of the vehicle side slip angle is an active 

area of research in the field of vehicle dynamics and 

control.  The slip angle parameter is a key parameter for 

the safety performance of  Electronic Stability Control (ESC) 

systems [1].  

In the literature, three approaches are mainly used to 

estimate the side slip angle. The first method is the integration 

of side slip rate, which is available through the side slip rate 

sensor [2]. However, it is noted that the estimation 

performance is affected by the error from sensors biases, road 

grade and bank angle. The second approach that designs the 

observer to estimate the side slip angle needs accurate 

information of vehicle velocity, road friction coefficient and 

some tire parameters, which are hard to be directly measured 

[3-5]. For the third method, with the help of Global 

Positioning System (GPS) measurements, the side slip angle 

can be estimated. Ryu et al., used the combination of GPS and 

Inertial Navigation System (INS) to accurately estimate the 

side slip angle [6], but the GPS signal is not reliable due to the 

disturbance of satellite signals. The slip angle has been 

predicted in past research with the use of wheel force 

transducers [7], optical encoders [7],  integrating Inertial 

Motion Sensors (IMU) with single antennae GPS [8, 9], and a 

single IMU [10, 11].  

In general, if the vehicle state is accurately estimated, 

observers can be designed to estimate the side slip angle for 

the second method. The Kalman filter method has been 

extensively used to estimate the vehicle state without the 
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requirement of tire model and road friction information. Ray 

conducted a series of studies on the vehicle state estimation 

and tire-road friction coefficient estimation [12-14]. Firstly, 

Ray developed a 9 degree-of-freedom (DOF) vehicle 

dynamics model and an analytic tire force model to simulate 

the real vehicle motion, and used a 5 DOF vehicle model to 

develop the extended Kalman filter (EKF) vehicle state 

estimator [12]. Then based on the developed EKF estimator 

in [12], the brake controller using the estimated longitudinal 

slip ratio was proposed [13]. Ray also suggested the extended 

Kalman-Bucy filtering (EKBF) and Bayesian hypothesis 

selection method to estimate the vehicle motion and friction 

coefficient [14]. 

Currently most practical means of measuring the side slip 

angle are the use of differential GPS systems which are not 

economical for commercial vehicles. In this paper a novel 

estimation algorithm is presented that has the potential to be 

incorporated into commercial vehicles using low cost 

sensors.  

The problem of detecting the different conditions of slip 

motion can be solved using classifiers constructed using 

supervised learning techniques. The C4.5 algorithm is a 

supervised machine learning algorithm that can induce a top 

down decision tree that will make decisions based on patterns 

that occur in the data [15]. The advantage of the C4.5 

algorithm is its high speed to error rate ratio [16]. An open 

source Java version of C4.5 is available known as the J48 

algorithm  [17]. In this study, Ray’s EKF method is utilised 

along with a J48 decision tree to estimate the vehicle 

longitudinal velocity and lateral velocity, and the vehicle side 

slip angle can be estimated accordingly. The estimated side 

slip angle is compared with the actual value which is 

measured by a differential GPS and the estimation 

performance is verified. 

This paper is organized as follows, Section II. gives a 

description of the vehicle dynamics and the EKF that is 

designed, Section III. provides a description on the decision 
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tree classifier used to assist the EKF estimation, Section IV. 

describes the experimental procedure, Section V presents the 

results and discussion and the conclusion are given in section 

VI. 

II. VEHICLE MODEL AND EKF 

The objective of this project is to produce a novel 

estimation algorithm that can estimate the side slip angle of 

an automotive vehicle only using measurements from inertial 

motion sensors mounted to the car body and the steering 

wheel, that is only angular velocity and acceleration are 

measured. Using supervised learning, a classifier is trained 

with a training set of slip angle data obtained from a 

differential GPS. The classifier assists the EKF by making a 

prediction on what the process noise error is on the plant 

model and the noise error is on the sensors. Figure 1 

illustrates a simplified model of a vehicle where   is the 

wheel angle,     is the yaw rate. The slip angle is defined in 

Eq. 13 as the angle between the lateral and longitudinal 

velocities [18]. The simplified two wheel vehicle model is 

given in figure 1. 

