
Using HDDT to avoid instances propagation in unbalanced and

evolving data streams

Andrea Dal Pozzolo, Reid Johnson, Olivier Caelen,

Serge Waterschoot, Nitesh V Chawla and Gianluca Bontempi

Abstract— Hellinger Distance Decision Trees [10] (HDDT) has
been previously used for static datasets with skewed distribu-
tions. In unbalanced data streams, state-of-the-art techniques
use instance propagation and standard decision trees (e.g.
C4.5 [27]) to cope with the unbalanced problem. However it
is not always possible to revisit/store old instances of a stream.
In this paper we show how HDDT can be successfully applied
in unbalanced and evolving stream data. Using HDDT allows us
to remove instance propagations between batches with several
benefits: i) improved predictive accuracy ii) speed iii) single-
pass through the data. We use a Hellinger weighted ensemble
of HDDTs to combat concept drift and increase accuracy of
single classifiers. We test our framework on several streaming
datasets with unbalanced classes and concept drift.

HDDT, Hellinger distance, Unbalanced data, Data streams,

Concept drift, Fraud detection.

I. INTRODUCTION

The explosion of data available everyday has increased the

amount of data to process. When data arrive as a continuous

stream of transactions, it is impossible to store all the

observations. Therefore there is the need of tools that are

able to process streams of data as soon as they arrive.

In data streams, the data distribution may change over the

time. For this reason several techniques have been developed

to deal with concept drift [30].

When the class distribution of a dataset is skewed, dataset

is said to be unbalanced. In the static learning setting, the

problem of learning in the case of unbalanced data has

been widely explored [22]. Learning from non-stationary

data streams with skewed class distribution is, however,

a relatively recent domain. State-of-the-art techniques have

addressed this problem by propagating minority observations

between batches, with C4.5 decision tree being the most

common algorithm used [7], [16], [20], [24]. All these

techniques retain previous minority class instances in order to

combat class imbalance. In this paper we have used Hellinger

Distance Decision tree (HDDT) [9] as a base learner for

Andrea Dal Pozzolo and Gianluca Bontempi are with the Machine
Learning Group, Computer Science Department, Faculty of Sciences
ULB, Université Libre de Bruxelles, Brussels, Belgium. (email: {adalpozz,
gbonte}@ulb.ac.be).

Reid Johnson and Nitesh V Chawla are with the Data Inference Ana-
lytics and Learning Lab, Computer Science and Engineering Department,
University of Notre Dame, Notre Dame IN, USA. (email: {rjohns15,
nchawla}@nd.edu).

Olivier Caelen and Serge Waterschoot are with the Fraud Risk
Management Analytics, Worldline, Belgium. (email: {olivier.caelen,
serge.waterschoot}@worldline.com).

Research is supported by the Doctiris scholarship of Innoviris, Belgium
and in part by the NSF Grant ECCS-0926170, US.

data streams. This choice has allowed us to avoid instance

propagation and produce superior performances in terms

of predictive accuracy, computational time and resources

needed.

In order to combat concept drift we have used a batch-

ensemble model combination based on Hellinger Distance

and Information Gain as in [24]. This choice has proved

to be beneficial in the presence of changing distributions

in the data. We have tested our framework with different

types of datasets: unbalanced datasets without known concept

drift, artificial datasets with known concept drift and a highly

unbalanced credit card fraud dataset with concept drift.

II. UNBALANCED DATASETS PROBLEM

Learning from unbalanced datasets is a difficult task, since

most learning algorithms are not designed to cope with

a large difference between the number of cases belonging

to different classes [2]. The unbalanced nature of the data

is typical of many applications such as medical diagnosis,

text classification and oil spill detection. Credit card fraud

detection [25], [11], [27] is another well-known instance of

a highly unbalanced problem since (fortunately) the number

of fraudulent transactions is typically much smaller than

legitimate ones.

In the literature, traditional methods for classification with

unbalanced datasets rely on sampling techniques to balance

the dataset [22]. In particular we can distinguish between

methods that operate at the data and algorithmic levels [5].

At the data level, balancing techniques are used as a

pre-processing step to rebalance the dataset or to remove

the noise between the two classes, before any algorithm

is applied. Data level techniques have the advantage of

leaving the algorithms unchanged so that any algorithms

can be tested. A well-known technique consists of under

sampling the majority class by removing observations at

random until the dataset is balanced [14]. Undersampling

does not take into consideration any specific information in

removing observations from the majority class, yet it is easy

to implement and to understand.

