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Abstract—In this paper, estimation of a regression function
with independent and identically distributed random variables
is investigated. The regression estimators are defined by min-
imization of empirical least-square regularized algorithm over
a class of functions, which are defined by the feed forward
neural networks (FNNs). In order to derive the learning rates
of these FNNs regression function estimators, the new FNNs
operators are constructed via modified sigmoidal functions.
Vapnik-Chervonenkis dimension (V-C dimension) of the class
of FNNs functions is also discussed. In addition, the direct
approximation theorem by the neural network operators in 𝐿2

𝜌𝑋
with Borel probability measure 𝜌 is established.

I. INTRODUCTION

LET (𝑥, 𝑦) ∈ 𝑋 × 𝑌 ⊂ 𝑅𝑑𝑖𝑚 × 𝑅, 𝑑𝑖𝑚 ∈ 𝑁, 𝑑𝑖𝑚 ≥ 1.
(𝑥, 𝑦), (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋅ ⋅ ⋅ , be independent and identi-

cally distributed (I. I. D) random variables with ∣𝑦∣ ≤ 𝐿 <∞,
where 𝐿 is a positive real number. Let 𝜌 be a Borel probability
measure on 𝑍 = 𝑋 × 𝑌 ⊂ 𝑅𝑑𝑖𝑚 ×𝑅.

Let 𝑓𝜌(𝑥) = 𝐸(𝑌 ∣𝑋 = 𝑥) be the regression function. Under
the mean squared error measurement, 𝑓𝜌 minimizes the 𝐿2 risk
error(cf. [1]),

𝜀(𝑓) = 𝐸
{
∣𝑓(𝑥)− 𝑦∣2

}
. (1)

In applications, however, the distribution of (𝑥, 𝑦) is usu-
ally unknown, as well as the probability measure 𝜌 and
regression function 𝑓𝜌. Therefore, the problem always be-
come to construct the nonparametric regression estimates
𝑓𝑛 : 𝑅𝑑𝑖𝑚 → 𝑅 based on a set of data 𝐷𝑛 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋅ ⋅ ⋅ , (𝑥𝑛, 𝑦𝑛)}, which can be used to ap-
proximate the regression function 𝑓𝜌. The 𝐿2 error of such
regression estimator is measured by

∥ 𝑓𝑛 − 𝑓𝜌 ∥22:=∥ 𝑓𝑛 − 𝑓𝜌 ∥2𝐿2
𝜌𝑋

. (2)

In nonparametric learning, the estimators 𝑓𝑛 are usually
chosen from some hypothesis spaces. For example, the re-
producing kernel Hilbert space (RKHS), especially with the
polynomial kernel, has been widely used ( See for example,
[2], [3], [4]).
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In this paper, the estimators 𝑓𝑛 are assumed to have the
form

𝑓𝑛(𝑥) :=

𝑚∑

𝑗=0

𝑐𝑗𝜎(𝑎𝑗𝑥 + 𝑏𝑗),

In other words, the hypothesis spaces are defined by

ℋ𝑚 :=

⎧
⎨

⎩
𝑓𝑛 : 𝑅𝑑𝑖𝑚 → 𝑅, 𝑓𝑛(𝑥) =

𝑚∑

𝑗=0

𝑐𝑗𝜎(𝑎𝑗𝑥 + 𝑏𝑗) :

𝑎𝑗 ∈ 𝑅𝑑𝑖𝑚, 𝑏𝑗 , 𝑐𝑗 ∈ 𝑅,
𝑚∑

𝑗=0

∣𝑐𝑗 ∣ ∈ [−𝐿𝑛, 𝐿𝑛]

⎫
⎬

⎭
, (3)

Such function 𝑓𝑛 ∈ 𝐻𝑚 is called feed forward neural
networks (FNNs) with one hidden layer, 𝑚 neurons. 𝑐𝑗 are
the coefficients, 𝐿𝑛 ≥ 𝐿, 𝑎𝑗 are the connection weights, 𝑏𝑗
are the thresholds. In the general form, 𝑏𝑗 , 𝑐𝑗 ∈ 𝑅, 𝑎𝑗 ∈ 𝑅𝑑𝑖𝑚
and 𝑥 ∈ 𝑋 ⊂ 𝑅𝑑𝑖𝑚, 𝑑𝑖𝑚 ≥ 1. In this paper, the univariate
problem is considered. In what follows, let 𝑑𝑖𝑚 = 1 and
𝑋 = [−1, 1]. 𝜎(𝑥) is called the active function of neural
networks. In many classical networks, 𝜎(𝑥) is often taken as
the sigmoidal function, i. e., it satisfies the conditions,

lim
𝑥→+∞𝜎(𝑥) = 1, lim

𝑥→−∞𝜎(𝑥) = 0.

For examples, the logistic squashing function, one of the
most widely used sigmoidal function, is defined by

𝜎(𝑥) :=
1

1 + 𝑒−𝑥
, (4)

which also has many applications in biology, demography, etc.
Recently, some authors considered the neural networks as

the regression estimators. For example, in [5], Kohler and
Krzyzak showed that the 𝐿2 error of neural networks to
regression function can be bounded for some special regression
functions, where the function 𝑚(𝑥) is Hölder continuous, if
there is a constant 𝐶 such that,

∣𝑚(𝑥)−𝑚(𝑦)∣ ≤ 𝐶 ⋅ ∥𝑥− 𝑦∥𝑝, 0 < 𝑝 ≤ 1.

In this paper, the authors discuss the general case for
regression function, and choose the set of FNNs as hypotheses
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space. The regularized regression algorithm is presented to
define

𝑓𝑧 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑛∈ℋ𝑚
(
𝜀𝑛(𝑓𝑛) + 𝜆 ∥ 𝑐(𝑓𝑛) ∥22

)

with the empiric error

𝜀𝑛(𝑓𝑛) :=
1

𝑛

𝑛∑

𝑖=1

(𝑓𝑛(𝑥𝑖)− 𝑦𝑖)
2,

and the regularization term

∥ 𝑐(𝑓𝑛) ∥22:=

𝑚∑

𝑖=0

∣𝑐𝑖∣2, 𝑓𝑛 ∈ ℋ𝑚,

here 𝜆 ≥ 0, ∣𝑦∣ ≤ 𝐿 <∞.

II. MODIFIED SIGMOIDAL FUNCTIONS AND RELATED

CONCLUSIONS

In [6], Chen and Cao introduced the following function

Φ(𝑥) :=
1

2
(𝜎(𝑥 + 1)− 𝜎(𝑥− 1)) , (5)

where 𝜎(𝑥) is the logistic function defined by (4). They
constructed operators in the same paper and proved that the
continuous functions can be approximated by these operators
in the uniform norm.

Function Φ(𝑥) has some interesting properties.

Proposition 1: (a)
∫ +∞

−∞
Φ(𝑥)𝑑𝑥 = 1;

(b) The Fourier transform of Φ equal to 0, that is, Φ̂(𝑘) = 0,
𝑘 ∈ 𝑍, 𝑘 ∕= 0;

(c) For any 𝑥 ∈ 𝑅,
+∞∑

𝑘=−∞
Φ(𝑥− 𝑘) = 1;

(d) Φ(𝑥) is even and non-increasing for 𝑥 ≥ 0.
Proof.(a), (b) and (c) can be found in [6]. By the definition

of Φ(𝑥), we have

Φ(𝑥) =
𝑒2 − 1

2

1

(1 + 𝑒1+𝑥) (1 + 𝑒1−𝑥)
.

