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Abstract—In this paper, we give a stability analysis of multi-
agent system with a local pinning control algorithm for very
general network topologies. These include determinately directed
time varying topologies, the stochastically switching topologies.
The pinned vertex set also varies with time, including determinis-
tic and stochastic time-variations. We present sufficient conditions
to guarantee the convergence of the pinning process: for the
deterministic case, a time-varying pinned vertex set can stabilize
the network of multi-agents with time-varying topologies if any
vertex in the networks can be accessed by directed paths by
at least one vertex in the pinned vertex set across all time
intervals that are pre-defined; Similar results are also given
for the stochastically switching case. As applications, numerical
simulations based on the random waypoint model are given to
verify our theoretical results.

I. INTRODUCTION

A pinning control algorithm, which was first proposed to
control the multi-mode laser systems [1], [2], is a viable
strategy to drive networks of coupled oscillators onto some
desired common reference trajectory. The general idea behind
pinning control is to apply some local feedback controllers
only to a fraction of network vertexes and the rest of vertexes
can be propagated through the coupling among vertexes.

More close to the interest of this paper, in [4]-[12], the au-
thors have stabilized a complex network to a homogeneous tra-
jectory of the uncoupled system state. In these papers, authors
considered two different pinning strategies: randomly pinning
and selective pinning. [4], [5] concluded that according to the
detailed complex network topology, selective pinning based
on the connectivity degrees has better performance than totally
randomly pinning. [9] indicated that the bounds of the network
stabilizability are affected by not only the degrees of the
pinned vertices but also the distance between the pinned vertex
set and unpinned vertex set. More recently, the Lyapunov
stability theory has been proposed to analyze the pinning
controllability and the network stability (controllability) is
converted to measuring the negative definiteness of one simple
matrix characterizing the network topology. Hence, another
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important aspect of constructing pinning strategy is connected
to the topology of the network.

All aforementioned papers concern the complex dynamical
system coupled via a time-invariant communication network.
However, networks with time-varying topologies are con-
sidered to be more momentous. In [13]-[15], the pinning
control strategies for networks with time varying topologies
were addressed. The time-varying interaction network model
based on mobile agents was investigated in [13], in which
two pinning strategies: random selection that is static with
time and stochastic selection that changes with time, are
compared and concluded that the latter strategy performs better
in some scenarios. [15] studied the pinning synchronization
of a directed network with Markovian jump and nonlinear
perturbations, and detailed pinning schemes were given based
on the Lyapunov theory and the structure of the network.

A general stability analysis of pinning control a complex
network with directed weighted time-varying graph topology
is given in this paper. The selection of the pinning vertexes
changes with time, too. By analyzing the structure of the
network, the pinned set is strategically chosen to guarantee
convergence of the network.

In addition, [16] studied the consensus problem in networks
of multiagents with switching topologies modeled as adapted
stochastic processes and proved that if there exist T > 0 and
δ > 0 such that the conditional expectation of the union of
the δ-graph topologies across each T -length time interval has
spanning trees, then the system reaches consensus. Further-
more, in [17], authors extended the results in [16] to networks
with delays. These works inspire us to study the stability
of pinning strategies in networks with general stochastically
switching topologies, namely, induced by adapted stochastic
processes, which include independent switching, Markovian
jumping and hidden Markov switching as special cases.

This paper is organized as follows. In Section II, we present
some definitions of graphs and give some notations required in
this paper. In Section III, we investigate the pinning strategies
of time varying complex networks and present the stability
criteria. The dynamics of the pinning strategies of networks
with switching topologies, which are modeled as adapted
processes, are studied in section IV. An application is given
in Section V to verify the theoretical results. We conclude this
paper in Section VI.

II. PRELIMINARY

For a matrix L, lij stands for the element of L on the ith
row and jth column. L� denotes the transpose of L and Ls =
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(L + L�)/2 denotes the symmetry part of a square matrix
L. Let E and O denote the identity matrix and zero matrix
with proper dimensions, 1 and 0 denote the column vector
with each element being 1 and 0 respectively. Diag(L) is a
diagonal matrix that has the same entry as L on the diagonal.
For two matrices A = [aij ] and B = [bij ], A ≥ (>)B if for
all i, j, aij ≥ (>)bij .