At the algorithmic level, the classification algorithms

themselves are adapted to deal with the minority class detec-

tion. An example of a classification algorithm designed for

the unbalanced problem is HDDT, which will be discussed

in section IV.

In this paper we will consider only binary classification

tasks with unbalanced class distribution. We will call the

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 588

majority class negative (coded as − or 0) and the minority

class as positive (coded as + or 1).

III. HELLINGER DISTANCE

Originally introduced to quantify the similarity between

two probability distributions [28], the Hellinger distance has

been recently proposed as a splitting criteria in decision trees

to improve the accuracy in unbalanced problems [9], [10].

In the context of data streams, it has produced excellent

results in detecting classifier performance degradation due

to concept drift [8], [24].

Let (Θ, Q,λ) denote a measure space [19] where P

denotes the set of all probability measures on Q that are

absolutely continuous with respect to a probability measure

λ. Consider two probability measures P1, P2 ∈ P . The

Hellinger distance is defined as:

dH(P1, P2) =

√

√

√

√

∫

Θ

(

√

dP1

dλ
−

√

dP2

dλ

)2

dλ (1)

Note that dH(P1, P2) does not depend on λ. If we re-

place λ with a different probability measure with respect to

which both P1 and P2 are absolutely continuous, dH(P1, P2)
remains the same.

For compactness we can rewrite equation 1 as:

dH(P1, P2) =

√

∫

Θ

(

√

dP1 −

√

dP2

)2

(2)

In the case of discrete distributions of a countable space

Φ, the previous formula boils down to the following:

dH(P1, P2) =

√

∑

φ∈Φ

(

√

P1(φ)−
√

P2(φ)
)2

(3)

Hellinger distance has several properties:

• dH(P1, P2) = dH(P1, P2) (symmetric)

• dH(P1, P2) >= 0 (non-negative)

• dH(P1, P2) ∈ [0,
√

2]

dH is close to zero when the distributions are similar and

close to
√

2 for distinct distributions.

IV. HELLINGER DISTANCE DECISION TREES

Starting from equation 3, Cieslak and Chawla [9] derive

a new decision tree splitting criteria based on Hellinger dis-

tance that is skew insensitive. They start from the assumption

that all numerical features are partitioned into p bins, so that

the resulting dataset is made of only categorical variables.

Then for each feature f , they compute the distance between

the classes over all of the feature’s partitions. In the case of a

binary classification problem, where f+ denotes the instances

of the positive class and f
−

the negatives, the Hellinger

distance between f+ and f
−

is:

dH(f+, f−) =

√

√

√

√

√

p
∑

j=1

(
√

|f+j |

|f+|
−

√

|f
−j |

|f
−
|

)2

(4)

where j defines the jth bin of feature f . At each node of

the tree, dH(f+, f−) is computed for each feature and then

the feature with the maximum distance is used to split. The

authors of [9] recommend to leave the tree unpruned and to

use Laplace smoothing for obtaining probabilities from leaf

frequencies. Note that the class priors do not appear explicitly

in equation 4, which means that class imbalance ratio does

not influence the distance calculation.

V. LEARNING FROM UNBALANCED AND DRIFTING DATA

STREAMS

A. Concept drift in data streams

In many real-work applications (e.g. intrusion detection,

spam detection, fraud detection, etc.), the data is not available

all at once, but it is received over time in streams of

batches (e.g., daily internet usage dumps). In this scenario,

the challenge is to use all the information up to a specific

time step t to predict new instances arriving at time step

t+ 1 [20].

However, the concept to learn can change due to non-

stationary distributions. This problem is known as concept

drift or non-stationary learning [30]. Let us define as Ω the

function generating a data stream. For two points in time t

and z such that t $= z, in the case of concept drift we have

Ωt $= Ωz . This means that the assumption that the training

and testing batches come from the same distribution may not

hold. Since Ω is usually unknown, we cannot predict concept

drift. An assumption traditionally accepted in data mining

is that the class distribution remains constant. In streaming

data, class prevalence can instead change over time, which

means that in a stream one class can become over- or under-

represented.

Let us define Xt = {x0, x1, ..., xt} as the set of labeled

observations available at time t, where xi is an n-dimensional

vector. For a new unlabelled instance xt+1 we can train a

classifier γ on Xt and predict P (ci|xt+1), the probability

that the instance belongs to class ci.

