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Abstract— Training RBMs is laborious due to the difficulty
of sampling from model’s distribution. Although using Parallel
Tempering (PT) alleviates the problem to some extent, it will
result in low swap acceptance ratio when the states’ energies of
neighboring chains are very different. In this paper, we propose
a novel PT algorithm based on the principle of swapping
between chains with the same level of energy. This new
algorithm partitions the state space obtained by a population
of Gibbs sampling chains into several energy rings. In each
ring, states have similar energies and swapping of each pair
of states are conducted with a probability. Experiments on a
toy dataset as well as the MNIST dataset shown that the new
algorithm keeps high swap acceptance ration and results in
better likelihood scores compared to several training methods.

I. INTRODUCTION

IN recent years, deep learning approaches have attracted
significant interest as a way for learning layered, hier-

archical representations of high-dimensional data [1]–[5].
Among the deep learning approaches, deep belief networks
(DBNs) [1]–[4] are the most popular ones, and have been
successfully applied to a variety of real-world applications
[1]–[10]. A DBN can be viewed as a composition of several
restricted Boltzmann machines (RBMs) [11]–[14] in which
the hidden layer of one RBM is used as the visible layer
of another RBM. By using layer-wise unsupervised pre-
training of RBMs, a more accurate model for discovering
the structure hidden in the data is easy to find. Therefore,
it is very important to have an efficient and well-behaving
learning method for RBMs.

RBM is a generative model, and its parameters can be
optimized by performing stochastic gradient descent on the
log-likelihood of the parameters given the training data. This
gradient contains two main terms: the so-called positive
phase raises the probability of training data and the so-called
negative phase involves an expectation over data sampled
from model’s distribution. The positive phase can be obtained
easily, but the negative phase is intractable since getting
an unbiased sample from the model’s distribution is much
more difficult. Even though the Markov Chain Monte-Carlo
can be used, it is time-consuming to perform alternating
Gibbs sampling to converge to the equilibrium distribution
of model.
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Contrastive Divergence (CD) algorithm proposed by Hin-
ton [13] replaces the expectation with a finite set of negative
samples, which are obtained by running a short Markov chain
initialized at positive training data. This yields a biased, but
low-variance gradient which has been shown to work well
for training RBMs [1]. However, the data-centric focus of
CD training can result in spurious probability modes far
from the training data. To improve upon CD’s limitation, the
Persistent Contrastive Divergence (PCD) was proposed [15]
to approximate the negative phase of gradient with samples
drawn from a persistent Markov chain. This method can find
a high probability region far away from the training data.
However, as training progresses and the model’s parameters
get larger, the distribution of model becomes more rough.
This will increase the chance that the chain gets stuck in
local modes of the distribution. To obtain better mixing rates,
Parallel Tempering (PT) was proposed [16][17], in which
supplementary Gibbs chains were introduced to sample from
more and more smoothed replicas of the target distribution.
This algorithm is one of the most promising sampling
techniques for RBM training.

Although PT achieves better mixing of the underlying
chain used to generate samples from the model, great care
must be taken to select the set of temperatures. Having too
few or incorrectly spaced chains can result in low swap
rates between neighboring chains which is disadvantageous
to RBM training. In this paper, we propose an novel training
algorithm for RBMs which combines PT with the principle
of swapping between chains under the same level of energy.
Instead of swapping states between neighboring chains, we
partition the state space into several energy rings based on
the energies of current states of the Gibbs sampling chains.
In each energy ring, states have similar energy levels, and
the swapping is conducted between chains lying in the same
ring.

The rest of this paper is organized as follows: after
providing a brief technical overview of RBMs and the main
algorithms for training them in Section II and Section III.
We describe the new algorithm in Section IV. Then, the new
algorithm is compared to CD, PCD and PT on a toy dataset
as well as on the MNIST dataset in Section V. In section VI,
some related work is introduced. Finally, we conclude this
paper with a summary in Section VII.

II. RESTRICTED BOLTZMANN MACHINES

An RBM [11]–[14] is a two-layer, bipartite, undirected
graphical model with a set of visible units v of dimension 𝐷
representing the observable data, and a set of binary hidden
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units h of dimension 𝐾 learned to represent features that
capture higher-order correlations in the observed data. These
two layers are connected by a symmetrical weight matrix
𝑊 ∈ 𝑅𝐷×𝐾 , whereas there are no connections within the
same layer. Originally, RBMs were constructed using binary
visible and hidden units, but many other types of units can be
used. In this paper, we focus on binary case for both layers.