The EKF method can estimate vehicle states, like 

longitudinal velocity, lateral velocity and side slip angle. 

Based on Ray’s research, the five degrees of freedom vehicle 

dynamics model for the EKF method, which consider the 

vehicle longitudinal motion, lateral motion, yaw motion and 

wheel dynamics, is derived as follows [2]: 
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Where    and    are the traction torques or brake torques 

applied on front and rear wheel, respectively.     and     are 

front wheel and rear wheel longitudinal tire forces.     and 

    are front wheel and rear wheel lateral tire forces.    is the 

front wheel steering angle.   denotes the vehicle mass and 

   shows the vehicle longitudinal velocity.    and   show the 

vehicle lateral velocity and yaw rate.    and    are the front 

wheel and rear wheel angular velocities.    denotes the wheel 

moment of inertia and    is the wheel radius.    is the vehicle 

moment of inertial about yaw axis. According to the vehicle 

dynamics model (1), the vehicle state estimator of EKF 

method is defined as: 
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Equation (2) can be further written in the following form: 

               (3) 

Where:   
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(5) 

 

 

The discrete-time EKF is implemented by a forward Euler 

approximation as: 

                      (4) 

 

where   is the sampling time.  

The system input is: 

            (5) 

 

The measured feedback value   is defined as: 

            (6) 

Where    and    are the vehicle longitudinal acceleration 

and lateral acceleration. The system output   is similar to   to 

adjust the estimation performance: 
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The system output is set same to the measured feedback 

value to adjust the estimation performance. After choosing 

the initial value for   
  and   

 , the EKF recursive algorithm 

can be implemented as shown in Figure 2 [19]. The left block 

is the time update process and the state vector can be updated 

by Equation (2) in discrete time. The right block is the 

measurement update process, which means that the state 

vector will be updated according to the error between the 

measured value and the estimated value. 

   and    are the Jacobian matrices of partial derivative of 

         and          with respect to  . 

After choosing the initial value for vehicle state   
  and 

error covariance   
 , the EKF recursive algorithm can be 

implemented [19]. First the Kalman Gain    can be 

computed in time step  : 

      
   

      
   

       (8) 

Where    relates the vehicle states to the measurement value 

and   represents the sensor error covariance matrix. Then 

vehicle state can be updated according to   : 

        
                             (9) 

And the error covariance    can also be updated: 

              
  (10) 

Finally, the vehicle state and the error covariance can be 

updated again as the priori estimate for the next time step: 

     
                            (11) 

     
         

    (12) 

Where   is the process error covariance matrix. 

The side slip angle   can be determined by the estimated 

longitudinal velocity     and lateral velocity     at the centre 

of gravity in the above EKF [20]: 

 
         

   

   
  

(13) 

III. DECISION TREE CLASSIFIER 

The objective of the classifier is to be able to identify what 

category the rate of change in the slip angle the vehicle is 

experiencing falls into. As the dynamics of the tire is 

nonlinear and for this research project are not directly 

measured, the decision tree classifier is speculated to be an 

effective method for adapting to changes in disturbances and 

nonlinearities of the vehicle system dynamics. The four 

categories of slip motions are defined as ‘low slip’, 

‘decreasing slip’, ‘increasing slip’ and ‘stationary point’. 

Each class indicates to the EKF the value of the process noise 

covariance and the sensor noise covariance. Figure 3 shows 

the training data and assigned classes used for the j48 

decision tree induction algorithm [17].  

0 5 10 15 20 25 30 35 40

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Training Data Class Selection

Time (Seconds)

S
li
p

 (
D

e
g

re
e

s
)

Low

Slip
Low

Slip

Stationary

Point

Decreasing

Slip

Increasing

Slip

Decreasing

Slip

0 5 10 15 20 25 30 35

-10

-5

0

5

10

15

20

25

30

Input Classifier Inertial Data

Time (Seconds)

A
n

g
le

 (
D

e
g

re
e

s
)

A
n

g
u

la
r 

V
e

lo
c

it
y

 (
D

e
g

re
e

s
/S

e
c

)

 

 

Body Yaw Rate

Front Wheels' Angle

Body Roll Angle

Fig. 2.  GPS training data class Selection. 