Using Bayes’ theorem we can write P (ci|xt+1) as:

P (ci|xt+1) =
P (ci)P (xt+1|ci)

P (xt+1)
(5)

Since P (xt+1) is the same for all classes ci we can remove

P (xt+1):

P (ci|xt+1) = P (ci)P (xt+1|ci) (6)

Kelly [23] argues that concept drift can occur from a

change in any of the terms in equation 6, namely:

• P (ci), class priors.

• P (xt+1|ci), distribution of the classes.

• P (ci|xt+1), posterior distributions of class membership.

Change in P (ci) can cause well-calibrated classifiers to

become miscalibrated. A change in the class priors can alter

class distribution to the point of making the distribution

unbalanced. Concept drift due to P (xt+1|ci) affects the dis-

tribution of the observations within the class, but leaves the

class boundary unchanged [20]. When P (ci|xt+1) changes,

589

there is a change in the class boundary that makes any

previously learnt classifiers biased. The latter is the worst

type of drift, because it directly affects the performance of a

classifier, as the distribution of the features, with respect to

the class, has changed [20].

B. Hellinger distance as weighting ensemble strategy

In evolving data streams it is important to understand how

similar two consecutive data batches are in order to decide

whether a model learnt on a previous batch is still valid.

Lichtenwalter and Chawla [24] propose to employ Hellinger

distance as a measure of the distance between two separate

batches. Let us define as Bt the batch at time t used for

training and Bt+1 as the subsequent testing batch. First

numeric features are discretized into equal-width bins, then

Hellinger distance between Bt and Bt+1 for a given feature

f is calculated as:

HD(Bt, Bt+1, f) =

√

√

√

√

√

∑

v∈f





√

|Bt
f=v|

|Bt|
−

√

|Bt+1

f=v|

|Bt+1|





2

(7)

where |Bt
f=v| is the number of instances of feature f

taking value v in the batch at time t, while |Bt| is the total

number of instances in the same batch.

Equation 7 does not account for differences in feature

relevance. In general, feature distance should have a higher

weight when the feature is relevant, while a small weight

should be assigned to a weak feature. Making the assumption

that feature relevance remains stable over time, Lichtenwalter

and Chawla [24] suggest to use the information gain to

weight the distances.

For a given feature f of a batch B, the Information Gain

(IG) is defined as the decrease in entropy E of a class c:

IG(B, f) = E(Bc)− E(Bc|Bf) (8)

where Bc defines the class of the observations in batch B

and Bf the observations of feature f .

For the testing batch we cannot compute IG(B, f), as

the labels are not provided, therefore the feature relevance

is calculated on the training batch. The authors define a new

distance function that combines IG and HD as:

HDIG(Bt, Bt+1, f) = HD(Bt, Bt+1, f)∗(1+IG(Bt, f))
(9)

HDIG(Bt, Bt+1, f) provides a relevance-weighted dis-

tance for each single feature. The final distance between

two batches is then computed taking the average over all

the features.

DHDIG(B
t, Bt+1) =

∑

f∈Bt HDIG(Bt, Bt+1, f)

|f ∈ Bt|
(10)

The authors suggest to learn a new model as soon as a new

batch is available and store all the models. The learnt models

are then combined into an ensemble where the weights of the

models are inversely proportional to the batches’ distances.

The lower the distance between two batches the more similar

is the concept between them. In a streaming environment

with concept drift we should expect good performances on

the current batch from models learnt on similar concepts.

With this reasoning in mind, the ensemble weights should

be higher for smaller distances. The authors suggest to use

the following transformation:

weightst = DHDIG(B
t, Bt+1)−b (11)

where b represents the ensemble size.

C. Related work in unbalanced data streams

The online learning problem typical of streaming data has

attracted a lot of attention in research, however little has

been done to tackle the streaming problem where the class

distribution is skewed [20]. Credit card fraud detection is an

example of a data source that suffers from class imbalance.

The number of frauds occurring in each chunk of the stream

is usually less than 1% [12]. As the type of fraudulent activity

can evolve in time, the learning strategy has to adapt to

concept drift. State-of-the-art methods for unbalanced data

streams with concept drift combine ensemble methods with

sampling.

Gao’s framework [16], [17] addresses the unbalanced

problem of a chunk by propagating past minority class obser-

vations and undersampling the majority class. The positive

examples are accumulated along the stream until they repre-

sent 40% of the observations. When this happens, the oldest

positive examples are replaced by the new minority class

observations. This propagation method ignores the similarity

of the minority class instance to the current concept, relying

only on its similarity in time.