Then Φ(𝑥) is even. By noting that

Φ′(𝑥) = −𝑒(𝑒
2 − 1)

2

𝑒𝑥 − 𝑒−𝑥

(1 + 𝑒1+𝑥)2(1 + 𝑒1−𝑥)2
.

we see that, Φ(𝑥) is increasing on (−∞, 0] and decreasing
on (0,∞).

In this section, a new FNNs operator is constructed based
on (5). The approximation properties of this operator are
investigated. Especially, the Jackson type estimation of the
operator is established in 𝐿2

𝜌𝑋 with Borel probability measure.

The feed forward neural networks operator with Φ(𝑥) is
defined as follows:

𝐼𝑘,𝑑(𝑓, 𝑥) :=

2(𝑘+𝑑)∑

𝑗=0

𝑐𝑗Φ(𝑘𝑥− 𝑗 + (𝑘 + 𝑑)), 𝑑 ≤ 𝑘, (6)

where the coefficients 𝑐𝑗 are defined by

𝑐𝑗 :=

⎧
⎨

⎩

∫ −1+ 1
𝑘+1

−1 𝑓(𝑡)𝑑𝜌𝑋(𝑡)
∫ −1+ 1

𝑘+1

−1 𝑑𝜌𝑋(𝑡)
, 0 ≤ 𝑗 ≤ 𝑑− 1,

∫ 𝑗+1−𝑘−𝑑
𝑘+1

𝑗−𝑘−𝑑
𝑘+1

𝑓(𝑡)𝑑𝜌𝑋(𝑡)

∫ 𝑗+1−𝑘−𝑑
𝑘+1

𝑗−𝑘−𝑑
𝑘+1

𝑑𝜌𝑋(𝑡)
, 𝑑 ≤ 𝑗 ≤ 2𝑘 + 𝑑,

∫ 1

1− 1
𝑘+1

𝑓(𝑡)𝑑𝜌𝑋(𝑡)
∫ 1

1− 1
𝑘+1

𝑑𝜌𝑋(𝑡)
, 2𝑘 + 𝑑 + 1→ 2(𝑘 + 𝑑).

Remark 1: If we add the restriction 2(𝑘 + 𝑑) ≤ 𝑚 on 𝐼𝑘,𝑑,
then by (d) in Proposition 1, it is obvious that 𝐼𝑘,𝑑(𝑓, 𝑥) ∈ ℋ𝑚.

We show that 𝐼𝑘,𝑑 is bounded in 𝐿𝑝𝜌𝑋 spaces. In fact, we
have

Theorem 1: Let 𝑋 = [−1, 1], 𝑓 ∈ 𝐿𝑝𝜌𝑋 , (1 ≤ 𝑝 ≤ ∞). If
there is a positive constant 𝐶 such that

∫
𝑋

Φ(𝑘𝑥− 𝑗)𝑑𝜌𝑋(𝑥)
∫ 𝑗+1
𝑘+1
𝑗
𝑘+1

𝑑𝜌𝑋(𝑥)
≤ 𝐶, ∣𝑗∣ ≤ 𝑘 (7)

then

∥ 𝐼𝑘,𝑑(𝑓) ∥𝑝≤ 3𝐶∥𝑓∥𝑝. (8)

Proof. 𝑝 =∞, by the definition of 𝐼𝑘,𝑑(𝑓, 𝑥), we can rewrite
it as follows

𝐼𝑘,𝑑(𝑓, 𝑥) =

2(𝑘+𝑑)∑

𝑗=0

𝑐𝑗Φ(𝑘𝑥− 𝑗 + (𝑘 + 𝑑))

=

−𝑘−1∑

𝑗=−(𝑘+𝑑)

⎛

⎝
∫ −1+ 1

𝑘+1

−1 𝑓(𝑡)𝑑𝜌𝑋(𝑡)
∫ −1+ 1

𝑘+1

−1 𝑑𝜌𝑋(𝑡)

⎞

⎠Φ(𝑘𝑥− 𝑗)

+

𝑘∑

𝑗=−𝑘

⎛

⎜
⎝

∫ 𝑗+1
𝑘+1
𝑗
𝑘+1

𝑓(𝑡)𝑑𝜌𝑋(𝑡)

∫ 𝑗+1
𝑘+1
𝑗
𝑘+1

𝑑𝜌𝑋(𝑡)

⎞

⎟
⎠Φ(𝑘𝑥− 𝑗)

+
𝑘+𝑑∑

𝑗=𝑘+1

⎛

⎝

∫ 1

1− 1
𝑘+1

𝑓(𝑡)𝑑𝜌𝑋(𝑡)
∫ 1

1− 1
𝑘+1

𝑑𝜌𝑋(𝑡)

⎞

⎠Φ(𝑘𝑥− 𝑗)

:= 𝐼
(1)
𝑘,𝑑 + 𝐼

(2)
𝑘,𝑑 + 𝐼

(3)
𝑘,𝑑.

Thus, by (c) in Proposition 1 , for 𝑓 ∈ 𝐿∞𝜌𝑋 ,

∥𝐼𝑘,𝑑(𝑓)∥∞ ≤ ∥𝑓∥∞
𝑘+𝑑∑

𝑗=−(𝑘+𝑑)
Φ(𝑘𝑥− 𝑗)

≤ ∥𝑓∥∞
+∞∑

𝑗=−∞
Φ(𝑘𝑥− 𝑗) = ∥𝑓∥∞. (9)

When 1 ≤ 𝑝 <∞, by Minkowski’s inequality, we have

∥ 𝐼𝑘,𝑑(𝑓) ∥𝑝≤∥ 𝐼(1)𝑘,𝑑 ∥𝑝 + ∥ 𝐼(2)𝑘,𝑑 ∥𝑝 + ∥ 𝐼(3)𝑘,𝑑 ∥𝑝 .
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By Hölder’s inequality, (a) in Proposition 1 and assumption
(7), we have

∥ 𝐼(2)𝑘,𝑑 ∥𝑝𝑝≤ 𝐶

∫

𝑋

∣𝑓(𝑡)∣𝑝𝑑𝜌𝑋(𝑡) = 𝐶∥𝑓∥𝑝𝑝.

Analogously, we have

∥ 𝐼(1)𝑘,𝑑 ∥𝑝𝑝≤ 𝐶∥𝑓∥𝑝𝑝, ∥ 𝐼(3)𝑘,𝑑 ∥𝑝𝑝≤ 𝐶∥𝑓∥𝑝𝑝.
Therefore, for 1 ≤ 𝑝 ≤ ∞, we have

∥ 𝐼𝑘,𝑑(𝑓) ∥𝑝≤ 3𝐶∥𝑓∥𝑝.
Remark 2: If 𝑑𝜌𝑋(𝑡) = 𝑑𝑡, then (7) reduces to

∫
𝑋

(𝑘 +
1)Φ(𝑘𝑥 − 𝑗)𝑑𝑥 ≤ 𝐶, which can be easily deduced from (a)
in Proposition 1.