A directed graph G consists of a vertex set V(G) =
{v1, · · · , vn} and a directed edge set E(G) ⊆ V(G) × V(G),
i.e., an edge is an ordered pair of vertices in V(G). Ni denotes
the neighborhood of the vertex vi, i.e. Ni = {vj : (vi, vj) ∈
E(G)}. A (directed) path of length l from vertex vi to vj ,
denoted by (vr1 , vr2 , · · · , vrl+1

), is a sequence of l+1 distinct
vertices vr1 , · · · , vrl+1

with vr1 = vi and vrl+1
= vj such that

(vrk , vrk+1
) ∈ E(G). The graph G contains a spanning tree if

there exist a vertex vi and paths from vi to any other vertices,
and vi is called the root. If for any two vertices vi, vj , there
exists a path from vi to vj , then the graph is called strongly
connected. A graph G1 is called a component of graph G, if
V(G1) ⊆ V(G), E(G1) ⊆ E(G).

An n×n matrix L is called a Metzler matrix with zero row
sum if lij ≥ 0 holds for all i �= j and

∑n
j=1 lij = 0 holds for

all i = 1, · · · , n. An n × n matrix L can be associated with
a directed graph G(L) = {V, E} in such a way that (vj , vi) ∈
E(G(L)) if and only if lij > 0. With this correspondence,
we also say L contains a spanning tree if G(L) contains a
spanning tree. Furthermore, for a given δ > 0, the δ-matrix of
L, denoted by Lδ , is defined as

[Lδ]ij =

{
1, lij ≥ δ;
0, lij < δ.

Definition 1: We say L(t) has a δ-spanning tree across
[t1, t2), if [

∫ t2
t1

L(s)ds]δ has a spanning tree.
The linearly coupled network with time-varying topology

can be described as:

ẋi(t) =
n∑

j=1

lij(t)[xj(t)− xi(t)], i = 1, · · · , n (1)

where xi(t) = [xi1, · · · , xin] ∈ R
n are the states variables of

agent i, lij(t) ≥ 0 is the connection weight from agent j to i,
and lii(t) = −∑n

j=1 lij(t).
In this paper, we study the pinning control problem of a

directed network described by (1) to a homogeneous stationary
state s.

For this purpose, we apply the pinning control strategy with
local feedback controllers to a vertex subset D(t) ⊆ V , the
pinned vertex set that can be time-varying, too. Consider the
following model:

ẋi(t) =
n∑

j=1

lij(t)[xj(t)−xi(t)]+di(t)[s−xi(t)], i = 1, · · · , n
(2)

where the nonnegative scale di(t) ≥ 0 is the feedback control
gain at the vertex i. The pinned vertex set D(t) is composed
of all vertices with di(t) > 0.

Denote (Ω,F , P ) a probability space with the state space
Ω, σ-algebra F , and probability measure P (·), and ω denotes
an element of Ω. For a set S ⊆ Ω, Sc denote the complement
of S, i.e. Sc = Ω\S. 1S denotes the indicator function of S,
i.e.,

1S =

{
1, ω ∈ S
0, ω /∈ S

EP (·) is the expectation with respect to P (sometimes abbrevi-
ated as E(·) if P is unambiguous). For any σ-algebra G ⊆ F ,
E(·|G)(P (·|G)) is the conditional expectation (conditional
probability) with respect to the sub-σ algebra G.

Definition 2: (Adapted process) Let Xk be a stochastic
process defined on the basic probability space (Ω,F , P ), and
let {Fk} be a filtration, i.e. a sequence of nondecreasing sub-
σ-algebra of F . If Xk is measurable with respect to Fk, then
the sequence {Xk,Fk} is called an adapted process.

III. STABILITY OF NETWORKS WITH DETERMINISTIC
TIME-VARYING TOPOLOGIES AND PINNED VERTEX SET

Let lii(t) = −∑n
j=1 lij(t), L(t) = [lij(t)]

n
i,j=1 ∈ R

n,n

and D(t) = [d1(t), · · · , dn(t)]�. It can be seen that L(t) is a
Metzler matrix with zero row sum for any time t. In this paper,
we assume the time-varying coupling matrix L(t) satisfies:

Assumption A1: For any t > t0, the elements lij(t) ≥ 0 are
piecewise continuous in [t0,+∞).

From this assumption, one can verify the existence and
uniqueness of the Cauchy problem of (2).

