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Abstract— Traffic sign recognition (TSR) is an essential
research issue in the design of driving support system and
smart vehicles. In this paper, we propose a permutation-based
image feature to describe traffic signs, which has an inherent
advantage of illumination invariance and fast implementation.
Our proposed feature LIPID (local image permutation interval
descriptor) employs interval division and zone number assign-
ment on order permutation of pixel intensities, and takes the
zone numbers as the descriptor. A comprehensive performance
evaluation on German Traffic Sign Recognition Benchmark
(GTSRB) dataset is carried out, which reveals the great per-
formance of our proposed method. Experiment results exhibit
that our feature outperforms some state-of-the-art descriptors,
showing a potential prospect in TSR applications.

I. INTRODUCTION

TRaffic Sign Recognition (TSR) is being studied as
an important component of advanced driver assistance

systems [1][2]. Recognition of traffic signs works for warning
drivers about potential dangers and inappropriate behaviours,
playing a valuable role in protecting driving safety and
avoiding traffic accidents. General TSR system involves the
following basic aspects: capture videos or images containing
traffic signs within the visual field, detect signs in the
captured images, classify and recognize what the detected
sign is, and track the motion of signs if needed. Many
researchers have attained achievement in their designs of
TSR systems, such as Zaklouta et al. [3], Baro et al. [2]
and Bahlmann et al. [4]. The implementation of TSR refers
to various aspects of computer vision and machine learning,
including shape and color analysis, feature extraction and
image representation, as well as multi-class classification.
As an important application of artificial intelligence, TSR
is being developed with the aims of high accuracy and real-
time operation.

State-of-the-art algorithms mainly focus on fast and ef-
fective representation algorithms of traffic signs and efficient
classification methods. Currently, a number of image features
have been applied in the detection and recognition of traffic
signs. For example, Haar-like features and histogram of
oriented gradient (HOG) features were applied in traffic sign
detection and recognition in the work of Bahlmann et al.
and Xie et al. [4][5]. Besides the above traditional features,
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more image features which are specially designed for real-
time implementation have been employed in this task. Ruta
et al. proposed a Color Distance Transform (CDT) which
enables robust discrete-color image comparisons in real time
[6]. Zheng et al. introduced the scale and rotation invariant
BRISK features in their TSR system for sign representation
and recognition [7]. As the popularity of affordable mobile
devices, research findings are brought out of laboratory and
put into practical tests, followed by a higher requirement of
better detection and recognition accuracy and faster compu-
tation speed.

In this paper, we propose a novel permutation-based image
descriptor and implement it in the traffic sign recognition
experiments on German Traffic Sign Recognition Benchmark
(GTSRB) dataset. As we know, TSR applications always
handle with image sequences captured under different light-
ing conditions and require real-time computing. Our feature
just meets the demands of TSR tasks, with the advantages
of low computation complexity and inherent invariance to
monotonic illumination changes. Our experiments involve
several state-of-the-art image features, and employ three
widely used supervised learning methods for sign recogni-
tion. Evaluation results show that our proposed image feature
achieves performance as good as HOG and reveals a best
computation speed among the all.

II. RELATED WORK

A. Image descriptors

Image representation through local descriptors is always a
research interest in computer vision, for different descriptors
have been widely used in numerous applications including
object matching, recognition, image retrieval and motion
tracking. Generally, distinctiveness and computation speed
are two primary requirements of designing image features,
however, they are usually two trade-off aspects.

State-of-the-art algorithms have reached good perfor-
mance, aiming applications with either requirements in
precision or speed. Lowe’s SIFT (Scale Invariant Feature
Transform) [8] is well-known for its excellent invariance
to various affine deformation. Though SIFT exhibits great
performance in many applications, the high complexity and
computational cost impose restrictions on its development.
Bay et al. proposed SURF (Speed-up Robust Feature) [9] as
an alternative to SIFT, which performs comparably with SIFT
meanwhile maintaining most desirable properties. Based on
the work of Papageorgiou et al., Viola and Jones adapted
the idea of using Haar wavelets and developed the so-called
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Haar-like features [10][11]. They were used in the first real-
time face detector and famous for the fast computation using
integral images. HOG (Histogram of Oriented Gradients) was
first described for the problem of pedestrian detection by
Dalal and Triggs [12]. HOG describes an image by counting
occurrences of gradient orientation in localized portions of
an image, since it improves accuracy in pedestrian detection,
it has been soon introduced to many other detection and
recognition fields.