Given the energy function 𝐸(v, h) of the state (v, h), the
joint distribution over the visible and hidden units is defined
by

𝑃 (v, h) =
1

𝑍
𝑒𝑥𝑝(−𝐸(v, h)), (1)

𝑍 =
∑

v

∑

h

𝑒𝑥𝑝(−𝐸(v, h)). (2)

where 𝑍 is the partition function. The energy function has
the form

𝐸(v, h) = −
𝐷∑

𝑖=1

𝐾∑

𝑗=1

𝑣𝑖𝑊𝑖𝑗ℎ𝑗 −
𝐾∑

𝑗=1

𝑏𝑗ℎ𝑗 −
𝐷∑

𝑖=1

𝑐𝑖𝑣𝑖, (3)

where 𝑏𝑗 and 𝑐𝑖 are the hidden and visible unit biases,
respectively. 𝜃 = {𝑤𝑖𝑗 , 𝑏𝑗 , 𝑐𝑖} includes all parameters needed
to be learned.

Since RBM is a generative model, its parameters can
be optimized by performing stochastic gradient descent on
the log-likelihood of the parameters given the training data.
The probability that the network assigns to a visible vector
(training data) is given by summing over all possible hidden
vectors, i.e.,

𝑝(v) =
1

𝑍

∑

ℎ

𝑒𝑥𝑝(−𝐸(v, h)). (4)

The derivative of the log probability of a training data with
respect to 𝜃 is simple and can be expressed as

∂ log 𝑝(v)
∂𝜃

= −
∑

h

𝑝(h∣v)∂𝐸(v, h)
∂𝜃

+
∑

x

𝑝(x)
∂𝐸(x)
∂𝜃

= ⟨∂(−𝐸(v, h))
∂𝜃

⟩𝑝(h∣v) − ⟨∂(−𝐸(x))
∂𝜃

⟩𝑝(x),

(5)

where the angle brackets denote expectations under the
distribution specified by the subscript that follows. The
first term on the right side corresponds to sampling hidden
configurations when the visible units are clamped to the
training data; it is usually called the positive phase. The
second term corresponds to obtaining joint hidden and visible
samples from the current model; it is usually called the
negative phase.

III. APPROXIMATING THE RBM LOG-LIKELIHOOD

GRADIENT

From the energy function, we can see that the hidden units
ℎ𝑗 are independent of each other when conditioning on v
since there are no direct connections between hidden units.
Similarly, the visible units 𝑣𝑖 are also independent of each

other when conditioning on h. In detail, the state ℎ𝑗 of each
hidden unit 𝑗 is set to be 1 with a probability

𝑝(ℎ𝑗 = 1∣v) = 𝜎(
∑

𝑖

𝑊𝑖𝑗𝑣𝑖 + 𝑏𝑗), (6)

where 𝜎(𝑠) = 1/(1 + 𝑒𝑥𝑝(−𝑠)) is the sigmoid function. The
binary state 𝑣𝑖 of each visible unit 𝑖 is set to be 1 with a
probability

𝑝(𝑣𝑖 = 1∣h) = 𝜎(
∑

𝑗

𝑊𝑖𝑗ℎ𝑗 + 𝑐𝑖). (7)

Based on above analysis, it is straightforward to sample
h∣v and v∣h in the RBMs, so obtaining samples for the
positive phase is easy. However, obtaining samples from
the model for the unclamped negative phase is not easy, as
it would require running the alternating Gibbs sampling to
converge to the equilibrium distribution of model. This is
time-consuming.

So far, many learning algorithms have been proposed to
estimate the negative phase. The most widely used methods
are CD, PCD and PT.

CD is a standard way to train RBMs. Instead of approxi-
mating the negative phase in the log-likelihood gradient by a
sample from the model’s distribution, CD runs a Gibbs chain
for only several steps which is initialized with a training data.
The last sample of the chain is used to estimate the negative
phase.

PCD on the other hand, approximates the gradient by
drawing negative phase samples from a persistent Markov
chain which are run for several Gibbs sampling steps after
each parameter update. That is to say, the initial state of the
current Gibbs chain is equal to the one from the previous
update step, rather than the training data.