Next, we prove that the error between 𝐼𝑘,𝑑(𝑓, 𝑥) and 𝑓(𝑥)
can be bounded by K-functionals between 𝐿2

𝜌𝑋 and some
Sobolev type spaces.

Theorem 2: Suppose 𝑋 = [−1, 1]. For any function 𝑔 such
that 𝑔, 𝑔′ ∈ 𝐿2

𝜌𝑋 , we have

∥𝐼𝑘,𝑑(𝑔, ⋅)− 𝑔∥𝐿2
𝜌𝑋

≤ 2
√

Δ𝑘,𝑑 ⋅ ∥𝑔′∥𝐿2
𝜌𝑋

+ 4𝑒−𝑑/2∥𝑔∥𝐿2
𝜌𝑋
,

where Δ𝑘,𝑑 :=
∥
∥
∥𝐼𝑘,𝑑

(∣∣
∣
∫ 𝑡
𝑥
𝑑𝜌𝑋(𝑢)

∣
∣
∣ , 𝑥

)∥∥
∥
𝐿1
𝜌𝑋

.

Proof. By the definition of 𝐼𝑚,𝑑(𝑓, 𝑥) and (c) in Proposition
1, write Φ(.) := Φ(𝑘𝑥− 𝑗) write

𝐼𝑘,𝑑(𝑔, 𝑥)− 𝑔(𝑥)

=
−𝑘−1∑

𝑗=−(𝑘+𝑑)

⎛

⎝
∫ −𝑘
𝑘+1

−1 (𝑔(𝑡)− 𝑔(𝑥))𝑑𝜌𝑋(𝑡)
∫ −1+ 1

𝑘+1

−1 𝑑𝜌𝑋(𝑡)

⎞

⎠Φ(.)

+
𝑘∑

𝑗=−𝑘

⎛

⎜
⎝

∫ 𝑗+1
𝑘+1
𝑗
𝑘+1

(𝑔(𝑡)− 𝑔(𝑥))𝑑𝜌𝑋(𝑡)

∫ 𝑗+1
𝑘+1
𝑗
𝑘+1

𝑑𝜌𝑋(𝑡)

⎞

⎟
⎠Φ(.)

+
𝑘+𝑑∑

𝑗=𝑘+1

⎛

⎝

∫ 1
𝑘
𝑘+1

(𝑔(𝑡)− 𝑔(𝑥))𝑑𝜌𝑋(𝑡)
∫ 1

1− 1
𝑘+1

𝑑𝜌𝑋(𝑡)

⎞

⎠Φ(.)

−
∑

∣𝑗∣≥𝑘+𝑑+1

𝑔(𝑥)Φ(.)

=: 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

Therefore, by Minkowski’s inequality,

∥𝐼𝑘,𝑑(𝑔, ⋅)− 𝑔∥𝐿2
𝜌𝑋

≤ ∥𝐼1∥𝐿2
𝜌𝑋

+ ∥𝐼2∥𝐿2
𝜌𝑋

+ ∥𝐼3∥𝐿2
𝜌𝑋

+ ∥𝐼4∥𝐿2
𝜌𝑋
.

Applying the Schwarz inequality and (c)in Proposition 1 ,

∥𝐼4∥2𝐿2
𝜌𝑋

≤
∫

𝑋

∑

∣𝑗∣≥𝑘+𝑑+1

𝑔2(𝑥)Φ(.)𝑑𝜌𝑋(𝑥).

Since Φ(𝑥) is even and non-increasing when 𝑥 ≥ 0 ( (d)
in Proposition 1), also notice that ∣𝑘𝑥− 𝑗∣ ≥ 𝑑 + 1 for ∣𝑗∣ ≥
𝑘 + 𝑑 + 1. We deduce that

∥𝐼4∥2𝐿2
𝜌𝑋

≤ 2

∫

𝑋

𝑔2(𝑥)

(∫ ∞

𝑑

Φ(𝑡)𝑑𝑡

)
𝑑𝜌𝑋(𝑥)

≤ 𝑒2 − 1

2𝑒
𝑒−𝑑∥𝑔∥2𝐿2

𝜌𝑋

≤ 2𝑒−𝑑∥𝑔∥2𝐿2
𝜌𝑋

.

We can estimate ∥𝐼2∥𝐿2
𝜌𝑋

in a similar way. By using Schwarz’s
inequality and (c), (d) in Proposition 1, we have the estimates
for 𝐼2 − 𝐼4 and obtain

∥𝐼𝑘,𝑑(𝑔, ⋅)− 𝑔∥2𝐿2
𝜌𝑋

≤ 4(∥𝐼1∥2𝐿2
𝜌𝑋

+ ∥𝐼2∥2𝐿2
𝜌𝑋

+ ∥𝐼3∥2𝐿2
𝜌𝑋

+ ∥𝐼4∥2𝐿2
𝜌𝑋

)

≤ 2
√

Δ𝑘,𝑑 ⋅ ∥𝑔′∥𝐿2
𝜌𝑋

+ 4𝑒−𝑑/2∥𝑔∥𝐿2
𝜌𝑋
.

which proves Theorem 2.
Denote the K-functional between the 𝐿2

𝜌𝑋 and Sobolev
space by

𝐾(𝑓, 𝑡) := inf
𝑔,𝑔′∈𝐿2

𝜌𝑋

{
(3𝐶 + 1) ∥𝑔 − 𝑓∥𝐿2

𝜌𝑋

+2𝑡 ∥𝑔′∥𝐿2
𝜌𝑋

+ 4𝑒−𝑑/2∥𝑔∥𝐿2
𝜌𝑋

}
.

Theorem 3: For 𝑓 ∈ 𝐿2
𝜌𝑋 , we have

∥𝐼𝑘,𝑑(𝑓, ⋅)− 𝑓∥𝐿2
𝜌𝑋

≤ 𝐾(𝑓,
√

Δ𝑘,𝑑).

Proof. For any 𝑔 ∈ 𝐿2
𝜌𝑋 that also satisfies 𝑔′ ∈ 𝐿2

𝜌𝑋 , by
Minkowski inequality and Theorem 1,

∥𝐼𝑘,𝑑(𝑓, ⋅)− 𝑓∥𝐿2
𝜌𝑋

≤∥𝐼𝑘,𝑑(𝑓 − 𝑔, ⋅)∥𝐿2
𝜌𝑋

+ ∥𝐼𝑘,𝑑(𝑔, ⋅)− 𝑔∥𝐿2
𝜌𝑋

+ ∥𝑔 − 𝑓∥𝐿2
𝜌𝑋

≤(3𝐶 + 1) ∥𝑔 − 𝑓∥𝐿2
𝜌𝑋

+ ∥𝐼𝑘,𝑑(𝑔, ⋅)− 𝑔∥𝐿2
𝜌𝑋

.