With the development of affordable image sensors and
mobile devices, applications requiring low computation com-
plexity and real-time implementation continue to spring up.
Therefore, image descriptors of non-floating points are paid
more attention. BRIEF (Binary Robust Independent Elemen-
tary Feature) [13] proposed by Calonder et al. has led the
development of binary descriptors. it uses binary strings by
simply comparing the intensities of pixel pairs located in
fixed positions to construct a descriptor. I-BRIEF [14] and
D-BRIEF [15] then improved original BRIEF on robustness
and distinctiveness. ORB (Oriented Fast and Rotated BRIEF)
[16], BRISK (Binary Robust Invariant Scalable Keypoint)
[17] and FREAK (Fast Retina Keypoint) [18] further de-
velop BRIEF on invariance properties by improving keypoint
detection and utilizing more effective sampling patterns. In
order to resist to monotonic brightness changes, permutation
method is then introduced into construction of descriptors.
MROGH (Multisupport Region Order-Based Gradient His-
togram), MRRID (Multisupport Region Rotation and In-
tensity Monotonic Invariant Descriptor) [19] and RATMIC
(Resistant to Affine Transformation and Monotonic Intensity
Change) [20] are all histogram-based features which imple-
ment intensity order in pooling strategy to achieve resistance
to intensity changes. Ziegler et al. proposed LUCID (Locally
Uniform Comparison Image Descriptor) [21] on the study of
permutation distances and Kendall’s Tau metric, which has
a form of integer strings. It sorts the intensities of pixels
and directly employs the order permutation as the image
feature. In the development of image features, researchers
are continuously aiming at designing description method of
better precision and faster implementation.

B. Multi-class classifiers

Multi-class classification is a problem that we have to
face in machine learning. Compared to binary classification,
multi-class problems require more complex classifier struc-
tures or schemes. In most solutions, this problem decomposes
trivially into a set of unlinked binary problems, which can
be solved naturally using the existing techniques for binary
classification. In addition, some classifiers are congenitally
designed to deal with multiple classes. During the past
decades, many algorithms were carried out with different
inspirations, the outstanding ones of which have been applied
in numerous practical fields of machine learning.

Support Vector Machine (SVM) proposed in the work of
[22] has achieved great performance on 2-class classification
problems. However, the original SVMs were designed only
for binary classification, which does not satisfy the practical

requirements. How to effectively extend SVM for multi-class
classification is drawing researchers’ attention. Currently
there are two primary types of approaches for multi-class
SVM [23]. One is by constructing and combining several
binary classifiers while the other is by directly consider-
ing all data in one optimization formulation. The oldest
implementation for multi-class SVM is probably the one-
against-all method, which construct k SVM models for each
class. And the ith class is trained with all of the instances
in this class with positive labels and all the others with
negative labels. Another major method is the one-against-
one method with the idea first introduced in [24] and the
first implementation on SVM in [25]. This method constructs
k(k−1)/2 classifiers where each one is trained on data from
two classes. A third algorithm is the directed acyclic graph
SVM (DAGSVM) proposed in [26]. One advantage of using
a DAG is some analysis of generalization can be established,
which are not available in one-against-all and one-against-
one methods yet. In addition, the test time of DAG method
is less than the one-against-one method. Besides, methods
by considering all data at once with a decomposition imple-
mentation can be found in [27]. Experiments and discussions
on large problems show that one-against-one method and
DAG method may be more suitable for practical use, and the
latter one operates faster with an additional analysis result.
A widely used implementation of SVM, LIBSVM (a library
for SVM) released by Chih-Chuang Chang and Chih-Jen Lin
[28], employs this method and provides probability estimates.