Both CD and PCD exploit a single Markov chain to
estimate the negative phase. However, reliance on a single
Markov chain often leads to degenerative training. When
faced with the kind of multimodal target distributions, the
Gibbs sampling employed in CD and PCD are subject to
becoming stuck in local maxima of probability density.

PT introduces supplementary Gibbs chains that sample
from more and more smoothed replicas of the original distri-
bution. This can be formalized in the following way: given
an ordered sequence of temperatures 𝑡𝑟 from temperature
𝑡1 = 1 that samples from the target distribution to a high
temperature 𝑡𝑁 , i.e., 1 = 𝑡1 < 𝑡2 < ... < 𝑡𝑁 , a set of 𝑁
Markov chains was defined with stationary distributions

𝑃𝑟(v, h) =
1

𝑍𝑟
𝑒𝑥𝑝(− 1

𝑡𝑟
𝐸(v, h)), (8)

for 𝑟 = 1, ..., 𝑁 , where 𝑍𝑟 =
∑

v

∑
h 𝑒𝑥𝑝(− 1

𝑡𝑟
𝐸(v, h)) is

the corresponding partition function. Each iteration of the
PT algorithm is decomposed into local and global moves.
During local moves, each chain is updated independently of
others. In this way, 𝑁 states (v1, h1), ..., (v𝑁 , h𝑁 ) can be
yielded. For the global move, two neighboring chains running
at temperature 𝑡𝑟 and 𝑡𝑟+1 may exchange their states (x𝑟)
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and (x𝑟+1) with an exchange probability given by

𝑚𝑖𝑛{1, 𝑒𝑥𝑝(( 1
𝑡𝑟
− 1

𝑡𝑟+1
) ∗ (𝐸(x𝑟)− 𝐸(x𝑟+1)))}, (9)

where x𝑟 = (v𝑟, h𝑟) and x𝑟+1 = (v𝑟+1, h𝑟+1). After
performing these swaps between chains, sample v1 is taken
as a sample from the model distribution.

IV. TRAINING RBMS USING PARALLEL TEMPERING

WITH EQUI-ENERGY MOVES

PT sampling achieves good mixing rate by introducing
supplementary Gibbs chains and exchanging the states of
neighboring chains. The acceptance ratio for this exchange
depends on the temperatures and the energies of states
of neighboring chains. Based on equation (5), once the
temperatures are fixed, the exchange probability only relies
on the energies of two states. Specifically, the smaller the
difference between two states’ energies, the higher the ex-
change probability is. Therefore, having too few or incor-
rectly spaced chains in PT will result in low swap rates
between neighboring chains since the states of neighboring
chains may have very different energy levels. In view of this,
we propose a new type of move called equi-energy move, that
aims to explore the state space by moving directly between
states with similar energy. Fig.1 illustrates the equi-energy
move. This new algorithm is named as parallel tempering
with equi-energy moves, referred to as PTEE.

Fig. 1. Illustration of the equi-energy move, where the sampler can move
freely between the states with similar energy levels.

PTEE utilizes the temperature-energy duality, and targets
the energy directly. Based on a sequence of temperatures, a
population of auxiliary distributions which are the smoothed
versions of the target distribution is generated. In comparison
with the target distribution, these versions are easier to
sample from as they exhibit greater ergodicity. This kind of
technique by using multiple auxiliary distributions mitigates
the shortcoming of the single Markov chain of easily being
stuck in local maxima of probability density. By updating
each chain via classical MCMC algorithms, the current states
of each chain can be obtained. PTEE then partitions the state
space into several equi-energy set in terms of the states’

energies of all chains. The new type of move used in PTEE,
i.e. equi-energy move, encourages the current state to move
to another state draw from the already constructed equi-
energy set that has energy level close to the current state. This
equi-energy move guarantees high swap acceptance ratio
since the energy levels of states used to swap are similar,
making it easy to render the diversity of states captured by the
target distribution. In a ward, PTEE facilitates global moves
between different chains, resulting in a good exploration of
the state space by the target chain. Details of this algorithm
will be described as follows.

