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Abstract— In this paper, we propose to enhance the detection
of control states in online brain-computer interfaces (BCI) with
the use of the biologically inspired K-set neural network. This
neural network was initially built to model brain waves of
small sets of neurons in the brain and later showed a great
capability of encoding complex and noisy data into oscillation
patterns. We apply the K-set network to classification of motor
imagery, a type of mental state very useful for BCI applications.
Experimental results show that the network can work efficiently
in this task and thus provide better control for BCI applications.

I. INTRODUCTION

BRAIN-COMPUTER INTERFACES (BCI) are systems
that transform signals from the brain into a control sig-

nal used to control an electronic device, such as a wheelchair
or a prosthesis. The task of classification of brain signals
is difficult, for presenting low signal to noise ratio, non-
linearity and typically, limited training data due to difficulties
in collecting signals. Different methods for capturing brain
signals are used: electroencephalography (EEG), magneto
electroencephalography (MEG), and functional magnetic res-
onance imaging (fMRI). EEG is the method most commonly
used to monitor brain activity because it is non-invasive, it
does not require surgical intervention, and it is less expensive
than the other alternatives.

For the use of BCI, it is important that the signals used for
control be significantly related to specific states of the brain
which can be created by the user independently. Various brain
states related signals have been used for BCI control, such
as P300, motor imagery and finger movement. We focus on
motor imagery (MI) which is the mental rehearsal of a motor
act without actual movement, as it provides important means
for BCI to compensate loss motor functions and has been
shown that naive subjects can operate BCI systems based on
MI.

A typical practical BCI application has one or more control
states, i.e. expected MI events related with some command,
and various non-control states, states where there are no
command associated and thus the system should ignore the
input. Separation of control and non-control states is difficult
because there are large within-class variations in non-control,
where the brain is not as well controlled as during MI and the
BCI must account for that in order to avoid false detection
of control states.
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K-sets are chaotic neural networks based on the olfactory
bulb function, created to model the functioning of different
scales of collections of neurons. Although not created for
classification problem, the networks have been applied to
many different hard problems showing that their ability to
encode complex patterns in an attractor landscape is useful,
specially in situations where there are only few examples of
nonlinear data with low signal to noise ratio. Such data are
characteristic of the BCI classification problem, where the
cost of acquisition of large training datasets is prohibitive
and the low power of the signal (µV for the EEG) together
with multiple activities of the body cause a low signal to
noise ratio.

The rest of this paper is structured as follows. In section 2,
we survey the methods for classifying EEG signals for BCI.
In section 3, we review the concepts and workings of K-sets.
Finally, in section 4 we present our methods and results. We
shall finish with conclusions.

II. EEG SIGNALS

A. EEG and Motor Imagery

EEG consists of a non-invasive technique that allows
monitoring the cognitive behavior of humans and animals.
EEG is typically recorded with an array of electrodes put on
the scalp in a pre-defined pattern, which register oscillations
of the electric potentials generated by the brain during
cognitive processes. This electrical activity is generated by
the interaction of thousands or millions of neurons through
the activation of their synapses [1].

The result of the cognitive process is that these potentials
recorded by EEG generate a series of oscillations. These
oscillations are divided and classified in the EEG rhythms
according to their frequency and relation with distinct cog-
nitive processes [2].

Some important rhythms are the α rhythm, within the
frequency range of 8 to 12 Hz, related to a relaxing state
and recorded in the occipital area of the brain; the β rhythm
(13-30 Hz), related to an attention state; the δ rhythm (1-4
Hz), related to profound sleep, and the µ rhythm (8-12 Hz),
recorded over the sensorimotor area of the brain and related
to motor movement and imagery.

The µ rhythm is the most important for the identification
and classification of motor movement and imagery because
it is recorded next to brain area responsible for movement
[3]. Motor imagery consists of processing from long-term
memory to short term or working memory of a motor
information, in a process similar to that of remembering or
imagining a motor movement.
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Motor movement and motor imagery cause the phenomena
of event related desynchronization (ERD) and event related
synchronization (ERS) that make the neurons in the related
areas desynchronize the activation of their synapses and
then return synchronizing, respectively, and that changes the
electric potentials recorded by the electrodes in the scalp,
which makes the identification of these events and their
classification possible [4].