Artificial Neural Networks are computational models in-
spired by animal’s central nervous systems that are capable of
machine learning and pattern recognition. They are usually
presented as systems of interconnected neurons which can
compute values from inputs by feeding information through
the network. Multi-layer Feedforward Neural Networks pro-
vide a natural extension to multi-class problem [29]. Instead
of using one neuron in the output layer to produce binary
output, N neurons could be employed to give out codes
of multiple labels. The output codeword corresponding to
each class can be chosen as follows [30]: For one-per-
class coding, each output neuron is designated the task
of identifying a given class, and the output code for that
class should be 1 at this neuron and 0 for the others.
When testing an unknown example, the neuron providing
the maximum output is considered the class label for that
example. For distributed output coding, each class is assigned
an unique binary codeword from 0 to 2N − 1, where N
represents the number of output neurons. When we test an
unknown example, the output codeword is compared to each
class codeword, and the nearest codeword is considered the
wining class. Usually, the codeword distances are computed
with Hamming distance, which measures the number of bit
dissimilarity between two binary strings. It is obvious that the
first way requires more neurons than the second one under
the same circumstance of class numbers, nevertheless the
first approach may have relatively better robustness. When
the number of classes is high, the second method should be
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an economical choice.
Decision Trees are a very powerful classification tech-

nique. Two widely known algorithms for building deci-
sion trees are Classification and Regression Trees [31] and
ID3/C4.5 [32]. The tree splits training data based on the
values of available features to produce a good generalization.
The split decision is made at each node based on the feature
that gives the maximum information gain. Each leaf node
corresponds to a class label, so this algorithm can naturally
handle multi-class classification problems. On the basis of
Decision Trees, Random Forests were developed to gain bet-
ter performance. Random Forests are an ensemble learning
method for classification which employ multiple decision
trees at training step and output the class that is the mode
of classes output by individual trees. This algorithm was
developed by Breiman and Cutler [33] as their trademark.
Their method combines Breiman’s bagging idea and the
random selection of features introduced by Ho et al. [34],
which enables constructing a collection of decision trees
with controlled variation. Random Forest is a quite strong
classifier that can handle multi-class problems well. It has
been widely used in the applications of data-mining and
object recognition.

C. Traffic sign recognition

Designing smarter vehicles which aims to minimize the
number of driver-based wrong decisions or accidents has
become a research hotspot in automotive technology nowa-
days [35]. As one of the most important issues, Traffic
Sign Recognition (TSR) is developed to warn drivers about
traffic signs and increase driving safety. In the future, these
assistant driving systems may even take control of the vehicle
instead of human being under some circumstances. Broad
TSR includes the whole process from capturing continuous
images of driving horizon, detection of traffic signs in
captured images, recognition of detected signs to tracking
of recognized signs, while the narrowly defined one just
refers to the recognition step. TSR belongs to object detec-
tion and recognition problem, nevertheless has some unique
characteristics. Traffic signs are one type of artificial objects,
with fixed colors, shapes and patterns. Thus, techniques
concerning color segmentation, feature extraction including
shapes and patterns, and various classification methods are
all involved in TSR tasks.

In consideration of reducing computational cost on clas-
sifying road signs, Barnes and Zelinsky adapted the fast
radial symmetry detector to the image stream from a camera
mounted in a car to eliminate almost all non-sign pixels,
and applied normalized cross-correlation to classify the signs
[36]. Their method is suitable for circular signs only, and
achieves good performance on changes of lighting condi-
tions. Bahlmann et al. designed a system for traffic sign
detection, tracking and recognition using color, shape and
motion information [4]. Signs are detected with a set of
Haar wavelet features obtained from Ada-Boost training,
once detected, they are tracked within a temporal infor-
mation propagation framework followed by a classification

performed using Bayesian generative modeling. Ruta et al.
utilized novel image representation and discriminative feature
selection algorithms in the traditional three-stage framework
of TSR [6]. Baro et al. employed a boosted detector cascade
trained with a novel evolutionary version of Adaboost in
the detection of signs, which allows the use of large feature
spaces. Moreover, classification is implemented by an Error-
Correcting Output Code (ECOC) framework [2]. Zaklouta
et al. proposed a real-time traffic sign recognition system in
three stages, consisting of a segmentation, a detection and
a classification phase [3]. They combine color enhancement
with adaptive thresholds in sign region detection which is
implemented by an efficient linear Support Vector Machine
(SVM) with Histogram of Oriented Gradients (HOG) fea-
tures. And tree classifiers including K-D Tree and Random
Forest are used in the identification of sign contents.