By taking the infimum over the space where function 𝑔
belongs to , and by Theorem 2,

∥𝐼𝑘,𝑑(𝑓, ⋅)− 𝑓∥𝐿2
𝜌𝑋

≤ 𝐾(𝑓,
√

Δ𝑘,𝑑).

Remark 3: The difference between Theorem 3 and the usual
(weighted) approximation is that the weight used in this paper
is a Borel probability measure 𝜌𝑋 , which is not necessarily
regular.

III. MAIN RESULTS

The main purpose of this paper is to investigate the error
between two least square errors 𝜀(𝑓𝑧) and 𝜀(𝑓𝜌). ( It is obvious
that 𝜀(𝑓𝑧) − 𝜀(𝑓𝜌) =∥ 𝑓𝑧 − 𝑓𝜌 ∥22.) In order to do that, we
rewrite 𝜀(𝑓𝑧)−𝜀(𝑓𝜌) with the regularization term of parameter
𝜆.

𝜀(𝑓𝑧)− 𝜀(𝑓𝜌) ≤ 𝜀(𝑓𝑧)− 𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝑓𝑧) ∥22 .
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Then, 𝜀(𝑓𝑧) − 𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝑓𝑧) ∥22 can be decomposed as
follows:

𝜀(𝑓𝑧)− 𝜀(𝑓𝜌) ≤ 𝜀(𝑓𝑧)− 𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝑓𝑧) ∥22
≤ (𝜀(𝑓𝑧)− 𝜀𝑧(𝑓𝑧)) + (𝜀𝑧(𝐼𝑘,𝑑(𝑓𝜌))− 𝜀(𝐼𝑘,𝑑(𝑓𝜌)))

+
{
𝜀𝑧(𝑓𝑧) + 𝜆 ∥ 𝑐(𝑓𝑧) ∥22 −𝜀𝑧(𝐼𝑘,𝑑(𝑓𝜌))

−𝜆 ∥ 𝑐(𝐼𝑘,𝑑(𝑓𝜌)) ∥22
}

(10)

+ (𝜀(𝐼𝑘,𝑑(𝑓𝜌))− 𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝐼𝑘,𝑑(𝑓𝜌)) ∥22).

In what follows, we always assume that 2(𝑘 + 𝑑) ≤ 𝑚 to
ensure that 𝐼𝑚,𝑑(𝑓, 𝑥) ∈ ℋ𝑚. Term (10) is at most zero, since
𝐼𝑘,𝑑(𝑓𝜌) ∈ ℋ𝑚. Therefore

𝜀(𝑓𝑧)− 𝜀(𝑓𝜌)

≤ (𝜀(𝑓𝑧)− 𝜀𝑧(𝑓𝑧)) + (𝜀𝑧(𝐼𝑘,𝑑(𝑓𝜌))− 𝜀(𝐼𝑘,𝑑(𝑓𝜌)))

+ (𝜀(𝐼𝑘,𝑑(𝑓𝜌))− 𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝐼𝑘,𝑑(𝑓𝜌)) ∥22).

(11)

The term 𝜀(𝑓𝑧) − 𝜀𝑧(𝑓𝑧) + 𝜀𝑧(𝐼𝑘,𝑑(𝑓𝜌)) − 𝜀(𝐼𝑘,𝑑(𝑓𝜌)) in
(11) is called the sample error, and the term 𝜀(𝐼𝑘,𝑑(𝑓𝜌)) −
𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝐼𝑘,𝑑(𝑓𝜌)) ∥22 estimates the regularization error.
Their discussion would be processed in Section 4 and 5. After
estimating these three terms, we obtain the following Theorem.

Theorem 4: Suppose that ∣𝑌 ∣ ≤ 𝐿. Let

𝜆 =
1

𝑛 (1 + 𝑐∥𝐼𝑘,𝑑(𝑓𝜌, ⋅)∥22)
,

write 𝐴 = ∥𝐼𝑘,𝑑(𝑓𝜌, ⋅)− 𝑓𝜌∥2𝐿2
𝜌𝑋

, then for any 𝜖 > 0 and

0 < 𝛿 < 1, with confidence 1− 𝛿, we have

𝜀(𝑓𝑧)− 𝜀(𝑓𝜌)

≤ 7𝑀2
𝑛

3𝑛
log

1

𝛿
+ 2𝐴 + 𝜖 +

1

𝑛

8

[
24𝑀𝑛𝑒 (𝑚 + 1)

𝜖

]7(𝑚+1)
128𝑀2

𝑛

𝑛𝜖
𝑒
− 𝑛𝜖2

128𝑀2
𝑛 .

IV. PRELIMINARIES

In this section, we present some definitions and lemmas for
preparation.

Definition 1: (cf. [7]) Let 𝒜 be a class of subsets of 𝑅𝑑𝑖𝑚

and 𝑛 ∈ 𝑁 .
(a) For 𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛 ∈ 𝑅𝑑𝑖𝑚, define

𝑠 (𝒜, {𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛}) = ∣{𝐴 ∩ {𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛} : 𝐴 ∈ 𝒜}∣ ,
that is, 𝑠 (𝒜, {𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛}) is the number of different subsets
of {𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛} of the form 𝐴 ∩ {𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛}, 𝐴 ∈ 𝒜.
(b) Let 𝒢 be a subset of 𝑅𝑑𝑖𝑚 of size 𝑛. One says that 𝒜

shatters 𝒢 if 𝑠(𝒜,𝒢) = 2𝑛, i.e., each subset of 𝒢 can be
represented in the form 𝒜 ∩ 𝒢 for some 𝐴 ∈ 𝒜.
(c) The 𝑛−th shatter coefficients of 𝒜 is

𝑆(𝒜, 𝑛) := max
{𝑧1,⋅⋅⋅ ,𝑧𝑛}⊆𝑅𝑑𝑖𝑚

𝑠(𝒜, {𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛}).

Definition 2: (cf. [7]) Let 𝒜 be a class of subsets of 𝑅𝑑𝑖𝑚

with 𝒜 ∕= 𝜙. The VC dimension (or Vapnik-Chervonenkis
dimension ) 𝑉𝒜 of 𝒜 is defined by

𝑉𝒜 = sup {𝑛 ∈ 𝑁 : 𝑆(𝒜, 𝑛) = 2𝑛}

i.e., the VC dimension 𝑉𝒜 is the largest integer 𝑛 such that
there exists a set of 𝑛 points in 𝑅𝑑𝑖𝑚 which can be shattered
by 𝒜.

Lemma 1: (cf. [7]) Let ℱ be a 𝑠-dimensional vector space
of real functions on 𝑅𝑑𝑖𝑚, and set

ℱ̃ := {{𝑧 : 𝑓(𝑧) ≥ 0} : 𝑓 ∈ ℱ} ,
then we have 𝑉ℱ̃ ≤ 𝑠.