First, a sequence of 𝑑+ 1 energy levels is introduced:

𝐻1 < 𝐻2 < ... < 𝐻𝑑+1 =∞, (10)

such that 𝐻1 is below the minimum energy, i.e., 𝐻1 ≤
𝑚𝑖𝑛(𝐸(x)). Associated with the energy levels is a sequence
of temperatures

1 = 𝑡1 < ... < 𝑡𝑁 . (11)

PTEE also considers a population of 𝑁 Markov chains
associated with probability 𝑝𝑟(v, h) = 1

𝑍𝑟
𝑒𝑥𝑝(− 1

𝑡𝑟
𝐸(v, h)),

where 𝑍𝑟 =
∑

v

∑
h 𝑒𝑥𝑝(− 1

𝑡𝑟
𝐸(v, h)) is the corresponding

partition function.
In each step of PTEE, both local moves and global moves

involve obtaining the samples from RBM model. During
the local moves, we run 𝑁 Markov chains based on the
Gibbs sampling from 𝑁 distribution, 𝑝𝑟(𝑟 = 1, ..., 𝑁),
in which each chain is locally updated independently of
others. The obtained states of these 𝑁 chains are denoted
as (v1, h1), (v2, h2), ...., (v𝑁 , h𝑁 ). When we get the states
of 𝑁 chains, the exchanges of these states will be conducted
to improve mixing rate. These exchanges are called global
moves. In the process of global moves, the states of 𝑁
Markov chains are firstly partitioned into several energy rings
according to the states’ energies and 𝑑+1 energy levels. Each
energy ring 𝐷𝑗(𝑗 = 1, ..., 𝑑) is constructed as follows:

𝐷𝑗 = {(v, h) : 𝐸(v, h) ∈ [𝐻𝑗 , 𝐻𝑗+1)}, 𝑗 = 1, ..., 𝑑. (12)

Then, the swapping is carried out in the interior of energy
rings which contain at least two chains. In detail, in the
interior of each energy ring containing at least two chains,
each pair of chains exchange their current states with a
probability given by

𝑚𝑖𝑛{1, 𝑒𝑥𝑝(( 1
𝑡𝑟
− 1

𝑡𝑠
) ∗ (𝐸(v𝑟, h𝑟)− 𝐸(v𝑠, h𝑠)))}, (13)

where 𝑟 and 𝑠 respectively index two chains lying in the
same ring. In practice, the swapping mentioned above can
be executed from the chain with the highest temperature to
the one with the lowest temperature.

After performing the swaps, we take the (eventually ex-
changed) samples v1 of the original chain (with temperature
𝑡1 = 1) as a sample from the RBM distribution. This proce-
dure is repeated 𝐿 times yielding samples v1,1, v1,2, ..., v1,𝐿

used for the approximation of the expectation under the RBM
distribution in the gradient of log-likelihood.
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The levels 𝐻1, 𝐻2, ..., 𝐻𝑑 are critical since these levels
determine the energy rings. Having proper energy levels can
achieve high swap probability. In order to cover the energies
of states which need to be partitioned, we set 𝐻1 as the
minimum energy of these states, and set 𝐻𝑑 as the maximum
energy. Once the values of 𝐻1 and 𝐻𝑑 are chosen, many
approaches can be used to yield 𝐻2, ..., 𝐻𝑑−1. For example,
𝐻2, ..., 𝐻𝑑−1 can be obtained so that 𝑙𝑛(𝐻𝑟+1 − 𝐻𝑟) or
(𝐻𝑟+1 − 𝐻𝑟) are evenly spaced. In this paper, we set the
(𝐻𝑟+1−𝐻𝑟) to be evenly spaced. Here, it should be noticed
that the values of the RBM’s parameters are dynamic during
the training procedure. This leads to a dynamic energy range
of the states that need to be partitioned. Therefore, in each
step of the parameters’ update, we set the corresponding
energy levels based on the current states of 𝑁 chains: the
minimum energy of these states is set to be the value of 𝐻1;
the maximum energy is set to be the value of 𝐻𝑑. That is to
say, the energy levels are dynamic. In practical implement,
we only need to set the number of energy rings (i.e., 𝑑)
before training RBM. The corresponding energy levels can
be obtained by the method mentioned above.

When the number of energy ring is 1 and the energy levels
of all steps of updates are set to be −∞ and ∞, PTEE
degenerates to PT.