REA [7] and SERA [6] proposed by Chen and He propa-

gate to the last chunk only minority class that belong to the

same concept using Mahalanobis distance and a k-nearest

neighbors algorithm.

With Learn++.NIE [13], Ditzler and Polikar extend their

own Learn++.NSE [15] method for unbalanced datasets.

For each batch they create different balanced subsets using

undersampling and then combine models learnt on each

balanced subset.

Lichtenwalter and Chawla [24] suggest to propagate not

only positives, but also observations from the negative class

which are misclassified in the previous chunk to increase the

boundary definition between the two classes.

Hoens and Chawla in HUWRS.IP [20] adapt HUWRS [21]

for unbalanced streams introducing an instance propagation

mechanism based on a Naı̈ve Bayes classifier. Naı̈ve Bayes

is used to select old positive instances which are relevant

to the current minority class context. This method relies on

finding instances that are similar to the current minority class

context. In some cases of rapid drift, however, such instances

may not be available.

Wang, Minku and Yao [29] propose Sampling-based On-

line Bagging (SOB) to deal with unbalanced data streams.

Their algorithm, is essentially a modification of Online

590

Bagging [26], in which the sampling rate of the instances

belonging to one class is determined adaptively based on the

current imbalance status and classification performance. The

problem with this approach is that it is not designed to handle

concept drifts as it aims to maximize G-mean greedily over

all received examples [29].

VI. EXPERIMENTAL SETUP

Many of the data streaming frameworks for concept drift

and unbalanced data use C4.5 [27] decision tree as the

base learner [21], [20], [24], [16]. In our experiments we

compared the results of C4.5 to the Hellinger Distance

Decision Tree (HDDT) with the parameters suggested in [9]

(unpruned and Laplace smoothing). The comparison is done

using different propagation/sampling methods and model

combinations (ensemble vs. single models).

In an unbalanced data stream, for each batch/chunk,

the positive class examples represent the minority of the

observations. Each batch can be considered as a small

unbalanced dataset, permitting all the techniques already

developed for static unbalanced datasets to be implemented.

In a streaming environment, however, it is possible to collect

minority observations from previous batches to combat the

class skewness. For our experiments we considered instance

propagation methods that assume no sub-concepts within the

minority class. In particular we used Gao’s [16] and Lichten-

walter’s [24] propagation methods presented in section V-C

and two other benchmark methods (UNDER and BL):

• SE (Gao’s [16] propagation of rare class instances and

undersampling at 40%)

• BD (Lichtenwalter’s Boundary Definition [24]: propa-

gating rare-class instances and instances in the negative

class that the current model misclassifies.)

• UNDER (Undersampling: no propagation between

batches, undersampling at 40%)

• BL (Baseline: no propagation, no sampling)

The first two methods can be considered as oversampling

methods since the minority proportion in the batches is

augmented. From now on, for simplicity we will call all the

previously discussed instance propagation methods sampling

strategies.

For each of the previous sampling strategies we tested:

• HDIG: DHDIG weighted ensemble.

• No ensemble: single classifier.

In the first case, an ensemble is built combining all models

learnt with weights given by equation 11.

In the second case, we use the model learnt in the current

batch to predict the incoming batch. This option has the

advantage of being faster as no models are stored during

the learning phase.

VII. EXPERIMENTAL RESULTS

In all our experiments we reported the results in terms

of AUROC (area under the ROC curve) as it is de facto

standard in unbalanced problems [4]. The framework was

implemented in Java and we used the Weka [18] implemen-

tation of C4.5 and HDDT.

A. Datasets

In our experiments we used different types of datasets. We

used benchmark UCI datasets [1] to first study the unbal-

anced problem without worrying about concept drift. These

datasets are not inherently sequential and exhibit no concept

drift; we render them as data streams by randomizing the

order of instances and processing them in batches as in [24].

Then we used the MOA [3] framework to generate some

artificial datasets with drifting features to test the behavior

of the algorithms under concept drift. Finally we used a

real-world credit card dataset which is highly unbalanced

and whose frauds are changing in type and distribution.

This dataset contains credit card transactions from online

payment between the 5
th of September 2013 and the 25

th of

September 2013, where only 0.15% of the transactions are

fraudulent. It was provided by a Belgian payment processor,

but for confidentially reasons we cannot reveal more about

this data.