Lemma 2: Let ℱ be a family of real function on 𝑅, and 𝑔 :
𝑅→ 𝑅 be the function increasing on (−∞, 0] and decreasing
on [0,∞). Define 𝒢 = {𝑔 ∘ 𝑓 : 𝑓 ∈ ℱ},

𝒢+ :=
{

(𝑧, 𝑡) ∈ 𝑅𝑑𝑖𝑚 ×𝑅 : 𝑡 ≤ (𝑔 ∘ 𝑓)(𝑧);
}
,

ℱ+ :=
{

(𝑧, 𝑡) ∈ 𝑅𝑑𝑖𝑚 ×𝑅 : 𝑡 ≤ 𝑓(𝑧); 𝑓 ∈ ℱ}

ℱ− :=
{

(𝑧, 𝑡) ∈ 𝑅𝑑𝑖𝑚 ×𝑅 : 𝑡 ≥ 𝑓(𝑧); 𝑓 ∈ ℱ} .
Then

𝑉𝒢+ ≤ max {𝑉ℱ+ , 𝑉ℱ−} . (12)

Furthermore, let ℱ be a 𝑠-dimensional vector space of real
functions on 𝑅𝑑𝑖𝑚, we have the estimation

𝑉ℱ+ ≤ 𝑠 + 1, (13)

and
𝑉ℱ− ≤ 𝑠 + 1. (14)

Proof. Assume that (𝑎1, 𝑏1), ⋅ ⋅ ⋅ , (𝑎𝑛, 𝑏𝑛) are shattered
by 𝒢+. Then there exist functions 𝑓1, ⋅ ⋅ ⋅ , 𝑓2𝑛 such that(
𝐼{𝑔(𝑓𝑗(𝑎1))≥𝑏1}, ⋅ ⋅ ⋅ , 𝐼{𝑔(𝑓𝑗(𝑎𝑛))≥𝑏𝑛}

)
takes all 2𝑛 values for

𝑗 = 1, ⋅ ⋅ ⋅ , 2𝑛. We divided the proof into three cases.
Case 1. If all 𝑓𝑗(𝑎𝑖) ≤ 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 2𝑛. In this case,

noting that function 𝑔 is non-decreasing. For all 1 ≤ 𝑖 ≤ 𝑛,
define

𝑠𝑖 := min
1≤𝑗≤2𝑛

{𝑓𝑗(𝑎𝑖) : 𝑔(𝑓𝑗(𝑎𝑖)) ≥ 𝑏𝑖} , (15)

𝑡𝑖 := max
1≤𝑗≤2𝑛

{𝑓𝑗(𝑎𝑖) : 𝑔(𝑓𝑗(𝑎𝑖)) < 𝑏𝑖} . (16)

By the monotonicity of 𝑔, 𝑠𝑖 > 𝑡𝑖, we have

𝑡𝑖 <
𝑠𝑖 + 𝑡𝑖

2
< 𝑠𝑖.

Furthermore,

𝑔(𝑓𝑗(𝑎𝑖)) ≥ 𝑏𝑖 ⇒ 𝑓𝑗(𝑎𝑖) ≥ 𝑠𝑖 ⇒ 𝑓𝑗(𝑎𝑖) ≥ 𝑠𝑖 + 𝑡𝑖
2

,

and

𝑔(𝑓𝑗(𝑎𝑖)) < 𝑏𝑖 ⇒ 𝑓𝑗(𝑎𝑖) ≤ 𝑠𝑖 ⇒ 𝑓𝑗(𝑎𝑖) <
𝑠𝑖 + 𝑡𝑖

2
.

Thus for every 𝑗 ≤ 2𝑛, the binary vector
(
𝐼{𝑓𝑗(𝑎1)≥ 𝑠1+𝑡1

2 }, ⋅ ⋅ ⋅ , 𝐼{𝑓𝑗(𝑎𝑛)≥ 𝑠𝑛+𝑡𝑛
2 }

)

has the same values as
(
𝐼{𝑔(𝑓𝑗(𝑎1))≥𝑏1}, ⋅ ⋅ ⋅ , 𝐼{𝑔(𝑓𝑗(𝑎𝑛))≥𝑏𝑛}

)
.

Therefore, the pairs
(
𝑎1,

𝑠1 + 𝑡1
2

)
, ⋅ ⋅ ⋅ ,

(
𝑎𝑛,

𝑠𝑛 + 𝑡𝑛
2

)
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are shattered by ℱ+.
Case 2. If all 𝑓𝑗(𝑎𝑖) ≥ 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 2𝑛. The proof is

Similar to Case 1, and we can prove the pairs
(
𝑎1,

𝑠1 + 𝑡1
2

)
, ⋅ ⋅ ⋅ ,

(
𝑎𝑛,

𝑠𝑛 + 𝑡𝑛
2

)

are shattered by ℱ+.
Case 3. If 𝑓𝑗(𝑎𝑖) ≤ 0 for some 𝑗 = 1, ⋅ ⋅ ⋅ , 2𝑛 and 𝑖 =

1, ⋅ ⋅ ⋅ , 𝑛. Define

𝑠𝑟𝑖 := min
1≤𝑗≤2𝑛

{𝑓𝑗(𝑎𝑖) : 𝑔(𝑓𝑗(𝑎𝑖)) < 𝑏𝑖} ,
𝑠𝑙𝑖 := max

1≤𝑗≤2𝑛
{𝑓𝑗(𝑎𝑖) : 𝑔(𝑓𝑗(𝑎𝑖)) < 𝑏𝑖} ,

𝑡𝑟𝑖 := max
1≤𝑗≤2𝑛

{𝑓𝑗(𝑎𝑖) : 𝑔(𝑓𝑗(𝑎𝑖)) ≥ 𝑏𝑖} ,
𝑡𝑙𝑖 := min

1≤𝑗≤2𝑛
{𝑓𝑗(𝑎𝑖) : 𝑔(𝑓𝑗(𝑎𝑖)) ≥ 𝑏𝑖} .

Let 𝑀𝑖 =
𝑠𝑟𝑖+𝑠𝑙𝑖+𝑡𝑟𝑖+𝑡𝑙𝑖

4 , then we have

𝑔(𝑓𝑗(𝑎𝑖)−𝑀𝑖) < 𝑏𝑖 ⇒
𝑓𝑗(𝑎𝑖) >

𝑠𝑟𝑖 − 𝑠𝑙𝑖 + 𝑡𝑟𝑖 − 𝑡𝑙𝑖
4

.

and

𝑔(𝑓𝑗(𝑎𝑖)−𝑀𝑖) ≥ 𝑏𝑖 ⇒
𝑓𝑗(𝑎𝑖) ≤ 𝑠𝑟𝑖 − 𝑠𝑙𝑖 + 𝑡𝑟𝑖 − 𝑡𝑙𝑖

4
.

Therefore, we also have that
⎛

⎝𝐼{
𝑓𝑗(𝑎1)≤

𝑠𝑟1−𝑠𝑙1+𝑡𝑟1−𝑡𝑙1
4

}, ⋅ ⋅ ⋅ ,

𝐼{
𝑓𝑗(𝑎𝑛)≤

𝑠𝑟𝑛−𝑠𝑙𝑛+𝑡𝑟𝑛−𝑡𝑙𝑛
4

}

⎞

⎠

has the same values as
(
𝐼{𝑔(𝑓𝑗(𝑎1)−𝑀𝑖)≥𝑏1}, ⋅ ⋅ ⋅ , 𝐼{𝑔(𝑓𝑗(𝑎𝑛)−𝑀𝑖)≥𝑏𝑛}

)
.