The main idea of PTEE seems to be close to another
algorithm proposed by Baragatti et al. which also uses equi-
energy move in parallel tempering, but these two algo-
rithms have many differences. First of all, PTEE applies the
equi-energy move to a more specifical and more important
problem, the training of RBMs. Secondly, according to the
training process of RBMs, PTEE utilizes dynamic energy
levels rather than static energy levels to yield energy rings. In
the training process of RBMs, the values of model parameters
are constantly changing, which leads to dynamic energy
range of states. Under this circumstance, if we use the static
energy levels, it will happen that lots of states are attributed
to the same ring in many steps of updates, reducing the
advantages of equi-energy move. Thirdly, PTEE makes equi-
energy moves in all energy rings that contain at least two
chains, rather than one ring that is chosen randomly. Last,
in each energy ring that has been chosen, PTEE takes into
account the swaps of each pair of states from the chain
with the highest temperature to the one with the lowest
temperature, rather than two chains that are chosen uniformly
in the energy ring.

V. RELATED WORK

The equi-energy sampler has been proposed by Kou et
al. [18] based on a population of chains. In this approach,
the distribution of Markov chain is obtained by the energy
truncation which increases the difficulty of using Gibbs sam-
pling. This difficulty comes from the piecewise of conditional
distribution 𝑝(𝑣𝑖 = 1∣h) or 𝑝(ℎ𝑗 = 1∣v), in which the
energy of state (v, h) needs to be calculated in the case of
incomplete information about the state (v, h). Baragatti et al.
[19] proposed another equi-energy sample algorithm which
combines PT with the equi-energy moves. The differences

between Baragatti’s method and our approach have been
mentioned in above section.

VI. EXPERIMENTS

In this section, we evaluated the performance of PTEE
algorithm and compare it with CD, PCD and PT. In order
to compute the exact log-likelihood of our model, we firstly
carried out experiments on a toy dataset. Then experiments
on the MNIST dataset were also executed to validate the
efficiency of the proposed algorithm.

A. Toy dataset

The toy dataset is composed of 10,000 images, each image
with 4×4 binary pixels. The way for generating this dataset
is same as the one mentioned in [17]. Specifically, four basic
modes chosen to be maximally distant from one another
are used to construct this dataset. For each basic mode, we
generated 2,500 near replicas by considering a probability
0.001 of permuting each pixel independently. Some randomly
chosen samples are shown in Fig.2.

Fig. 2. Some random samples from our toy dataset.

For all comparative algorithms, we exploited online learn-
ing and performed 300,000 weight updates for both positive
and negative phases. This means that each training sam-
ple is presented 30 times to each model. The number of
hidden unit is set to be 10. The learning rate is decreased
linearly towards zero since we found by some preliminary
experiments that a decreasing learning rate schedule was
necessary for the model to learn a good generative model.
No weight decay was used in any of the models. For the
other hyperparameters, we tested the initial learning rates
in {10−2, 10−3, 10−4, 10−5}. The tempered models were
trained with {5, 7, 10} parallel Markov chains with minimal
inverse temperature of 0. For CD and PCD, the number of
Gibbs sampling steps between consecutive parameter updates
was set to be 5, 7 and 10 to offset the computational cost of
having parallel chains. Tempered models were limited to a
single Gibbs step between consecutive parameter updates. In
addition, for PTEE, the number of energy rings was tested
in {3, 5, 7, 10}.

Based on some preliminary experiments, we find that using
10 chains achieves better likelihood scores compared to 5 and
7 chains. So, we show the results obtained by using PTEE
and PT with 10 chains, as well as CD and PCD with 10
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Gibbs sampling steps between consecutive parameter updates
in Fig.3. These results are the averaged log-likelihood by
training each model 5 times. It can be seen that PTEE is able
to yield good result more quickly than PT, and ultimately
obtain better likelihood score. This demonstrates that PTEE
improves the mixing rate. In the mean time, we also found
that using single Gibbs chain is unable to cope with the
model diverges. With the increase of the update steps, the
mixing of CD and PCD degrades, resulting in a sudden drop
in likelihood.
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Fig. 3. Log-likelihood of the training data against the number of updates
over the toy dataset. The number of chains is 10.

In Fig.4, we also show the result obtained using PTEE
with 5 chains. PT10 represents the PT algorithm with 10
chains. PTEE10 and PTEE5 respectively denote the PTEE
algorithm with 10 chains and 5 chains. From this figure, it
can be seen that PTEE still yield a good result similar to
one using 10 chains when we use 5 chains, which means
that PTEE is immune to the number of Markov chains to
some extent.