Before giving the main result, we restate the result in [14].
Lemma 1: Consider the consensus algorithm

v̇(t) = L(t)v(t) (3)

where L(t) satisfies assumption A1. If there exist a time
interval sequence {[tq, tq+1)}∞q=0 and M > 0 such that
∫ tq+1

tq
ljk(s)ds < M hold for all j, k = 1, · · · , n and L(t)

has a δ-spanning tree across [tq, tq+1) with δ > 0, then the
system (3) can reach consensus.

Now, we are in the position to give the first main result of
this paper.

Theorem 1: Suppose the time-varying coupling matrix L(t)
satisfies assumption A1 and there exist a time interval se-
quence {[tq, tq+1)}∞q=0 and M > 0 such that

∫ tq+1

tq
ljk(s)ds <

M and
∫ tq+1

tq
dk(s)ds < M hold for all j, k = 1, · · · , n. If for

any interval [tq, tq+1) and any vertex vi, one of the following
conditions is satisfied:

1)
∫ tq+1

tq
di(s)ds > δ with some δ > 0,

2) there exists vj such that
∫ tq+1

tq
dj(s)ds > δ and the graph

of [
∫ tq+1

tq
L(s)ds]δ has a path from vj to vi,

then the homogeneous stationary state s of network (2) is
stable
Proof. By adding an extra virtual static agent to the original
network, which has a few nodes to be linked towards but
without any incoming links, the stability of algorithm (2) is
reconducted to consensus problem of the extended network.
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Denote yi(t) = xi(t), i = 1, · · · , n, yn+1(t) = s, y(t) =
[y1(t), · · · , yn+1(t)]

�, then (2) turns to be
{
ẏi(t) =

∑
j lij(t)[yj(t)− yi(t)] + di(t)[yn+1(t)− yi(t)]

ẏn+1(t) = 0

or in compact form,

ẏ(t) = M(t)y(t), (4)

where

M(t) =

[
L(t)− diag(D(t)) D(t)

O 0

]

.

Hence, the pinning control problem can be reformulated as a
consensus problem of the coupled system (4).

The assumptions imply that
∫ tq+1

tq
M(s)ds has a δ-spanning

tree. Then from Lemma 1, we can conclude that system (4)
can reach consensus. This completes the proof.

From the Perron-Frobenius theorem [21], we have the
following lemma.

Lemma 2: For any Metzler matrix A ∈ R
n with zero row

sum and aii < 0, i = 1, · · · , n, there exists a permutation
matrix P such that

P�AP =

⎡

⎢
⎢
⎢
⎣

Â11 Â12 · · · Â1K

0 Â22 · · · Â2K

...
...

. . .
...

0 0 · · · ÂKK

⎤

⎥
⎥
⎥
⎦

where Âii is irreducible, i = 1, · · · ,K. The graph correspond-
ing to Âii is named strongly connected component of the graph
G(A).

Since every G(Âii) is strongly connected, i = 1, · · · ,K,
then every vertex has paths to the rest vertices in G(Âii). By
Theorem 1, we can obtain the following theorem.

Theorem 2: Suppose there exists an infinite time inter-
val sequence {[tq, tq+1)}∞q=0 such that

∫ tq+1

tq
ljk(s)ds <

M,
∫ tq+1

tq
dk(s)ds < M, j, k = 1, · · · , n with some M > 0.

Define Rq = {k| ∫ tq+1

tq
dk(s)ds > δ}. If there exists δ > 0

such that Rq contains at least one vertex in each strongly
connected component of the graph of [

∫ tq+1

tq
L(s)(s)ds]δ , then

the pinning controlled directed network (2) is stable at the
homogeneous stationary state s.

IV. PINNING NETWORKS OF MULTIAGENTS WITH
SWITCHING TOPOLOGIES MODELED AS ADAPTED

STOCHASTIC PROCESSES

Consider the system

ẋ(t) = Lkx(t) +Dk[s− x(t)], t ∈ [tk−1, tk), (5)

where t0 < t1 < · · · , Lk is a random Metzler matrix with zero
row sum, Dk is a random diagonal matrix with nonnegative
elements for each k. We assume the switching time sequence
is also stochastic and independent of the stochastic process of
the graph topology. Denote Δtk = tk − tk−1, xk = x(tk).

Assumption A2. For any i �= j, [Lk]ij < M1 and [Dk]ii <
M1 with some M1 > 0.

Assumption A3. There exist two adapted process-
es {Δtk,F1

k}, {[Lk, Dk],F2
k} on two probability spaces

{Ω1,F1, P1}, {Ω2,F2, P2}. (Δtk,F1
k ) is independent with

([Lk, Dk],F2
k ).