Thus, the pairs
(
𝑎1,

𝑠𝑟1 − 𝑠𝑙1 + 𝑡𝑟1 − 𝑡𝑙1
4

)
, ⋅ ⋅ ⋅ ,

(
𝑎𝑛,

𝑠𝑟𝑛 − 𝑠𝑙𝑛 + 𝑡𝑟𝑛 − 𝑡𝑙𝑛
4

)

are shattered by ℱ+.
Noting that for 𝑓 ∈ ℱ , 𝜃 ∈ 𝑅,

ℱ+ =
{{(𝑧, 𝑡) ∈ 𝑅𝑑𝑖𝑚 ×𝑅 : 𝑡 ≤ 𝑓(𝑧)} : 𝑓 ∈ ℱ}

⊂ {{(𝑧, 𝑡) ∈ 𝑅𝑑𝑖𝑚 ×𝑅 : 𝑓(𝑧) + 𝑡𝜃 ≥ 0}}

Since ℱ is a 𝑠-dimensional vector space under the assumption,
applying Lemma 1 to the 𝑠+1 dimensional linear vector space
{𝑓(𝑧) + 𝑡𝜃 : 𝑓 ∈ ℱ , 𝜃 ∈ 𝑅}, which has dimension 𝑠 + 1, we
have (13).

Setting 𝑡𝜉− 𝑓(𝑧) ≥ 0, 𝜉 ∈ 𝑅, then (14) can be deduced by
the same discussion as (13).

Definition 3: For a subset 𝒮 of a metric space and 𝜂 > 0, the
covering number 𝒩 (𝒮, 𝜂) is defined to be the minimal integer
𝑙 ∈ 𝑁 such that there exist 𝑙 disks with radius 𝜂 covering 𝒮 .

Definition 4: Let 𝜖 > 0, let 𝒢 be a set of functions 𝑅𝑑𝑖𝑚 →
𝑅. Let 𝑧𝑛 = (𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛) be 𝑛 fixed points in 𝑅𝑑𝑖𝑚. Let 𝑟𝑛
be the corresponding empirical measure, i.e.,

𝑟𝑛(𝐴) =
1

𝑛

𝑛∑

𝑖=1

𝐼𝐴(𝑧𝑖), 𝐴 ⊆ 𝑅𝑑𝑖𝑚.

Then

∥𝑓∥𝐿𝑝(𝑟𝑛) :=

{
1

𝑛

𝑛∑

𝑖=1

∣𝑓(𝑧𝑖)∣𝑝
}1/𝑝

,

any 𝜖-cover of 𝒢 w.r.t. ∥ ⋅ ∥𝐿𝑝(𝑟𝑛) will be called an 𝐿𝑝 𝜖-cover
of 𝒢 on 𝑧𝑛, denoted by 𝒩𝑝(𝜖,𝒢, 𝑧𝑛).

In other words, 𝒩𝑝(𝜖,𝒢, 𝑧𝑛) is the minimal 𝒩 ∈ 𝑁 such
that there exist functions 𝑔1, ⋅ ⋅ ⋅ , 𝑔𝒩 : 𝑅𝑑𝑖𝑚 → 𝑅 with
the property that for every 𝑔 ∈ 𝒢 there is a 𝑗 = 𝑗(𝑔) ∈
{1, ⋅ ⋅ ⋅ ,𝒩} such that

{
1

𝑛

𝑛∑

𝑖=1

∣𝑔(𝑧𝑖)− 𝑔𝑗(𝑧𝑖)∣𝑝
}1/𝑝

< 𝜖.

Lemma 3: Let ℱ and 𝒢 be two families of real func-
tions on 𝑅𝑚. If ℱ ⊕ 𝒢 denotes the set of functions
{𝑓 + 𝑔 : 𝑓 ∈ ℱ , 𝑔 ∈ 𝒢}, then for any 𝑧𝑛1 ∈ 𝑅𝑛⋅𝑚 and 𝜖, 𝛿 > 0,
we have

𝒩1 (𝜖 + 𝛿,ℱ ⊕ 𝒢, 𝑧𝑛) ≤ 𝒩1 (𝜖,ℱ , 𝑧𝑛)𝒩1 (𝛿,𝒢, 𝑧𝑛) .

Lemma 4: Let ℱ and 𝒢 be two families of real bounded
functions on 𝑅𝑚. For any 𝑓 ∈ ℱ , 𝑔 ∈ 𝒢, ℱ ⊙ 𝒢 :=
{𝑓 ⋅ 𝑔 : 𝑓 ∈ ℱ , 𝑔 ∈ 𝒢}. Then for any 𝑧𝑛1 ∈ 𝑅𝑛⋅𝑚 and 𝜖, 𝛿 > 0
we have

𝒩1 (𝜖 + 𝛿,ℱ ⊙ 𝒢, 𝑧𝑛)

≤ 𝒩1 (𝜖/𝑀2,ℱ , 𝑧𝑛)𝒩1 (𝛿/𝑀1,𝒢, 𝑧𝑛) .

Lemma 5: Let 𝒢 be a set of functions 𝑔 : 𝑅𝑑𝑖𝑚 → [0, 𝐵],
for any 𝑛 ∈ 𝑍+ and 𝜖 > 0,

𝑃

{

sup
𝑔∈𝒢

∣
∣
∣
∣
∣
1

𝑛

𝑛∑

𝑖=1

𝑔(𝑧𝑖)− 𝐸(𝑔(𝑧))

∣
∣
∣
∣
∣
> 𝜖

}

≤ 8𝐸
{
𝒩1

( 𝜖
8
,𝒢, 𝑧𝑛

)}
⋅ exp

{
− 𝑛𝜖2

128𝐵2

}
. (17)

Furthermore, if 𝑉𝒢+ ≥ 2 and 0 < 𝜖 < 𝐵
4 , 𝑝 ≥ 1, then

𝒩𝑝 (𝜖,𝒢, 𝑍𝑛) ≤ 3

(
2𝑒𝐵𝑝

𝜖𝑝
log

3𝑒𝐵𝑝

𝜖𝑝

)𝑉𝒢+
. (18)

We can find Definition 3, 4 and Lemma 3, 4 and 5 in [7].
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V. PROOFS OF THE MAIN THEOREMS

Write

𝛼 := (𝑓𝑧(𝑥)− 𝑦)2 − (𝑓𝜌(𝑥)− 𝑦)2,

𝛽 := (𝐼𝑚,𝑑(𝑓𝜌, 𝑥)− 𝑦)2 − (𝑓𝜌(𝑥)− 𝑦)2. (19)

Then the sampling error in (11) can be represented as follows

(𝜀(𝑓𝑧)− 𝜀𝑧(𝑓𝑧)) + (𝜀𝑧(𝐼𝑚,𝑑(𝑓𝜌))− 𝜀(𝐼𝑚,𝑑(𝑓𝜌)))

=

{

𝐸(𝛼)− 1

𝑛

𝑛∑

𝑖=1

𝛼(𝑧𝑖)

}

+

{
1

𝑛

𝑛∑

𝑖=1

𝛽(𝑧𝑖)− 𝐸(𝛽)

}

:= Δ1 + Δ2.
(20)