TABLE I

DATASETS

Name Source Instances Features Imbalance Ratio

Adult UCI 48,842 14 3.2:1
can UCI 443,872 9 52.1:1

compustat UCI 13,657 20 27.5:1
covtype UCI 38,500 10 13.0:1
football UCI 4,288 13 1.7:1

ozone-8h UCI 2,534 72 14.8:1
wrds UCI 99,200 41 1.0:1
text UCI 11,162 11465 14.7:1

DriftedLED MOA 1,000,000 25 9.0:1
DriftedRBF MOA 1,000,000 11 1.02:1
DriftedWave MOA 1,000,000 41 2.02:1
Creditcard FRAUD 3,143,423 36 658.8:1

B. Results

We first tested the different sampling strategies using

HDDT and C4.5. One the left side of Figure 1 we see the

results where DHDIG distance discussed in section V-B is

used to weight the models from different batches according

to equation 11. On the right are the results where only

the model of the current batch is used for prediction. The

columns indicate the batch mean AUROC for each strategy

averaged over all UCI datasets. This means that for each

dataset we computed the mean AUROC over all batches

and then average the results between all datasets. In general

we notice that HDDT is able to outperform C4.5. For each

sampling method we see that the ensembles counterpart of

the single models have higher accuracy.

In Figure 2 we display the average computational time. As

expected, when a single classifier is used the framework is

much faster, but it comes at the cost of lower accuracy (see

Figure 1). When UNDER sampling is used in the framework

we have the smallest computational time, as it uses a subset

of the observations in each batch and no instances are

propagated between batches.

Figure 3 shows the results for the datasets with concept

drift generated using the MOA framework. HDIG-based

591

HDIG No Ensemble

0.00

0.25

0.50

0.75

BD BL SE UNDER BD BL SE UNDER

Sampling

A
U

R
O

C Algorithm

C4.5
HDDT

Fig. 1. Batch average results in terms of AUROC (higher is better) using
different sampling strategies and batch-ensemble weighting methods with
C4.5 and HDDT over all UCI datasets.

HDIG No Ensemble

0

1000

2000

3000

4000

BD BL SE UNDER BD BL SE UNDER

Sampling

T
IM
E Algorithm

C4.5
HDDT

Fig. 2. Batch average results in terms of computational TIME (lower
is better) using different sampling strategies and batch-ensemble weighting
methods with C4.5 and HDDT over all UCI datasets.

ensembles return better results than a single classifier and

HDDT again gives better accuracy than C4.5.

Figure 4 displays the results on the Credit card dataset.

This dataset is a good example of an unbalanced data stream

with concept drift. Once again HDDT is always better than

C4.5, however the increase in performance given by the

ensemble is less important than the one registered with the

UCI datasets. From Figure 4, it is hard to discriminate the

best strategy, as many of the them have comparable results.

Figure 5 shows the sum of the ranks for each strategy over

all the chunks. For each chunk, we assign the highest rank

to the most accurate strategy and then sum the ranks over

all chunks. Let rs,k ∈ {1, ..., S} be the rank of strategy s

on chunk k and S be the number of strategies to compare.

The strategy with highest AUROC in k has rs,k = S and

the one with the lowest has rs,k = 1. Then the sum of ranks

for the strategy s is defined as
∑K

k=1
rk,s, where K is the

total number of chunks. The higher the sum, the higher the

number of times one strategy is superior to the others.

The strategy with the highest sum of ranks

(BL HDIG HDDT) combines BL with HDIG ensembles

HDIG No Ensemble

0.0

0.2

0.4

0.6

0.8

BD BL SE UNDER BD BL SE UNDER

Sampling

A
U

R
O

C Algorithm

C4.5
HDDT

Fig. 3. Batch average results in terms of computational AUROC (higher
is better) using different sampling strategies and batch-ensemble weighting
methods with C4.5 and HDDT over all drifting MOA datasets.