Next, we investigated the difference of global moves
between PT and PTEE. We first show the energies of
states, among which each pair of states are considered to
be swapped with a probability. For PT, these states are all
chains’ states under one update step, as shown in the top
figure of Fig.5. For PTEE, these states belong to the same
energy ring under one update step, which is shown in the
same color in the bottom figure of Fig.5. From Fig. 5, we
can observe that the states of neighboring chains obtained by
PT algorithm may have very different energies, which leads
to low swap rate. While the states belonging to the same
energy ring obtained by PTEE have similar energies, which
ensures high swap rates.

Fig. 6 shows the average probability of swaps of each
chain, which can be calculated by equations (9) and (13).
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Fig. 4. Log-likelihood of the training data against the number of updates
over the toy dataset. The number of chains is 5 or 10.

1 2 3 4 5 6 7 8 9 10
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Label of Gibbs Sampling Chain

E
ne

rg
y 

of
 S

ta
te

1 2 3 4 5 6 7 8 9 10
−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

Label of Gibbs Sampling Chain

E
ne

rg
y 

of
 S

ta
te

 

 

The third energy ring
The fifth energy ring
The seventh energy ring

Fig. 5. The energies of states obtained by experimenting on the toy dataset:
the top figure shows the energies of states obtained by PT under one update
step; the bottom figure shows the energies of states belonging to the same
energy ring containing at least two chains obtained by PTEE under one
update step.
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Table 1: The number of swaps between any two chains obtained by PT10 over the toy dataset. PT10 represents PT algorithm with 10
chains.

Gibbs sampling chain chain 1 chain 2 chain 3 chain 4 chain 5 chain 6 chain 7 chain 8 chain 9 chain 10
chain 1 0 113909 0 0 0 0 0 0 0 0
chain 2 113909 0 138476 0 0 0 0 0 0 0
chain 3 0 138476 0 148781 0 0 0 0 0 0
chain 4 0 0 148781 0 164389 0 0 0 0 0
chain 5 0 0 0 164389 0 186086 0 0 0 0
chain 6 0 0 0 0 186086 0 206910 0 0 0
chain 7 0 0 0 0 0 206910 0 222331 0 0
chain 8 0 0 0 0 0 0 222331 0 234624 0
chain 9 0 0 0 0 0 0 0 234624 0 243791
chain 10 0 0 0 0 0 0 0 0 243791 0

Table 2: The number of swaps between any two chains obtained by PTEE10 over the toy dataset. PTEE10 represents PTEE algorithm
with 10 chains.

Gibbs sampling chain chain 1 chain 2 chain 3 chain 4 chain 5 chain 6 chain 7 chain 8 chain 9 chain 10
chain 1 0 113724 5336 1609 681 336 165 128 96 62
chain 2 113724 0 91362 12515 2387 645 284 166 103 89
chain 3 5336 91362 0 71759 15245 3208 872 339 201 112
chain 4 1069 12515 71759 0 62697 19362 5614 1690 567 261
chain 5 681 2387 15245 62697 0 68289 26225 8896 2934 986
chain 6 336 645 3208 19362 68289 0 86555 31348 10040 3327
chain 7 165 284 872 5614 26225 86555 0 107443 32725 10529
chain 8 128 166 339 1690 8896 31348 107443 0 101204 44230
chain 9 96 103 201 567 2934 10040 32725 101204 0 36794

chain 10 62 89 112 261 986 3327 10529 44230 36794 0

We can see that almost all chains of PTEE have higher
swap probabilities compared with PT. In addition, we also
tested the number of swaps between any two chains. The
corresponding results are displayed in Table 1 and Table 2.
For PT, only neighboring chains swap their states. While for
PTEE, the states of any two chains are swapped.
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Fig. 6. Average values of swap probabilities corresponding to each chain
over the toy dataset.

Moreover, the dataset generated by setting 𝑝 to be 0.1 was
also used to test the efficiency of PTEE. The experimental
conditions are same as ones used in the previous experiments.

Fig. 7 displays the average likelihood scores obtained by
training each model 5 times. From this figure, we can see that
PTEE still outperforms PT and other comparative algorithms
when 𝑝 is set to be a bigger value.
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Fig. 7. Log-likelihood of the training data against the number of updates
over the toy dataset generated by setting 𝑝 to be 0.1. The number of chains
is 10.