The magnitude and size of the ERD reflect the size of the
mass of neurons involved in a task, so more complex tasks
cause major ERDs. ERSs are short-term events correlated
with inactivity located in the cortex. For example, during
a visual task, such as reading, the sensorimotor cortex
responsible for the hands is not necessary, and therefore it is
expected to see an increase in µ rhythms and frequencies
β in this area. There is also variation in the space-time
pattern created by ERDs and ERSs for different events, such
as between the movement of the left and right hands. This
variation is dependent on the individual and may vary at the
site of activation or frequency band, for example [5].

ERS and ERD provide information about the start and the
end of the motor movement and have different spatiotemporal
patterns according to the planned movement, which allows
these events to be identified from the EEG [4]. Motor
imagery causes desynchronization in the highest part of the
µ rhythm and lower β rhythm next to sensorimotor areas,
located at the position of electrodes C3, C4 and CZ in EEG.
Figure 1 shows the position of those electrodes following
the 10-20 system. For hands movement, desynchronization
begins about 2 seconds before the beginning of the movement
on the contralateral region of the sensorimotor and becomes
bilaterally symmetrical immediately before execution of the
movement [6]. The feet can cause an ERD in the center area
(near electrode CZ), although not so often.

B. Classification Algorithms

The classification of EEG signals usually occurs in two
steps: the pre-processing of the signal and the classification.
The pre-processing can itself be separated in two tasks,
removal of artifacts and dimensionality reduction or feature
selection.

Artifacts are unwanted electric potentials recorded within
the EEG signal that can contaminate and hamper its interpre-
tation [8]. Although there are numerous methods for artifact
removal in EEG, as for the motor imagery task the artifacts
are in different frequencies than the events of interest. The
artifacts are more pronounced below 4Hz and over 30Hz,
with µ and β rhythms for motor imagery being from 8 to 20
Hz. Thus, a simple pass band filter suffices for the removal
of most artifacts.

The application of dimensionality reduction methods has
as objective to reduce the large dimension of data obtained
from the EEG signal that can be recorded with sampling of
up to 1000 Hz by dozens of electrodes, and by doing this,
it keeps only the more relevant features for classification of
the signal. The common spatial pattern (CSP) algorithm is
currently one of the more successful and accepted methods

Fig. 1. Positioning of electrodes in scalp following the 10-20 pattern.
Electrodes C3, C4 and CZ are located over the sensorimotor area. Based on
[7].

for dimensionality reduction for motor imagery classification
[9].

For the EEG classification, with or without the pre-
processing phase, some of the most diverse methods used
are the linear discriminant analysis, support vector machines
and neural networks as RBF and multi-layer perceptron.

C. Problems

Most of EEG classification is performed in non-
continuous, synchronous mode, but applications that are
more practical need the processing to occur continuously and
that the system be in charge of new inputs during the use.
This brings multiple difficulties as the extra noise coming
from other uncontrollable brain processes and from the
environment and how to differentiate between the multitude
of brain states, most of which never seen by the system,
with no associated control and reject them, while effectively
detecting and classifying control states.

Asynchronous processing of EEG is an actual challenge
for the BCI development [9] as improvements in that task can
make possible the widespread of BCI systems in real world
situations, as the control of prosthesis and wheelchairs for
impaired people.

III. K-SET NEURAL NETWORK

A. K-set Hierarchy

Walter Freeman created K-sets in 1975 through the ob-
servations he made about the dynamics of populations of
neurons in the olfactory system of animals using EEG [10].
The K-sets are biologically more plausible neural networks
that have as characteristics the good resistance to noisy data
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and generalization capabilities even in complex and non-
linear environments with few examples.

K-sets are organized in an increasing complexity hierarchy
that ranges from K0 to KV, where the more complex levels
are built from the simpler ones.