HDIG No Ensemble

0.00

0.25

0.50

0.75

1.00

BD BL SE UNDER BD BL SE UNDER

Sampling

A
U
R
O
C Algorithm

C4.5
HDDT

Fig. 4. Batch average results in terms of AUROC (higher is better) using
different sampling strategies and batch-ensemble weighting methods with
C4.5 and HDDT over Credit card dataset.

of HDDTs. BL method leaves the batches unbalanced,

which means that the best strategy is actually the one

avoiding instance propagation/sampling. A paired t-test on

the ranks was then used to compare each strategy with

the best. Based on this test, we saw that the strategy with

the second-highest sum of ranks (UNDER HDIG HDDT)

is not significantly worse than the first. Compared to the

first, this strategy implements UNDER sampling at each

batch instead of BL. Figure 5 confirms that HDDT is

better than C4.5. The C4.5 implementation of the winning

strategy (BL HDIG C4.5) is significantly worse than the

best (BL HDIG HDDT). The same happens for the second

best ranking strategy (UNDER HDIG HDDT ranks higher

than UNDER HDIG C4.5).

VIII. CONCLUSION

To our knowledge, our work is the first to evaluate the

use of the HDDT tree algorithm for streaming data. Many

of the state-of-the-art techniques use the C4.5 algorithm

combined with sampling or instance propagation to balance

the batches before training. We have shown that when used

592

BL_C4.5

SE_C4.5

BD_C4.5

UNDER_C4.5

BL_HDIG_C4.5

SE_HDDT

SE_HDIG_C4.5

UNDER_HDDT

BL_HDDT

BD_HDIG_C4.5

BD_HDDT

BD_HDIG_HDDT

UNDER_HDIG_C4.5

SE_HDIG_HDDT

UNDER_HDIG_HDDT

BL_HDIG_HDDT

0 100 200

Sum of the ranks

Best significant

FALSE

TRUE

AUROC

Fig. 5. Comparison of different strategies using the sum of ranks in all
chunks for the Credit card dataset in terms of AUROC. In gray are the
strategies that are not significantly worse than the best having the highest
sum of ranks.

in data streams, HDDT without sampling typically leads to

better results than C4.5 with sampling. Thus, HDDT can

offer better performance than C4.5, while actually removing

sampling from the process.

The removal of the propagation/sampling step in the

learning process has several benefits:

• It allows a single-pass approach (the observations are

processed as soon as they arrive, avoiding several passes

throughout the batches for instance propagation).

• It reduces the computational cost/resources needed (this

is important since with massive amounts of data it may

no longer be possible to store/retrieve old instances).

• It avoids the problem of finding previous minority

instances from the same concept (in the case of a new

concept in the minority class, it may not be possible to

find previous observations to propagate).

For these reasons we think our framework is more efficient

than state-of-the-art methods for unbalanced data streams.

We have used artificial datasets to test how different

strategies work under concept drift. The use of HDIG as an

ensemble weighting strategy has increased the performances

of the single classifiers, not only in artificial datasets with

known drift (MOA datasets), but even in datasets whose

distribution is assumed to be more or less stable (UCI

datasets).

Finally, we tested our framework on a proprietary dataset

containing credit card transactions from online payment.

This is a particularly interesting dataset, as it is extremely

unbalanced and exhibits concept drift within the minority

class. HDDT performs very well when combined with BL

(no sampling) and UNDER sampling. An important feature

of these basic sampling strategies is the fact that frameworks

implementing them are much faster (see Figure 2) since

no observations are stored from previous chunks. When

these two sampling strategies give comparable results, the

practitioner could prefer UNDER sampling as it is more

memory efficient since it uses a reduced part of the batch for

training. By using undersampling, however, a lot of instances

from the majority class are not considered.

In our experiments we compared our framework with

propagation/sampling methods that consider the minority

class as a single cluster. Future work will investigate prop-

agation methods such as REA, SERA and HUWRS.IP seen

in section V-C that are able to deal with sub-concepts in the

minority class.

REFERENCES

[1] D. N. A. Asuncion. UCI machine learning repository, 2007.

[2] G. Batista, A. Carvalho, and M. Monard. Applying one-sided se-
lection to unbalanced datasets. MICAI 2000: Advances in Artificial

Intelligence, pages 315–325, 2000.

[3] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive
online analysis. The Journal of Machine Learning Research, 99:1601–
1604, 2010.

[4] N. V. Chawla. Data mining for imbalanced datasets: An overview.
In Data mining and knowledge discovery handbook, pages 853–867.
Springer, 2005.

[5] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue
on learning from imbalanced data sets. ACM SIGKDD Explorations

Newsletter, 6(1):1–6, 2004.