Fig. 3.  Inertial training data attributes. 

Fig. 4.  Decision tree features and output classes.  
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Figure 3 shows the input features for the classifier that is 

synchronised in time with the classes shown in Figure 2. 

These features include the Centre of Gravity (CoG) roll angle, 

GoG yaw rate and the angle of the front wheels.  The roll 

angle and yaw rate data are obtained directly from the IMU 

located at the GoG point of the vehicle, the front wheels’ 

angle is calculated based on the orientation of the steering 

wheel. Although the roll angle measured by the IMU is not 

used in the vehicle model of the EKF, it is used in classifying 

the slip as the force on each tire is dependent on the roll angle.  

Table 1  

Summary of the decision tree properties 

 Property J48 Tree  

 Training Accuracy 99.69%  

 Testing Accuracy 89.78%  

 Leaves  14  

 Tree Size 27  

The general pseudo code for the j48 decision tree training 

algorithm that is used in this paper is given in Table 2. In the 

case of this project the attributes are the features previously 

mentioned, the body roll angle, yaw rate and the steering 

angle. The decision tree algorithm is consisted of three main 

steps. The first and second step is to determine the attribute 

with the largest normalised information gain first node of the 

decision tree is selected to be the node where the class with 

the largest normalised information gain threshold range of the 

base case, which is the first node of the decision tree where a 

relational operator that separates the data into separate 

groups. The final step is to recurse on the split sub sets of 

training data and to add these as children decision nodes.  

The information gain that is calculated for each attribute in 

the C4.5 decision tree induction algorithm is given in eq. 16 

[15]. Where equation 14 gives the measure of the average 

information needed to identify a class in the given training set 

of data T, which includes all attributes. Equation 15 is a 

measure of the average information of a particular attribute 

sub set of training data.   denotes the particular class 

corresponding to a set of training data samples in the case of 

this project the classes are low slip, increasing slip, and so 

forth.    denotes a particular subset of training data for a 

single attribute. 

           
          

   
      

          

   
 

      
     

(14) 

           
    

   

 

   

          
(15) 

                      (16) 

Figure 4 shows the structure of the decision tree. Each 

circle represents a decision node which is a relational operator 

for a specific attribute where each branch represents the 

resultant case. Table 1 shows the performance of the decision 

tree.  

The method used to calculate the values of the process 

noise and sensor noise covariance matrices is shown in figure 

5. A genetic algorithm was used to calculate the R and Q 

values for each class of the decision tree using the GPS slip 

data as the reference point. The Mean Squared Error 

goodness of fit against the GPS training data is used as the 

fitness function. The trained decision tree was included 

within the EKF estimator. 

Table 2 General pseudo code for C4.5 algorithm [16]. 

 

Fig. 5.  Process of fine tuning the R and Q parameters 

IV. EXPERIMENT 

The experiment was conducted using a subcompact sedan 

class car, a 1986 Toyota Corolla shown in Figure 8.  

The inertial motion sensors that were used for this study are 

6DOF wireless MTw manufactured by Xsens [21]. Three 

inertial sensors are installed on the vehicle. Two are placed on 

(1) Check for base cases  
     For each attribute  
          Calculate the information gain   
          using eq. 10               
(2) Let ‘attribute_best’ be the attribute 
with the  highest normalised information 
gain  
      Create a decision node that splits 
      on ‘attribute_best’  
(3) Recurse on the sub-lists obtained by 
splitting on ‘attribute_best’ and add those 
nodes as children nodes 
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the steering wheel to obtain the steering angle of the vehicle 

as shown in Figure 7 although only one was used whereas the 

second IMU served as a backup. One IMU was installed on 

the vehicle centre of gravity to measure the longitudinal 

velocity, lateral velocity, yaw rate and roll angle. The 

measured longitudinal acceleration, lateral acceleration, 

steering wheel, and yaw rate are input into the EKF estimator 

to estimate the vehicle side slip angle at the CoG. The key 

technical specifications for the IMUs are shown in Table 3. 

Table 3  

Technical Specifications for the MTw IMU [21]. 