B. MNIST dataset

The MNIST dataset is more complicated and higher di-
mensional than the above toy dataset, which contains 60,000
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training and 10,000 test images of ten handwritten digits (0 to
9), each image with 28× 28 pixels [20]. In our experiments,
considering the computational cost, we randomly sampled
1,000 images per class from the 60,000 training images to
compare the efficiency among PTEE and the comparative
algorithms. The pixel intensities were scaled between 0 and
1 and interpreted as probabilities from which binary values
were sampled.

The size of mini-batches and the number of hidden units
are respectively set to be 100 and 500. Here, the number
of data’s dimension and model’s hidden units are very big.
So, we cannot compute the exact log-likelihood of RBM
models since the normalizing constant cannot be exactly
calculated. In view of this, we adapts the method utilizing
annealed importance sampling to estimate the normalizing
constant, which has been successfully adapted for computing
the normalizing constant of RBMs [21].

The setups of learning rate and weight initialization as well
as sampling or not sampling in the negative phase are same
as ones used in the experiments of toy dataset, except the
number of parameter updates. Here, we performed 100,000
weight updates for both positive and negative phases. Consid-
ering that PT is the most competitive model with PTEE, we
only compare these two models on the MNIST dataset. Fig.
8 shows the average likelihood scores by training RBMs via
PTEE and PT 5 times. It can be observed that PTEE works
better than PT.
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Fig. 8. Log-likelihood of the training data against the number of updates
over the MNIST dataset. The number of chains is 10.

C. Analysis of the time complexity

Here, we want to briefly discuss the time complexity of
the considered several algorithms. CD and PCD learning
algorithms are divided into three phases: positive phase
which samples the hidden units when the visible units are
clamped on training data; negative phase which computes
the reconstruction and samples hidden units when the visible
units are clamped on the reconstruction; and update phase.

Suppose that the number of training samples is 𝑚, 𝐷 and
𝐾 respectively denote the number of visible and hidden
units. The time complexities of positive and negative phases
are 𝑂(𝑚 × 𝐷 × 𝐾). And the time complexity of update
phase is 𝑂(𝐷 ×𝐾). Therefore, the overall time complexity
of CD and PCD training with 𝐺 steps Gibbs sampling are
𝑂(𝑇 ×𝑚×𝐷×𝐾 ×𝐺), where T is the number of epochs.
For PTEE and PT, except for the above three phases, several
auxiliary Markov chains are exploited and a swapping phase
was also used. Suppose the number of Markov chains is
C. The time complexities of PTEE and PT are respectively
𝑂(𝑇 ×𝑚×𝐷×𝐾×𝐶). Here, PTEE and PT are limited to
a single Gibbs step between consecutive parameter updates.

Moreover, we also recorded the running times of different
algorithms on one epoch and on one training sample when
they are applied to the toy dataset and the MNIST dataset.
Here, the number of Gibbs sampling steps between consecu-
tive parameter updates in CD and PCD is 10. The number of
parallel Markov chains in PTEE and PT is 10. And a single
Gibbs step was used in PTEE and PT between consecutive
parameter updates. All experiments were conducted on a
Windows machine with Inter(R) Core(TM) i7-2600 3.40GHz
CPU and 8GB RAM. Table 3 displays the results. Based on
the results, we can see that the running times of PTEE is
bit less than PT since not all of the adjacent chains need to
exchange their states in PTEE.

Table 3: The running times (in seconds) of different algorithms
when they are applied to toy dataset and MNIST dataset.

Dataset CD PCD PT PTEE
chain 1 0.00912 0.00937 0.01161 0.01027
chain 2 31.03092 31.17306 31.33132 31.28487

VII. CONCLUSIONS

In this paper, a new algorithm for training RBMs was
proposed, which combines parallel tempering and equi-
energy sampler. Given the number of energy levels, the
new algorithm yields dynamic energy rings. Thanks to rel-
evant equi-energy moves in the same ring, the proposed
algorithm achieves good mixing of the generated Markov
chains. Experiments on a toy dataset as well as the MNIST
dataset demonstrate that this new algorithm achieves better
likelihood scores more quickly than CD, PCD and PT.
Meanwhile, the performance is immune to the number of
chains to some extent since equi-energy moves ensure high
swap probability.
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