For assessing the performance of current machine learning
algorithms on TSR, Stallkamp et al. presented a publicly
available traffic sign dataset with more than 50, 000 images
of German road signs in 43 classes [37]. The data was
considered in the second stage of the German Traffic Sign
Recognition Benchmark held at IJCNN 2011 and a competi-
tion within numerous state-of-the-art algorithms was carried
out on this dataset. Recorded results show that Convolutional
Neural Networks (CNNs) won the first place with particularly
high classification accuracy in the performance. Committee
of CNNs algorithm even outperforms human performance,
however, at a very large cost of computation. Besides, Linear
Discriminant Analysis (LDA) on HOG feature also gains
good results. This competition shows the great performance
and potential of computer algorithms on TSR versus human.

III. THE PERMUTATION-BASED LOCAL IMAGE
DESCRIPTOR

In this section, we depict a simple but effective local image
descriptor called LIPID (local image permutation interval
descriptor). It is a permutation on zone numbers of image
pixel intensities, preserving good properties on monotonic
brightness changes and timings. LIPID is developed on the
basis of LUCID [21] yet it improves the robustness of
LUCID meanwhile maintaining enough distinctiveness. The
construction from permutation rather than bit sampling and
comparison enables a desirable illumination invariance with
no speed sacrifice.

A brief introduction of LUCID is given as follows: Let p1
and p2 denote two n×n image patches, and the computation
of descriptor construction and matching with the generalized
Hamming distance can be done in three lines of Matlab
commands:

[sortp1, order1] = sort(p1(:));
[sortp2, order2] = sort(p2(:));
distance = sum(order1 = order2);

(1)

where order1 and order2 are the order permutation repre-
sentations for p1 and p2 respectively.

From the construction of LUCID, it is clear that the
whole process includes three key steps: vectorization of
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image patch, sorting pixel intensities and recording order
permutation. The idea of building LUCID is quite simple,
and the permutation-based feature has brought in some
unique and satisfying properties. However, its shortcoming
is also obvious: LUCID is very sensitive because the order
permutation can be easily disrupted by the intensity changes
of individual pixels. We discover the direct use of order
indices as descriptor leads to the unrobustness, and a feasible
modification can be applied on descriptor building to improve
the performance. Thus, we apply a interval division and zone
number assignment on the order permutation and adopt the
zone indices instead of order indices as our final feature.

Let p denote an image patch of gray scales and we first
rearrange this patch into a vector. This vector is then sorted
in ascending order according to the intensities of pixels,
and the order indices which indicate the previous position
of elements in the sorted vector are recorded. The above
steps are quite similar to what is done in LUCID. And
then, we construct our descriptor with the help of order
indices instead of directly using them. The orderly elements
in the sorted vector are divided into several zones, and all
the elements in each interval is assigned a zone number.
With the order indices indicating their original position in
the patch vector, each element in the patch vector gains a
zone number accordingly. Namely, each pixel is assigned a
number according to which zone its intensity order belongs
to within the patch. Each zone number reflects how bright a
pixel is in the patch, with the measurement of an approximate
position in the sorting permutation. Fig. 1 demonstrates how
our feature is extracted with a simplified example. And the
complete algorithm is as following:

1) Convert an image patch into grayscale one, and vec-
torize it to gain a vector V .

2) Sort V to obtain a sorted vector O and an order indices
vector I .

3) Divide O into n zones and assign a zone number for
each interval.

4) Tag each element in V with a corresponding zone
number according to I which indicates the original
positions.

5) Collect and arrange the zone numbers tagged on V to
get the feature vector.

From the construction of LIPID descriptor, it is true that
the two main parameters, the size of image patch and the
number of dividing zones, should be chosen pairwise to
enable an integer of each interval. Therefore, we choose
powers of two to be the number of zones, and accordingly,
multiples of zone number for the patch pixel numbers.
Generally in point to point matching, the more zones we
divide, the better accuracy we will achieve, meantime the
less retrieved matching pairs we will get. And larger patch
size helps improve representation accuracy, with an increase
of feature vector dimension. As empirical results, 4, 8 or 16
should be proper choices of zone number, and an appropriate
patch size will gain balance between accuracy and time and
space consumption.

0     1      2     3      4     5      6      7     8     9     10   11   12    13   14   15 

0     5    10     1      7     6     15   14     3     9     8     11    4     12    2     13 

         0                             1                              2                              3 

  [ 0     0     3      2      3     0      1      1      2     2     0      2      3      3     1      1 ] 

Fig. 1. A simplified example of constructing LIPID feature.