Assumption A4. There exist T2 > T1 > 0, T4 > T3 > 0
such that

T1 < E(Δtk+1|F1
k ) < T2, T3 < E((Δtk+1)

2|F1
k ) < T4,

(6)
Definition 3: For any p > 0, we call the system (5)

Lp stable if for any given initial distribution of x(t0) with
E(‖x(t0)‖p) < ∞,

lim
k→∞

E(‖xk − s‖p) = 0.

Before giving the main results, we restate Theorem 3.3 in
[16].

Lemma 3: Considering system

ẋ(t) = Lkx(t), t ∈ [tk−1, tk), (7)

where Lk is a random Metzler matrix. Δtk = tk − tk−1.
If {Δtk,F1

k}, {[Lk, Dk],F2
k} satisfy assumptions A2,A3,A4

and there exist m ∈ N
+, δ > 0 such that E(

∑m
q=1 Lk+q|F2

k )
contains a δ-spanning tree for k = 0, 1, 2, · · · , then system (7)
achieves Lp consensus for any p > 0 .

Now, we give the sufficient conditions for Lp stability of
network (5).

Theorem 3: If {Δtk,F1
k}, {[Lk, Dk],F2

k} satisfy assump-
tions A2,A3,A4 and for any vertex vi, one of the following
conditions is satisfied:

1) [E(
∑m
q=1 Dk+q|F2

k )]i > δ with some δ > 0,
2) there exist a vertex vj with [E(

∑m
q=1 Dk+q|F2

k )]j > δ

and a path of graph of [E(
∑m
q=1 Lk+q|F2

k )]
δ from vj to

vi,
then for any p > 0, system (5 ) is Lp stable.

Proof. Similar to the proof of Theorem 1, we suppose
an extra virtual static agent is imposed to the network.
Denote yi(t) = xi(t), i = 1, · · · , n, yn+1(t) = s, y(t) =
[y1(t), · · · , yn+1(t)]

�, then (5) turns to be

ẏ(t) = Mky(t), t ∈ [tk−1, tk) (8)

where
Mk =

[
Lk − diag(Dk) Dk

O 0

]

.

The assumptions imply that E(
∑m
q=1 Mk+q|F2

k ) contains a
δ-spanning tree. Then, from lemma 3, we can conclude that
Lp consensus of (8) is reached. The proof is completed.

As applications, we apply Theorem 3 to independent s-
tochastically switching and Markovian switching topologies.

Corollary 1: Suppose {[Lk, Dk]} is an independent
sequence and {[Lk, Dk]}, {Δtk,F1

k} satisfy assumptions
A2,A3,A4. If for any vertex vi, one of the following
conditions is satisfied:

1) [
∑m
q=1 E(Dk+q)]i > δ with some δ > 0,
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2) there exists vj with [
∑m
q=1 E(Dk+q)]j > δ and the

graph of [
∑m
q=1 E(Lk+q)]

δ has a path from vj to vi,
then system (5 ) is Lp stable for any p > 0.

Proof. Let F2
k = σ([L1, D1] · · · , [Lk, Dk]). Since {Lk} and

{Dk} are independent sequences, we have

E(
m∑

q=1

Lk+q|F2
k ) =

m∑

q=1

E(Lk+q|F2
k ) =

m∑

q=1

E(Lk+q)

and E(
∑m
q=1 Dk+q|F2

k ) =
∑m
q=1 E(Dk+q). The conditions

here coincide with conditions in Theorem 3, hence, conclu-
sions then comes from Theorem 3.

Now, we consider the case where the graph topologies are
induced by a homogeneous Markov chain with a stationary
distribution π.

Corollary 2: Suppose {[Lk, Dk]}, {Δtk,F1
k} satisfy as-

sumptions A2,A3,A4 and {[Lk, Dk]} is a homogeneous
Markov chain with a stationary distribution π. If there exists
η > 0, such that for any vi, either [Eπ(D1)]i > η or there
exist a vertex vj with [Eπ(D1)]j > η and a path of graph of
Eπ(L1) from vj to vi, then system (5) is Lp stable for any
p > 0.

Proof. Let F2
k = σ([L1, D1] · · · , [Lk, Dk]). From the

Markov property, we have E(Lk+1|F2
k ) = E(Lk+1|Lk). Note

that {Lk} and {Dk} are uniformly ergodic, hence,

lim
m→∞E(

1

m

m∑

q=1

Lk+q|Lk) = Eπ(Lk) = Eπ(L1)

and

lim
m→∞E(

1

m

m∑

q=1

Dk+q|Dk) = Eπ(D1).