The more basic level is the K0 that represents a population
of 10, 000 neurons and it is biologically motived by the
structure of columns of neurons in the brain. K0 is the basic
building block for the K-sets and is modeled after the mean
population impulse response of a population observed in the
post-synaptic potential by an ordinary differential equation:

1

ab

[
d2xi(t)

d2t
+ (a+ b)

dxi(t)

dt
+ abxi(t)

]
= f(t) (1)

where a = 0.22 and b = 0.72 are temporal constants of
biologic populations of neurons and represent the passive
membrane time and dispersion delays and xi is the activation
of the i-th population of neurons. The input for a K0 is given
by:

f(t) =

N∑
j 6=i

[Wij ×Q(xj(t), q)] + Ii(t) (2)

where N is the number of populations, W is the vector of
weights representing the connection between the populations
i and j, t is the time, I is an external stimuli received, for
example, from olfactory nerves or, in the model, from the
network input. Q(x(t), q) is a sigmoid function that models
the transformation between waves and pulses in neuron
activations [11] and is given by:

Q(x, t) = q(1− e−(e
x(t)−1)/q) (3)

where q = 5 is the typical value in awake animals and
simulations.

K0 dynamics are governed by a zero point attractor and
stays in equilibrium except when perturbed.

The KI, one level above K0 in the hierarchy, models the
interaction between populations of neurons of the same type
and is built by two units of K0 connected through either
excitatory or inhibitory connections. The KI shows a form
of simple feedback between neuron populations and is able
to sustain input for more time. Figure 2 shows the impulse
response for K0, KI, and KII model.

The KII is built through at least two KI or four K0 heavily
connected and models the interaction between excitatory and
inhibitory populations. The interaction between populations
of inverse polarities makes the KII form several types of
oscillators according with the configuration of its connections
[12]. The type of attractor formed varies greatly from the
weight parameters.

KIII is biologically motivated by the olfactory system.
The KIII is built from three layers of interconnected KII.
The first layer corresponds to the olfactory bulb (OB) and
has a size of N , where N is the dimension of the input
of the network. The OB then connects to the second and
third layers, the anterior olfactory nuclei (AON) and the pre-
piriform cortex (PC). AON and PC then have connections

Fig. 2. Impulse response for K0, KI, and KII model. KI is able to sustain
impulse for a longer period of time, while KII converges to an oscillator.

Fig. 3. Generic structure of a KIII neural network with size 3. Input
comes into the top layer and is projected onto deeper layers. Feedforward
projections are immediate and feed-back projections are time delayed. Intra-
layer lateral connections are immediate. Hebbian learning occurs in the
lateral connections of the third layer. Based on [14].

between themselves and back to the OB [13] (see Figure
3). As the output is dispersed in the PC layer of the KIII,
a second algorithm is typically used to translate or classify
this output. The algorithms most commonly chosen for this
task are the k-nearest neighbors and the linear discriminant
analysis.

Learning in KIII is done through the Hebbian learning
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rule. The Hebbian rule is used to adapt the weights of the
excitatory connections between KII-sets and is modified for
use in K-sets, due to the activations being represented as
continuous oscillations. The standard deviation σ from each
oscillating unit is computed over a time T , where T is usually
half of the active phase. The mean standard deviation σ̄ of
the vector ~σ of deviations is then computed.

The weight update in the connection between two K0 units
K0p and K0q is then given by

wpq = wpq + ∆wpq (4)

where

∆wpq =

{
α(σp − σ̄)(σq − σ̄), if σp > σ̄, σq > σ̄

0, otherwise
(5)

where α is a learning rate constant.

B. Chaotic Model

Freeman’s observations on the brain suggest that chaos
plays a fundamental role in cognition. Chaotic systems can
create exciting patterns of activity, they can jump from one
mode of behavior to another instantly, which reflects the fact
that it has a collection of attractors and can easily switch
between them. Brains are wired in a manner that chaotic
attractors function as representation of internal memories,
concepts and actions and the continuous processing of brain
occurs through a constant switching between a receiving
mode to a transmitting mode [15].

The Freeman K-sets models simulate the chaotic dynamics
of the olfactory system [10]. In the absence of stimuli, the
system stays in a high dimensional state of basal activity,
governed by an aperiodic and non-convergent global attrac-
tor, constrained by a landscape of multiple attractors. When
stimuli are presented to the system, it exits the basal state and
converges to a local basin of attraction, which is a memory
wing and usually has a much lower dimension than the
basal state and resides in the this wing for the duration of
the stimulus, when it returns to the basal state [16]. K-sets
thus encode and store information in patterns of the spatial
configuration of the average intensity of neuron activations
over a time window that is represented by the sequence of
patterns during the burst of stimuli.