IV. PERFORMANCE EVALUATION

A. Experiments setup

Our proposed feature is tested on the German Traffic
Sign Recognition Benchmark (GTSRB) dataset introduced
by Stallkamp et al [37]. This dataset contains up to 26640
different images for training and more than ten thousand
images for testing. These images were created from video
captured while driving in Germany, which include 43 dif-
ferent categories of German traffic signs. The regions of
interest (ROI) in both training and test images are also
given together with class IDs for the sake of locating traffic
signs in non-square images. Though image frequency of
each class vary from 0.5% to 5.6% in the training set,
an adequate amount of at least 150 images for one class
guarantees the requirement of experiments. Fig. 2 shows a
collection of random representatives of every category and
the standard images of all categories are shown in Fig. 3.
Another reason for choosing GTSRB as our experiment
dataset is it provides several state-of-the-art pre-calculated
feature sets which allow different scholars to conveniently
run their tests. In the experiments we use raw images and
our proposed features together with the pre-computed Haar-
like, HOG and Hue histograms features this dataset offers
to show a fair and verifiable result. Besides, LUCID and
BRIEF as fixed-point feature representatives are also added
for comparisons.

We employ Support Vector Machine (SVM), Neural Net-
work (NN) and Random Forest to train the features and
do the recognition respectively. On one hand, traffic sign
recognition is a multi-class classification problem with un-
balanced class frequencies, supervised learning should be
an ideal choice to ensure the recognition accuracy as much
as possible. On the other, the above-mentioned approaches
have been validated to achieve good performances in many
classification applications. Our experiments are implemented
by Matlab R2009a on a PC with 2.93GHz i7 CPU and
Windows 7 Professional 64-bit OS. Indeed, employment of
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Fig. 2. Representatives of the 43 classes of traffic signs in GTSRB dataset.

Fig. 3. All standard 43 signs in GTSRB dataset.

the whole dataset must be more convinced, however, due
to the numbers of features and training methods and the
limit of computing power, we have to strategically sample
part of the training and test sets to reduce the tremendous
time consumption in the experiments. Since the images of
each category are all captured from a continuous video, the
changes of adjacent frames are minor. If we sample a subset
from each training category, it won’t hurt the final result
and conclusion. As for the test dataset, images are originally
from different classes randomly. We only need to sample it
at a same rate in order to keep the accordance of numbers
between training and test dataset. On the basis of the above
analysis, every 1 from 10 images are picked up in each class
to form a subset of the original dataset, as thus, we obtain
2664 images for training and 1256 ones to do the tests.

B. Implementation details

We notice that the rich information mainly concentrates in
the center of signs. Most signs have a border (see Fig. 3), and
the patterns offering primary and discriminative information
always locate in the center. If we don’t specially use color
information, the removal of borders will not result in a
loss of data, moreover, the dimension of feature will be
reduced doubtlessly. Since the pre-provided HOG and Haar-

like features don’t take colors into account, our proposed
feature employs gray-scale images as well. Besides, the
background in region of interest (ROI) is still quite busy
for most images, and the disturbance of background cannot
be neglected especially for those signs taking up less area
in ROI such as triangle signs. In view of all the above,
we design a center square patch as well as a cross-shape
one containing 5 sub-patch for our feature extraction. Fig. 4
illustrates where our feature LIPID is extracted. The left
figure shows the contours of all traffic sign shapes, including
round, upward triangle, downward triangle, octagon and
diamond, and the right one indicates the patch locations with
the lines of dashes. The red dash square represents the center-
located patch, while the magenta ones show the cross-shape
5 patches. Actually, the center square patch takes the center
pixel as the only keypoint around which the LIPID feature
is extracted, while the cross-shape patches use five keypoints
located in the center, left, right, top and bottom.

Fig. 4. All shape contours of traffic signs in GTSRB dataset and the image
patches we apply for LIPID feature extraction.