Therefore, we can find m′ such that for any m > m′ and
any vi, either [E( 1

m

∑m
q=1 Dk+q|Fk)]i > η

2 or there exist a
vertex vj with [E( 1

m

∑m
q=1 Dk+q|Fk)]j > η

2 and a path of
graph of [E( 1

m

∑m
q=1 Lk+q|Fk)]δ from vj to vi with some

constant δ > 0. The conclusion follows from Theorem 3.

V. NUMERICAL SIMULATIONS

In this section, we give some numerical examples to illus-
trate the theoretical results.

A. Deterministic case
In this example, we have m = 5 agents. The time-varying

coupling matrix and pinned vertex set is switching among the
following ones:

L1 =

⎡

⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0
0 0 0 0 0
1 0 −1 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
, D1 =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎦
,

L2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 −1 0 0 1
0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
, D2 =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎦
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Fig. 1. The dynamical behaviors of xi(t) and err(t) with respect to time.

Let {tk} be the time sequence:

0 = t0 < t1 < t2 < · · · < tn < · · · ,
with Δtk = tk − tk−1, a(t) = |sin(πt)| be the coupling
strength and b(t) = |cos(πt)| be the pinning scale. We choose

L(t) =

{
a(t)L1, t ∈ [t2k, t2k+1)
a(t)L2, t ∈ [t2k+1, t2(k+1))

and Δtk = Δ = 1, D(t) = b(t)D1 = b(t)D2. Hence,∫ t2(k+1)

t2k
[D(s)]5ds > δ and

∫ t2(k+1)

t2k
L(s)ds has a δ-spanning

tree and v5 is the root, here δ = 2
π . Therefore, all the

conditions in Theorem 1 hold. We use the following quality
to measure the stability of the pinning algorithm (2):

err(t) =
∑

i

|xi(t)− s|. (9)

If err(t) is small enough, we say the pinning algorithm is
stable. Fig 1. shows the dynamics of states xi(t) and error
err(t) with respect to time, which implies the states of agents
converge to given state s.

B. Stochastic case

[18] defined a new pinning control algorithm, spatial pin-
ning control, where agents moving in the planar space. Once
agent enters a fixed region, it will be pinned. Here, we consider
spatial pinning control of networks with mobile agents moving
in the planar space Γ ∈ R

2 according to the random waypoint
model.

According to the movements of agents, a linking graph can
be constructed by the following linking rule: Two agents are
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considered to be linked if the distance between them is less
than a given interaction threshold. Suppose two agents are
coupled with coefficient 1 if they have a link, which induces
a coupling matrix L. Spatial pinning is activated to an agent
once it enters a given region Γc. Hence, pinned sets D can be
obtained from the movements of agents.

The random waypoint model is one of the most widely
used model to evaluate protocols of ad hoc networks, which
was first proposed by [19]. In this model, suppose there are
N mobile agents moving in a two-dimensional space Γ. The
movement of each agent is stochastically independent of the
other ones but follows one identical distribution. The agent
moves towards a randomly selected target with a random
velocity. After approaching the target, the agent waits for a
random time length and then continues the process. This leads
to two states for every agents: moving state and waiting state.

Consider the location and state of agent i as a stochastic
process: γ

(i)
t = {α(i)

t , β
(i)
t , v

(i)
t , w

(i)
t , ξ

(i)
t }. α

(i)
t denotes the

location at time t, β(i)
t is the location of the target, v(i)t is the

velocity of the movement and it is zero if i is waiting, w(i)
t is

the current waiting time period if i is waiting and it is zero
if i is moving, and ξ

(i)
t is the past time of current wait if i is

waiting and zero if i is moving.
The next motion of each agent depends on its current

location but not on its previous locations, which implies
the motion variation of locations of i can be modeled as a
homogeneous Markov chain and so as are the links between
agents and the pinned sets.

Denote xi(t) the state of agent i at time t. Each agent
updates its state xi(t) according to the states of its neighbors,
through a linear coupling on their states. In particular, an agent
j is considered a neighbor of agent i at time t, if d(αit, α

j
t ) ≤ r,

where r is the interaction radius. A control input is applied to
agent i if its location is in Γ at time t, i.e. αit ∈ Γc.