The system’s memory is defined through the collection
of metastable basins and attractor wings and a recall is the
induction by a state transition of spatio-temporal oscillation
with a sequence of patterns. The learning process is made of
two main processes: a fast Hebbian reinforcement learning,
in which stimulus patterns are presented to the network and
connections from populations that are activated together are
reinforced by adapting the connection weights. The second
is a process of habituation, that is a slow and cumulative
process of weight decay to avoid the saturation of network
weights and reduce the influence of irrelevant, confusing,
ambiguous or otherwise unwanted stimuli [16].

This memory is robust and allows for fast encoding of
complex patterns in the K-sets. K-sets have been shown to

be able to learn complex patterns, as non-linear problems,
with very few training examples and very fast.

IV. K-SET EEG PROCESSING

The method is evaluated using the BCI Competition IV
Dataset I [17] which contains recorded data from 4 human
subjects and 3 computer generated artificial data sets. The
EEG data contain recordings from fifty-nine channels digi-
tized to 1000 Hz and distributed mostly over and around the
sensorimotor areas of the brain.

In the dataset, each subject was asked to select between
two of three motor imagery tasks: left hand, right hand, and
feet. The recording was separated in a session for recording
training data and a session for testing data.

Our task is to detect and classify motor imagery in
the continuous and multivariate time series of EEG. The
expected output is a real number for each time t in the time
series, where -1 and 1 are different motor imagery tasks and
the resting phase, when there is no intended motor imagery,
that should be 0.

First step is feature selection using the filter-bank common
spatial pattern technique. Next we train the K-set network
and perform the classification.

A. Feature Selection

The primary phenomena observable during motor imagery
is the event-related desynchronization (ERD), caused by the
blocking in µ and β frequency ranges during the imagery
event, and the event-related synchronization (ERS), caused
by the posterior unblocking of frequencies. The ERD/ERS
phenomena have different spatial characteristics for each
observable event. Left hand imagery causes ERD in the right
contra-lateral area of the sensorimotor cortex while right
hand imagery happens in the left area [18]. Knowing that
these events occur in the µ and β ranges we can band pass
using a bank of filters and then enhance the signal-to-noise
ratio of the events of interest by using the common spatial
patterns (CSP) algorithm, as done by [19], [20].

For filtering, we use seven band-pass zero-phase Cheby-
chev Type II filters with central frequencies spaced between
8 to 26, with a Q factor of 1.33 and order 4. We then apply
CSP in each one of these filters outputs.

CSP is a data-driven technique to analyze multi-channel
data recorded from two classes. CSP then does a decom-
position of the signal parametrized by a matrix of weights
W ∈ RC that projects the signal epoch x(t) ∈ RC in the
surrogate space xCSP (t) ∈ RC as follows:

xCSP (t) = WTx(t). (6)

Each column of W is a spatial filter, where the k first and
last columns are respectively the ones that maximize more
the variance from class 1 and class 2. We use k = 2, that
gives two spatial filters pairs and an output signal of four
channels.

The goal of the spatial filtering is to maximize the variance
of the spatially filtered signal under one condition while
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minimizing it for the other condition. This is achieved by
solving the generalized eigenvalue problem

R1w = λR2w (7)

where R1 and R2 are the covariance matrices of all epochs
of x for each class, respectively. See [21] for a thorough
review on the subject.

We use the short-term power of the filtered signal as input
for the next step in the process [19]

z(t) =

∫ t

t−l
x2CSP (τ)dτ. (8)

were l defines the length of the short-time window. After
some experiments, we choose to use l = 2.5 seconds.

We then select a subset from the CSP spatial filters W
generated for each of the band-pass filters using a criterion
based on mutual information. Mutual information feature
selection consists of, given an initial set F with d features,
finding a subset S ∈ F with m features that maximize the
mutual information I(S; Ω). For features with continuous
input and discrete class, the mutual information between a
vector of features X = X1, X2, . . . , Xd and the classes Ω is
[20]

I(X; Ω) = H(Ω)−H(Ω|X) (9)

where
H(X) = −

∑
x∈X

p(x) log2 p(x) (10)

with p(.) being a probability function and H(Ω|X) given by

H(Ω|X) = −
∫
x

Nw∑
w=1

p(w|X) log2 p(w|X)dx (11)

where w ∈ Ω = 1, . . . , Nw and p(w|X) is estimated by
the number of samples from the class w over the total of
samples. Therefore, for each CSP filtered feature xCSP

i we
calculate the mutual information and select the 4 vectors with
the larger mutual information.