In accordance with the pre-computed features, we also
rescale all the images into a standard size of 40×40. Noting
that the feature dimension and number of zones should be
chosen pairwise, the size of patch (number of sampling
points) must corresponds to a given zone number. For the one
keypoint center patch, the side length is set to be 20 when
the zone number is 8, producing a feature with dimension of
400. And for the 5 keypoints design, we choose either 4 or
8 zones, accordingly, the patch size is 10× 10 and 12× 12.
The former one’s dimension is 500, while the latter one has
a dimension of 720 with a slight overlap between the center
patch and the others. To facilitate brief expressions in the
following text, we name the above three features LIPID1-8,
LIPID5-4 and LIPID5-8. For LUCID, we use the center one
patch of 20 × 20, and BRIEF employs a 256 length of bit
comparison.

Because the benchmark dataset provides more than one
selections of parameters for most pre-calculated features,
we need to choose one or several representative groups for
each kind. The first 1568 dimension HOG feature, and the
combination of horizontal and vertical edge 6 × 6 haar-like
feature (1024 dimension for each orientation) are selected.
Histogram of hue feature just has one choice, and we also
supplement resized raw images as a contrast.
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C. Training and test performance

In this section, we start the experiments with Support
Vector Machine, followed by Neural Network and Random
Forest. Recognition performance using each learning method
is given, as well as the timings of training and test process.

Support Vector Machine (SVM) is a supervised learning
model for two-group classification problems [22]. To reduce
a multi-class problem into multiple binary classification prob-
lems, SVM can be modified for multi-class classifications.
An efficient implementation of SVM is LIBSVM, a library
for SVM released by Chih-Chuang Chang and Chih-Jen Lin
[28]. It offers multi-class classification, cross validation for
model selection and probability estimates, and also supports
various kernels and language interfaces. We use its matlab
interface with all default parameters, expect for c (cost) and
g (gamma in kernel function). To find an optimum group
of c and g, we use cross validation to search for it in a
given range (both c and g in the range of (2−8,28)). Table
I gives the results of searching best c and g. By the limit
of running time and pre-defined searching range, these given
parameters may be only local optimum values and far from
the ones that achieve best performance. It is explicit that this
search procedure takes a considerably long time, which does
depend on the dimension of feature. Fig. 5 and Fig. 6 shows
the recognition rates and timings of different features, each is
obtained with the respective best parameters shown in Table
I. It is obvious that traffic sign recognition with HOG exhibits
a best performance up to 92%, and BRIEF, LIPID5-4 and
LIPID1-8 show accectable results which are much better than
the others. Haar-like feature, hue histogram feature, LIPID5-
8 and LUCID perform similarly as raw images, which show
a weak discrimination with SVM. As for time consumption,
BRIEF has the minimum of time for its shortest feature
vector. LIPID shows comparable training time with HOG and
less test time than HOG. Raw images and Haar-like feature
have the most time elapse yet produce worst results.

TABLE I
SEARCH FOR OPTIMUM PARAMETERS OF SVM.

Feature Dimension Best c Best g Time(sec)
Raw image 1600 1 0.1 71707.7
Haar-like 2048 1 0.1 98341.8

HOG 1568 16 0.0118 59937.6
Hue-hist 256 1 0.1 10069.1
LIPID1-8 400 1.7411 0.0039 19620.3
LIPID5-4 500 3.0314 0.0039 24657.5
LIPID5-8 720 1 0.1 35712.1
LUCID 400 1 0.1 19272.0
BRIEF 256 16 0.0068 11639.5

Neural Network is then employed in our experiments as
well. Though there have been numerous types of networks
and various methods for training, we choose a very basic
one that has been widely used for its reasonable structure
and operating speed. Here, a two-layer feed-forward net-
work with sigmoid hidden and output neurons is selected,
and the network is trained with scaled conjugate gradient
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Fig. 5. Recognition rates when using SVM.
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Fig. 6. SVM Timings. Blue and red bars indicate training and test time
respectively.

backpropagation. Training set is randomly divided into a
training subset of 50% samples, a validation subset of 25%
and a testing subset of 25% as well. Fig. 7 shows the
training and test results with this two-layer feed-forward
network. As the number of hidden neurons varies, accuracy
rate alters. Overall, HOG and LIPID1-8 reveal the best
performance, and all LIPID features have a better accuracy
than Haar-like, LUCID and hue histogram features. Timings
of Neural Network is given by Fig. 8. It can be seen that
LIPID features tend to adopt more hidden neurons in the
construction of network. Though the training time of LIPID
grows remarkably with the increase of vector dimension, the
test time remains on a relatively low level.