Theorem 5: Let 𝛼 be defined as in (19). Then

Δ1 =

{

𝐸(𝛼)− 1

𝑛

𝑛∑

𝑖=1

𝛼(𝑧𝑖)

}

≤𝜖 + 8

[
24𝑀𝑛𝑒 (𝑚 + 1)

𝜖

]7(𝑚+1)

⋅
128𝑀2

𝑛

𝑛𝜖
⋅ exp

(
− 𝑛𝜖2

128𝑀2
𝑛

)
,

where 𝑀𝑛 = 8𝐿2
𝑛, 𝐿𝑛 is the upper bound of

∑𝑚
𝑗=0 ∣𝑐𝑗 ∣ defined

as in (3).
Proof of Theorem 5. As ∣𝑦∣ ≤ 𝐿 ( so ∣𝑓𝜌(𝑥)∣ ≤ 𝐿), and
∣𝑓(𝑥)∣ ≤ 𝐿𝑛 ( Note the assumption 𝐿 ≤ 𝐿𝑛 ), so

(𝑓(𝑥)− 𝑦)2 − (𝑓𝜌(𝑥)− 𝑦)2

=(𝑓(𝑥) + 𝑓𝜌(𝑥)− 2𝑦)(𝑓(𝑥)− 𝑓𝜌(𝑥))

≤ 8𝐿2
𝑛 := 𝑀𝑛.

Let 𝛼 := (𝑓𝑧(𝑥)− 𝑦)2 − (𝑓𝜌(𝑥)− 𝑦)2, write

Λ := {𝛼(𝑧) : 𝑅𝑛 → [0,𝑀𝑛]} ,
by (17) in Lemma 5, we have

𝑃

{

sup
𝑔∈𝒢

∣
∣
∣
∣
∣
1

𝑛

𝑛∑

𝑖=1

𝛼(𝑧𝑖)− 𝐸(𝛼(𝑧))

∣
∣
∣
∣
∣
> 𝜔

}

≤ 8𝐸
{
𝒩1

(𝜔
8
,Λ, 𝑧𝑛

)}
⋅ exp

{
− 𝑛𝜔2

128𝑀2
𝑛

}
. (21)

Noting that

1

𝑛

𝑛∑

𝑖=1

∣𝛼1(𝑧𝑖)− 𝛼2(𝑧𝑖)∣

=
1

𝑛

𝑛∑

𝑖=1

∣
∣(𝑓1(𝑥𝑖)− 𝑦𝑖)

2 − (𝑓2(𝑥𝑖)− 𝑦𝑖)
2
∣
∣

≤ 4𝐿𝑛
𝑛

𝑛∑

𝑖=1

∣𝑓1(𝑥𝑖)− 𝑓2(𝑥𝑖)∣ .

Therefore,

𝒩1

(𝜔
8
,Λ, 𝑧𝑛

)
≤ 𝒩1

(
𝜔

32𝐿𝑛
, 𝐻𝑚, 𝑥

𝑛

)
. (22)

Define

𝒮1 := {𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝑅} ,
𝒮2 := {𝜎(𝑎𝑥 + 𝑏), 𝑎, 𝑏 ∈ 𝑅} ,
𝒮3 := {𝑐 ⋅ 𝜎(𝑎𝑥 + 𝑏), 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑐 ∈ [−𝐿𝑛, 𝐿𝑛]} .

By (13) in Lemma2, noticing that the dimension of 𝒮1 is 2,
(12)− (14) imply that

𝑉𝒮+
2
≤ 3.

From Lemma 4 and Lemma 5,

𝒩1 (𝜔,𝒮3, 𝑥𝑛) = 𝒩1

(𝜔
2

+
𝜔

2
, {𝑐 ⋅ 𝜎(𝑎𝑥 + 𝑏)} , 𝑥𝑛

)

≤𝒩1

(𝜔
2
, {𝑐} , 𝑥𝑛

)
⋅ 𝒩1

(
𝜔

2𝐿𝑛
, {𝜎(𝑎𝑥 + 𝑏)} , 𝑥𝑛

)

≤4𝐿𝑛
𝜔
⋅ 3

(
4𝑒𝐿𝑛
𝜔

log
6𝑒𝐿𝑛
𝜔

)3

≤
(

6𝑒𝐿𝑛
𝜔

)7

.

Applying Lemma 3, we have

𝒩1

(
𝜔

32𝐿𝑛
, 𝐻𝑚, 𝑥

𝑛

)

≤
[
𝒩1

(
𝜔

32𝐿𝑛(𝑚 + 1)
,𝒮3, 𝑥𝑛

)]𝑚+1

≤
[

192𝑒𝐿2
𝑛 (𝑚 + 1)

𝜔

]7(𝑚+1)

.

(23)

Therefore, from (21), (22) and (23) we obtain

𝑃

{

sup
𝛼∈Λ

∣
∣
∣
∣
∣
1

𝑛

𝑛∑

𝑖=1

𝛼(𝑧𝑖)− 𝐸(𝛼(𝑧))

∣
∣
∣
∣
∣
> 𝜔

}

≤8

[
24𝑀𝑛𝑒 (𝑚 + 1)

𝜔

]7(𝑚+1)

exp

{
− 𝑛𝜔2

128𝑀2
𝑛

}
.

Then, for arbitrary 𝜖 > 0, by the relationship

𝐸(𝜁) =

∫ 𝜖

0

𝑃 (𝜁 > 𝑡)𝑑𝑡 +

∫ ∞

𝜖

𝑃 (𝜁 > 𝑡)𝑑𝑡.

Taking 𝜁 = sup𝛼∈Λ
∣
∣ 1
𝑛

∑𝑛
𝑖=1 𝛼(𝑧𝑖)− 𝐸(𝛼(𝑧))

∣
∣, we have

𝐸

(

sup
𝛼∈Λ

∣
∣
∣
∣
∣
1

𝑛

𝑛∑

𝑖=1

𝛼(𝑧𝑖)− 𝐸(𝛼(𝑧))

∣
∣
∣
∣
∣

)

≤𝜖 + 8

[
24𝑀𝑛𝑒 (𝑚 + 1)

𝜖

]7(𝑚+1)

⋅
128𝑀2

𝑛

𝑛𝜖
⋅ exp

(
− 𝑛𝜖2

128𝑀2
𝑛

)
,

(24)

which proves Lemma 5.
Lemma 6: Suppose that 𝜉 is defined on 𝑍, with the mean

value 𝐸(𝜉) = 𝜇 and variance 𝜎2(𝜉), and for almost every
𝑧 ∈ 𝑍, ∣𝜉(𝑧) − 𝐸(𝜉)∣ ≤ 𝑀𝜉. Then, For any given 𝜖 > 0, the
following inequality holds ,

1364
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⎧
⎨

⎩
1

𝑛

𝑛∑

𝑗=1

𝜉(𝑧𝑖)− 𝜇 ≥ 𝜖

⎫
⎬

⎭

≤𝑒𝑥𝑝
{
− 𝑛𝜖2

2(𝜎2(𝜉) + 1
3𝑀𝜉𝜖)

}
.