[6] S. Chen and H. He. Sera: selectively recursive approach towards
nonstationary imbalanced stream data mining. In Neural Networks,

2009. IJCNN 2009. International Joint Conference on, pages 522–529.
IEEE, 2009.

[7] S. Chen and H. He. Towards incremental learning of nonstationary
imbalanced data stream: a multiple selectively recursive approach.
Evolving Systems, 2(1):35–50, 2011.

[8] D. A. Cieslak and N. V. Chawla. Detecting fractures in classifier
performance. In Data Mining, 2007. ICDM 2007. Seventh IEEE

International Conference on, pages 123–132. IEEE, 2007.

[9] D. A. Cieslak and N. V. Chawla. Learning decision trees for
unbalanced data. In Machine Learning and Knowledge Discovery in

Databases, pages 241–256. Springer, 2008.

[10] D. A. Cieslak, T. R. Hoens, N. V. Chawla, and W. P. Kegelmeyer.
Hellinger distance decision trees are robust and skew-insensitive. Data

Mining and Knowledge Discovery, 24(1):136–158, 2012.

[11] P. Clark and T. Niblett. The cn2 induction algorithm. Machine

learning, 3(4):261–283, 1989.

[12] A. Dal Pozzolo, O. Caelen, S. Waterschoot, and G. Bontempi. Racing
for unbalanced methods selection. In Proceedings of the 14th Inter-

national Conference on Intelligent Data Engineering and Automated

Learning. IDEAL, 2013.

[13] G. Ditzler and R. Polikar. An ensemble based incremental learning
framework for concept drift and class imbalance. In Neural Networks

(IJCNN), The 2010 International Joint Conference on, pages 1–8.
IEEE, 2010.

[14] C. Drummond, R. Holte, et al. C4. 5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling. In Workshop

on Learning from Imbalanced Datasets II. Citeseer, 2003.

[15] R. Elwell and R. Polikar. Incremental learning of variable rate concept
drift. In Multiple Classifier Systems, pages 142–151. Springer, 2009.

[16] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu. Classifying data streams
with skewed class distributions and concept drifts. Internet Computing,
12(6):37–49, 2008.

[17] J. Gao, W. Fan, J. Han, and S. Y. Philip. A general framework for
mining concept-drifting data streams with skewed distributions. In
SDM, 2007.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. ACM SIGKDD

Explorations Newsletter, 11(1):10–18, 2009.

[19] P. R. Halmos. Measure theory, volume 2. van Nostrand New York,
1950.

[20] T. R. Hoens and N. V. Chawla. Learning in non-stationary environ-
ments with class imbalance. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining,
pages 168–176. ACM, 2012.

593

[21] T. R. Hoens, N. V. Chawla, and R. Polikar. Heuristic updatable
weighted random subspaces for non-stationary environments. In Data

Mining (ICDM), 2011 IEEE 11th International Conference on, pages
241–250. IEEE, 2011.

[22] N. Japkowicz and S. Stephen. The class imbalance problem: A
systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[23] M. G. Kelly, D. J. Hand, and N. M. Adams. The impact of changing
populations on classifier performance. In Proceedings of the fifth ACM

SIGKDD international conference on Knowledge discovery and data

mining, pages 367–371. ACM, 1999.
[24] R. N. Lichtenwalter and N. V. Chawla. Adaptive methods for

classification in arbitrarily imbalanced and drifting data streams. In
New Frontiers in Applied Data Mining, pages 53–75. Springer, 2010.

[25] L. Olshen and C. Stone. Classification and regression trees. Wadsworth

International Group, 1984.
[26] N. C. Oza. Online bagging and boosting. In Systems, man and

cybernetics, 2005 IEEE international conference on, volume 3, pages
2340–2345. IEEE, 2005.

[27] J. R. Quinlan. C4. 5: programs for machine learning, volume 1.
Morgan kaufmann, 1993.

[28] C. R. Rao. A review of canonical coordinates and an alterna-
tive to correspondence analysis using hellinger distance. Questiió:

Quaderns d’Estadı́stica, Sistemes, Informatica i Investigació Opera-

tiva, 19(1):23–63, 1995.
[29] S. WANG, L. L. MINKU, and X. YAO. Online class imbalance

learning and its applications in fault detection. International Journal

of Computational Intelligence and Applications, 12(04), 2013.
[30] I. Zliobaite. Learning under concept drift: an overview. Technical re-

port, Overview, Technical report, Vilnius University, 2009 techniques,
related areas, applications Subjects: Artificial Intelligence, 2009.

594