Parameter Value 

Sampling rate 75Hz 

Acceleration 

Dynamic Range 
         

Angular velocity 

Dynamic Range 
          

Dynamic Orientation 

Accuracy (RMS) 
   

Static Orientation 

Accuracy  
   

 

The roundabout test was used for this study which consisted 

of performing clockwise circuits around a roundabout 

multiple times to obtain the training data. The velocity of the 

vehicle is variable to suit the driving conditions, that is a 

value between 20 to 50 Km/h. The vehicle parameters that 

were used for the EKF are given in Table 4.  

 Table 4  

Vehicle Parameters 
 

Parameter Description Value 

  Vehicle mass 930 kg 

   Moment of 

inertial around z 

axle 

1162.5 kg.m
2
 

   Distance of 

C.G. from the 

front axle 

0.972 m 

   Distance of 

C.G. from the 

rear axle 

1.458 m 

   Wheel radius 0.35 m 

   Wheel moment 

of inertial 

2.1 kg. m
2
 

To validate the proposed estimator, the actual slip angle is 

measured by a Differential GPS. The purpose of the 

differential GPS is to provide an accurate reference of slip 

angle and yaw rate data.  The accuracy specifications of the 

GPS are presented in Table 6 [22]. The GPS antenna was 

mounted to the roof of the test vehicle as in Figure 7. 

V. RESULTS AND DISCUSSION 

Figure 10 shows the estimated side slip angle using the 

testing data, which is compared with the actual value 

measured by GPS. In this experiment, vehicle performed 

three successive clockwise U-turns around the same 

roundabout to log the training and testing data. It can be 

observed that for small slip angles in the regions less than 0.5 

degrees, the estimated values have a larger relative error. 

Typical commercial ESC systems do not intervene with the 

steering control until the slip angle is at an unsafe level which 

is greater than 2  [11]. 

Figure 9 shows the map plot of the path the vehicle around 

the roundabout corresponding to the slip angle plotted in 

Figure 10. The maximum slip angle occurs at around 11 to 13 

seconds which is in the second quadrant of the roundabout in 

Figure 9. 

 
Fig. 6.  Steering wheel IMU layout. 

 
Fig. 7.  Differential GPS antennae layout. 

Table 6  

Technical Specifications for the Vbox GPS [22] 

Parameter Value 

Sampling Rate 20Hz 

Velocity Accuracy 0.1 Km/h 

Velocity Resolution 0.01Km/h 
 

 

 

Table 5 
 Performance Summary 

roundabout test   

 

Goodness of fit MSE 

Peak 

Error  

 

NMSE NRMSE 

 

( ) 

EKF All 

Data  -52.03% -131.1% 1.5 1.12 

j48-EKF 

Train Data 79.65% 54.89% 5.1E-05 0.0671 

j48-EKF 

Test Data 66.26% 41.92% 6.7E-05 0.1666 
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Fig. 9.  Driving path map, time markers synchronised to Fig.10. 

 

Table 5 gives a summary of the performance of the estimator. 

For the three turns at the round about the goodness of fit was 

calculated using the Normalised Mean Squared Error (NMSE) 

and the Normalised Root Mean Square Error (NRMS). The 

peak error for is the error in the maximum slip calculation at the 

second quadrant of the roundabout, this value was 0.166 

degrees for the testing data. The training data has a much lower 

error due to the error covariance being directly optimised for 

this set of data. Figure 11 shows a comparison between the 

predictions produced by the standard EKF and the decision tree 

EKF. The standard EKF used constant noise covariance 

matrices and an identical vehicle model; it is shown to have a 

lower level of prediction accuracy. This experiment presented 

in this paper does not take into consideration tests on different 

road surface materials, driving directions or driving  at higher 

speed, which could be a limitation of the experimental 

procedure presented in this paper.  

 

Fig. 10.  Estimated and measured slip angle. 

 

VI. CONCLUSIONS 

The results of this study show that by incorporating a J48 

decision tree into an EKF provides accurate estimations of the 

vehicle side slip angle in real time using two IMUs, without 

the use of GPS equipment. There is further potential to 

improve the classifier to identify the error covariance more 

accurately by making improvements to the classifier through 

the selection of the classes and features.   
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