The node distribution of the RWP model was studied in
[20]. Their result implies that the node distribution of RWP is
ergodic and its stationary pdf is always positive everywhere
in the moving region. Note the motions of agents are inde-
pendent, all agents have a positive probability to be in the
transmission range, despite of not entering this disc at the
same time. Therefore, the network has a positive probability
to be a complete network, which implies the expectation is
a complete graph. Similarly, for a pre-given spatial pinning
region, the pinned set has a positive probability to be in it,
which implies the expectation of the pinned set is the set of
all agents. Therefore, the conditions in theorem 3 are satisfied,
which implies the algorithm is Lp stable to the pre-given
consensus value s.

We realize the random waypoint model with 20 mobile
agents moving in Γ = [0, 1000] × [0, 1000](m2) and spatial
pinning control region Γc ⊂ Γ. The velocity of movement is
randomly chosen in (10, 20)(m/sec) with uniform distribution.
After approaching the target, agent waits for a random time
period, with a uniform distribution in (1, 5)(sec). Pick the
transmission range r = 120. If the distance between locations

0 50 100 150 200 250 300
5

4

3

2

0

2

3

4

5

t(sec)

Fig. 2. The dynamical behaviors of xi(t) − s with Γc = [0, 200] ×
[0, 200](m2).

of two agents is less than r, then these two agents are coupled
with weight 1. If an agent enters the pinning control region,
then it will be pinned with weight 1. The numerical average
network is complete and average pinned set is the entire agent
set, which coincides the analysis given above. The coupling
matrices and pinned sets are collected with a step length of
0.1. Randomly pick the initial states of agents in (−5, 5), i.e.
, xi(t) ∈ (−5, 5), i = 1, · · · , 20. For any pre-given consensus
value s, the ordinary differential equations (5) are solved by
the euler formula with a step length of 0.01. Randomly pick
s ∈ (−5, 5). Fig.2 indicates that the spatial pinning control is
stable.

[22] provides the plots of the stationary node distribution
of a two-dimensional RWP model in a [0, 10]× [0, 10] square
region. It seems that the stationary distribution has a larger
probability in the middle area of the moving region. Hence,
the authors wonder the choice of pinning region might influ-
ence the convergent speed. In the following, we pick several
different pinning regions and compare their convergent speed.
Fig. 3 tells that the convergent speed of err(t) is fasten if the
pinning region is close to the center of moving region; Fig. 4
shows the convergence of err(t) is speed up if the area of the
pinning region enlarges.

VI. CONCLUSION

In this paper, we have studied the stability of pinning control
algorithms of networks with general directed time varying
topologies, including determinately and stochastically switch-
ing topologies. For networks with determinately switching
topologies, we have shown that the pinned vertex set can
stabilize the network if the pinned vertex set can access all
other vertices in the network. For networks with stochastically
switching topologies, we have shown that if the conditional
expected pinned vertex set can access all other vertices in
the graph of conditional expected Laplacian matrix, then
the network is stable. As applications, numerical simulations
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Fig. 3. Dependence of convergent speed on position of pinning region.
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Fig. 4. Dependence of convergent speed on the area of pinning region.

based on the random waypoint model are given to verify our
theoretical results.

REFERENCES

[1] G. Hu, Z. Qu. Controlling spatiotemporal chaos in coupled map lattice
systems. Physical Review Letters, 72(1994), 68-71.

[2] R. Roy, T. Murphy, Jr, T. D. Maier and Z. Gills. Dynamical control of
a chaotic laser: Experimental stabilization of a globally coupled system.
Physical Review Letters, 68(1992), pp. 1259-1262.

[3] L. Ya. Adrianova. Introduction to linear systems of differential equations,
Trans.Math.Mono.,AMS,1995.

[4] X. Wang, G. Chen. Pinning control of scale-free dynamical network,
Physical A, 310(2002), pp. 521-531.

[5] X. Li, X. Wang, G. Chen. Pinning a complex dynamical network to
its equilibrium, IEEE Transactions on Circuits and Systems-I: regular
paper, 51(10)(2004), 2074-2087.

[6] T. P. Chen, X.Liu, W. Lu. Pinning complex networks by a single
controller. IEEE Transactions on Circuits and Systems-I: regular papers,
54(6)(2007), pp. 1317-1326.

[7] M. Porfiri, M. di Bernardo. Criteria for global pinning-controllability of
complex network, Automatica 44(2008), pp. 3100-3106.
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