Random Forest is an ensemble learning method for clas-
sification. It operates by constructing a multitude of decision
trees at training time and outputting the class that is the mode
of the classes output by individual trees. Random Forest is
actually a framework rather than a particular model. With
the integration of weak classifiers, this framework becomes
strong enough to solve multi-class classification problems. A
basic parameter of Random Forest is the number of decision
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Fig. 7. Traffic sign recognition accuracy rates with a two-layer feed-forward
network. The left subfigure shows the output results of trained net with the
input of training dataset, which reflects the training accuracy, and the right
one shows the recognition results of the test data.
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Fig. 8. Neural Network training and test time on different features. Training
time is presented by blue bars while test time uses brownish red ones.
Results are computed under respective number of neurons that performs
best recognition rate, which is also marked above each bar.

trees constructed in the framework for predicting responses.
In our experiments, we construct 100 decision trees in the
Random Forest. Fig. 9 shows the recognition results using
Random Forest. Both rates of HOG and LIPID1-8 reach up
to 90%, and all the others exceed raw images except for
hue histogram and LUCID. Fig. 10 demonstrates the timings
using Random Forest for traffic sign recognition. Similarly,
training and test time is shown in different colors and scales
in order to be drawn in one figure. In general, BRIEF, LIPID
and HOG seem to require less time in the overall process.

The real-time performance is a vital requirement in traffic
sign recognition applications. Feature extraction of candidate
signs should be of low complexity and high computation
speed. On the basis of this demand, we implement timing
tests on extraction of different features. Tests are imple-
mented on all images of test dataset and an average time
consumption of feature extraction per image is given in
Table II, in which it is obvious that LIPID presents the
fastest speed. Haar-like feature doesn’t perform as fast as
we imagine because the relatively small size of test images
couldn’t make use of the advantage of integral image. Be-
sides, Haar-like feature has multiple templates for different
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Fig. 9. Random Forest recognition rates on GTSRB.
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Fig. 10. Random Forest training and test time on different features. Training
time is presented by blue bars with scale axis on the left, while test time
uses brownish red bars with scale axis on the right.

orientations and feature types, so the dimension of it is larger
than the others. Actually, computation of LIPID can even be
optimized in the sorting step, using a non-comparison sorting
algorithm to speed up. With a stable non-comparison sorting
for integers such as Pigeonhole Sorting [38], we’re able to
achieve linear time efficiency in this key step in our method.
In general, LIPID outperforms the other features on timing
tests, showing a great potential in real-time applications.

TABLE II
TIMINGS OF FEATURE EXTRACTION.

Feature Haar HOG Huehist LIPID LUCID BRIEF
Time(ms) 6.08 4.35 0.40 0.34 0.37 0.36

From the confusion matrix of our experiments, we find that
the recognition of signs with large monochrome in the center
such as sign No.12 in Fig. 3 is the weakness shown with
larger frequency of our feature. On account of neglecting
color information and sampling merely in the center, this
shortcoming is clear yet promising to be improved in the
future work. To sum up, our proposed descriptor performs
competitively with HOG and notably better than the others
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in experiments of traffic sign recognition on GTSRB dataset,
and outperforms all the involved features in computing speed
tests.

V. CONCLUSIONS

In this paper, we present a permutation-based local image
feature and implement traffic sign recognition on German
Traffic Sign Recognition Benchmark dataset. With an interval
division and zone number assignment on sorted pixel inten-
sities, this feature LIPID shows a good distinctiveness and
robustness at a low computation requirement. Compared to
other pre-calculated and fixed-point features involved in the
experiment, our feature almost achieves the best performance
meanwhile reveals the least time cost. In the application of
traffic sign recognition, our feature satisfies the demands
of illumination changes and real-time processing, and of-
fers an alternative to state-of-the-art features. Although the
confusion cases occur more frequently on signs with large
monochrome in the center, classification by color beforehand
or designing better sampling method will help to eliminate
missort. In the future work, this feature will be further devel-
oped to be resistant to image occlusion, noise and distortion
that frequently occur in traffic sign recognition. Combined
with new classification methods and schemes, it is promising
to achieve great performance with affordable computation
requirements. Moreover, it is expected to be applied in traffic
sign detection and other applications requiring illumination
variance and fast speed.
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