Theorem 6: For any 0 < 𝛿 < 1, we have, with confidence
1− 𝛿 and 𝐴 = ∥𝐼𝑘,𝑑(𝑓𝜌)− 𝑓𝜌∥

2

𝐿2
𝜌𝑋

,

1

𝑛

𝑛∑

𝑖=1

𝛽(𝑧𝑖)− 𝐸(𝛽) ≤ 56𝐿2

3𝑛
log

1

𝛿
+ 𝐴.

Proof of Theorem 6. Since

𝛽 = (𝐼𝑘,𝑑(𝑓𝜌, 𝑥)− 𝑦)2 − (𝑓𝜌(𝑥)− 𝑦)2

=(𝐼𝑘,𝑑(𝑓𝜌, 𝑥)− 𝑓𝜌(𝑥))(𝐼𝑘,𝑑(𝑓𝜌, 𝑥) + 𝑓𝜌(𝑥)− 2𝑦).

By Lemma 1 and Theorem 1 (9), we have

∣𝛽∣ ≤ (∥𝐼𝑘,𝑑(𝑓𝜌, ⋅)∥∞ + 𝐿)(∥𝐼𝑘,𝑑(𝑓𝜌, ⋅)∥∞ + 3𝐿)

≤ (∥𝑓𝜌∥∞ + 𝐿)(∥𝑓𝜌∥∞ + 3𝐿) = 2𝐿 ⋅ 4𝐿 = 8𝐿2,

and ∣𝛽(𝑧)− 𝐸(𝛽)∣ ≤ 2 ⋅ 8𝐿2 = 16𝐿2. Furthermore,

𝜎2(𝛽) ≤ 𝐸(𝛽2) ≤ 16𝐿2 ∥ 𝐼𝑘,𝑑(𝑓𝜌)− 𝑓𝜌 ∥2𝐿2
𝜌𝑋

.

By Lemma 6, for any given 𝑠, the following inequality holds
with confidence 1− exp

{
− 𝑛𝑠2

2(𝜎2(𝜉)+ 1
3𝑀𝜉𝑠)

}
, 1
𝑛

∑𝑛
𝑗=1 𝜉(𝑧𝑖)−

𝜇 ≤ 𝑠. Now

1− exp

{
− 𝑛𝑠2

2(𝜎2(𝛽) + 1
3𝑀𝛽𝑠)

}

≥ 1− exp

⎧
⎨

⎩
− 𝑛𝑠2

32𝐿2(∥ 𝐼𝑘,𝑑(𝑓𝜌)− 𝑓𝜌 ∥2𝐿2
𝜌𝑋

+ 1
3𝑠)

⎫
⎬

⎭
.

Suppose that 𝑠∗ is the unique positive solution of the equation

− 𝑛𝑠2

32𝐿2(∥ 𝐼𝑘,𝑑(𝑓𝜌)− 𝑓𝜌 ∥2𝐿2
𝜌𝑋

+ 1
3𝑠)

= log 𝛿,

and denote ∥ 𝐼𝑘,𝑑(𝑓𝜌) − 𝑓𝜌 ∥2𝐿2
𝜌𝑋

by 𝐴. Then 𝑠∗ is the same
solution of

𝑛𝑠2 − 32𝐿2

3
𝑠 log

1

𝛿
− 32𝑀2𝐴 log

1

𝛿
= 0.

We have 𝑠∗ ≤ 56𝐿2

3𝑛 log 1
𝛿 + 𝐴. Thus

1

𝑛

𝑛∑

𝑖=1

𝛽(𝑧𝑖)− 𝐸(𝛽) ≤ 𝑠∗ ≤ 56𝐿2

3𝑛
log

1

𝛿
+ 𝐴 (25)

holds with confidence 1 − 𝛿. This completes the proof of
Theorem 6.

Proof of Theorem 4. By (11), (20), (24) and (25), write
𝐴 = 𝜀(𝐼𝑘,𝑑(𝑓𝜌))− 𝜀(𝑓𝜌), note the value of 𝜆, we have

𝜀(𝑓𝑧)− 𝜀(𝑓𝜌)

≤Δ1 + Δ2 + 𝜀(𝐼𝑘,𝑑(𝑓𝜌))− 𝜀(𝑓𝜌) + 𝜆 ∥ 𝑐(𝐼𝑘,𝑑(𝑓𝜌)) ∥22
≤𝜖 + 8

[
24𝑀𝑛𝑒 (𝑚 + 1)

𝜖

]7(𝑚+1)

⋅ 128𝑀2
𝑛

𝑛𝜖
⋅ 𝑒−

𝑛𝜖2

128𝑀2
𝑛

+
56𝐿2

3𝑛
log

1

𝛿
+ 2𝐴 +

1

𝑛
.

This proves Theorem 4.

Applying the upper bound estimate of ∥𝐼𝑘,𝑑(𝑓𝜌) − 𝑓𝜌∥22
in Theorem 3, combining with Theorem 4, the following is
obvious.

Corollary 1: Suppose that ∣𝑌 ∣ ≤ 𝐿. 𝐾(𝑓,
√

Δ𝑘,𝑑) is defined
as in Theorem 3. For any 𝜖 > 0 and 0 < 𝛿 < 1, with
confidence 1− 𝛿, the following estimate holds,

𝜀(𝑓𝑧)− 𝜀(𝑓𝜌)

≤𝜖 + 8

[
24𝑀𝑛𝑒 (𝑚 + 1)

𝜖

]7(𝑚+1)

⋅
128𝑀2

𝑛

𝑛𝜖
⋅ exp

(
− 𝑛𝜖2

128𝑀2
𝑛

)

+
56𝐿2

3𝑛
log

1

𝛿
+ 2𝐾(𝑓,

√
Δ𝑘,𝑑) +

1

𝑛
.

VI. CONCLUSION

In this paper, we solve the following two main problems.
1. We present the mathematical description to the space

which is composed by the FNNs.
2. We take ℋ𝑚, the set of feed forward neural networks

(3) as the hypothesis space, and give the exact rate of neu-
ral network estimators to regression functions (Theorem 4).
Furthermore, we investigate the least square error estimate of
(2).

REFERENCES

[1] A. M. Bagirov, C. Clausen and M. Kohler, Estimation of a regression
function by maxima of minima of linear functions. IEEE Trans. Inf.
Theory, 55 (2) (2009), 833-845.

[2] D. X. Zhou, K. Jetter, Approximation with polynomial kernels and SVM
classifiers. Adv Comput Math, 25 (2006), 323-344.

[3] B. Z. Li, G. M. Wang, Learning rates of least-square regularized
regression with polynomial kernels. Science in China Series A, 52
(2009), 687-700.

[4] Y. Q. Zhang, F. L. Cao and Z. B. Xu, Estimation of learning rate of
least square algorithm via Jackson operator. Neurocomputing, 74 (2011),
516-521.

[5] M. Kohler, A. Krzyzak, Adaptive regression estimation with multilayer
feedforward neural networks. Nonparametric Stat., 17(8) (2005), 891-
913.

[6] Z. X. Chen, F. L. Cao, The approximation operators with sigmoidal
functions. Computers and mathematics with applications, 58 (2009),
758-765.
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