As the CSP is designed for separating between two classes
and the problem has two motor imagery classes and a resting
class we do a pair-wise filtering for each pair of classes and
aggregate the classes in a joint feature vector.

B. K-set Training and Testing

The features selected are presented to the KIII during the
training phase. The network consists of three KII layers of
length M , where M is the input length (twelve, one for
each feature generated by the preprocessing). The network
is trained with the input data until the generation reaches
a minimum error in the validation data, thus allowing the
formation of robust attractor landscapes that we can use to
enhance data classification. The validation data are chosen
randomly from the testing signal.

In our experiment, we use a learning rate α of 0.02. In
each training generation, samples are presented in a random
order during 300 cycles (milliseconds) in the active phase,
when the Hebbian reinforcement occurs, followed by an 200

Fig. 4. Mean-squared error for seven datasets with five classification
algorithms. Smaller results indicate better classification.

cycles resting phase, without stimuli, that allows for the K-
set to return to its basal state and process the next sample.

After the training, the samples are again presented to the
network, this time without learning, for 300 active cycles and
200 resting cycles. This process consists of recalling the at-
tractor patterns from the network memory. Output from KIII
is distributed in the periglomerular layer as KII activations.
To provide a single output, we record the activation from
each of these samples and use their standard deviation as a
feature to train a radial basis function (RBF) algorithm with
a single output. We use the standard deviations of all samples
as spread parameter in RBF.

V. EXPERIMENTAL RESULTS

Classification step is carried out by mapping the K-sets
outputs to the desired output of class labels. We normalize
the output to the range [-1 1] and then employ a classification
algorithm. We compare the KIII and RBF combination with
some widely accepted classification algorithms in EEG clas-
sification [22]: multi-layer perceptron (MLP), linear discrim-
inant analysis (LDA), radial-basis function network (RBF),
and the k-nearest neighbors algorithm (KNN).

For each one of the seven datasets, experiments were
performed. Datasets a, b, f , and g are from real sub-
jects; datasets c, d, and e were artificially generated for
the competition. The goal is to clarify how the K-set can
improve the performance of motor imagery classification
task. For computational efficiency, prediction of class label
is performed every 0.5 s.

We evaluate the results using the mean-squared error of
class label prediction, the smaller the result is, the best
classification is achieved. See table I and figure 4 for a
comparison between the results. The classification with KIII
is better in 6 out of 7 datasets. Table II shows the average
classification error for the four datasets recorded with real
subjects. Notice that KIII has the best (smaller) error of the
5 tested algorithms, indicating that it is a good choice for
BCI systems based on motor imagery.
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TABLE I
MEAN-SQUARED ERROR FOR SEVEN DATASETS WITH FIVE

CLASSIFICATION ALGORITHMS. SMALLER RESULTS INDICATE BETTER

CLASSIFICATION.

dataset KIII RBF MLP KNN LDA
a 0.5520 0.5691 0.5790 0.8297 0.8288
b 0.6006 0.5743 0.7925 0.8451 0.8456
c 0.5029 0.5120 0.5435 0.7105 0.6752
d 0.4813 0.4896 0.9325 1.1268 1.4416
e 0.4206 0.4286 0.5045 0.5534 0.5243
f 0.5042 0.5120 0.5595 0.7105 0.6752
g 0.6680 0.7465 0.7629 1.1573 1.0901

TABLE II
AVERAGE CLASSIFICATION ERROR OF THE FOUR REAL DATASETS.

SMALLER RESULTS INDICATE BETTER CLASSIFICATION.

KIII RBF MLP KNN LDA
average 0.5812 0.6005 0.6735 0.8857 0.8599

VI. CONCLUSIONS

In this paper, a biologically motivated neural network, the
KIII network, has been applied for motor imagery classifica-
tion in EEG signals. The experimental results indicate that
the KIII can improve the quality of classification, reducing
the mean-squared error.

We employed 7 public datasets from the BCI Competition
IV for training and testing the KIII model. Comparisons
between KIII with other algorithms (RBF, MLP, LDA and
KNN) show that the K-model achieves better results in this
domain. There is need for future studies to explore improve-
ments of the proposed KIII-based method. Additional motor
imagery datasets could also be explored.
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