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Abstract—In this paper, we propose a binary feature selection
framework in kernel spaces, where each feature is projected into
kernel spaces and a binary classification task is constructed in
this space. Subsequently, the features are selected according to
the normal vector of the learned classifier, which reflects the
importance of each feature. To achieve the effect of feature selec-
tion, an `1-norm regularization is imposed on the normal vector
to enforce its sparsity. Also, our framework can be naturally
extended to the semi-supervised feature selection scenario via
the well-known manifold regularization technique. Furthermore,
the issue of eliminating the potential redundancy among the
selected features is well discussed. Finally, we provide some
theoretical results which guarantee the feasibility of the proposed
framework. Comprehensive experiments have been conducted
on six benchmark data sets and the results demonstrate the
performance of our framework.

I. INTRODUCTION

Data with high dimensional features is very common in
many practical applications such as pattern recognition [1],
bioinformatics [2], anomaly detection [3], to name just a
few. Some of these features may be irrelevant and redundant
for a learning task. More importantly, training a model with
these high dimensional data directly would increase the risk
of over-fitting, incur more computational cost, deterioration
prediction accuracy and reduce the result comprehensibility. To
address these issues, many feature selection algorithms have
been proposed to select a subset of features from these high
dimensional data during the past several years [4]–[8]. In some
areas, researchers make better performance due to using of the
feature selection method [9]–[11]. Existing feature selection
algorithms can be roughly classified into two categories, i.e.,
filter and wrapper. The main idea of filter method is to score
features according to some statistical criterion and filter out
features by the score [12]–[16]. Obviously, filter method has
the advantage of fast selection but lacking in robustness, and
its capacity is insufficient for redundancy and related features
processing. More importantly, this method needs to make a
good trade-off for how many features to extract. Wrapper
method chooses features embedded into learning algorithms
[17], [18]. It can achieve high accuracy but always lack of
speed [19]. Some approaches try to combine the filter and
wrapper to achieve better results [20], [21].

Recently, some excellent feature selection methods have
been proposed in both supervised cases [22]–[29] and semi-

supervised cases [29]–[33]. In the supervised case, the work
in [25] selects features based on the criterion of minimizing
redundancy between feature and target while maximizing
relevance among features. Differently, an `2,1-norm joint in
both loss function and regularization is adopted in [26] to
induce an efficient and robust method. The approach in [27]
attempts to select features by decomposing complex nonlinear
problem into local linear one that uses local learning method
to maximize the local margin. Both global and local structures
are maintained in [29] to conduct feature selection. In semi-
supervised case, the work in [30] discusses how to use multi-
objective optimization to select features. the spectral graph the-
ory is firstly introduced in [31] to solve semi-supervised feature
tasks. The approach in [32] shows a novel method based on
manifold learning. Also, a semi-supervised feature selection
algorithm based on manifold regularization is proposed in [33].

In this paper, we propose a novel feature selection method
termed as binary feature selection (BFS), which presents a
new perspective of feature selection. It offers a new framework
for feature selection, in which all existing binary classification
methods can be applied to select features. This implies that,
for different types of data, one can achieve a better result by
adopting a more appropriate classifier. In order to maximize
the difference between different classes, BFS first projects
features to a kernel space, in which each base kernel is
induced by one dimension of features in the original space.
After that, any binary classification methods can be used to
find a “good” kernel combination weight. In addition, an `1-
norm regularization is incorporated in BFS to enforce the
sparsity of the learned kernel combination weights. Finally, we
theoretically show that “good” features can be selected based
on the “good” base kernel combination weights. To deal with
the presence of a large number of unlabeled samples in real
feature selection problems, we further propose semi-supervised
binary feature selection (semi-BFS) method by applying the
well-known manifold regularization technique [34]. Compre-
hensive results on different real world data sets demonstrate
the superior performance of the proposed framework.

The rest of paper is organized as follows. We present the
BSF and semi-BSF framework in section II. The theoretical
analysis is provided in section III. Section IV reports the
experimental results and section V concludes the paper.
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II. BINARY FEATURE SELECTION

Our approach considers the impacts of individual features
and combining features on the prediction/classification results
at the same time. For the classification problem, it initially
projects features into a special kernel space, called K-space,
which will be introduced in the following part, to reflect
the discrimination of individual feature to different classes.
And then it seeks a “good” combination of features through
a transformed binary classification problem. In this section,
we first introduce how to construct K-space from the original
feature space. After that we discuss how to select features in
both supervised and semi-supervised situations.

A. K-space Construction

First we assume there are n samples (xi, yi) from a same
distribution P , where xi has m-dimensional features and can
be presented as (fi1, fi2, · · · , fim) and yi is the corresponding
label. We use each dimension to reconstruct n × m new
samples, i.e. ((f1,y), (f2,y), · · · , (fm,y)), in which fi means
the i-th dimensional feature and y means the corresponding n
labels, from the n samples. Then the impact on classification
of each dimensional feature can be measured by using a
kernel function k(f, f ′) in each fi. In this way, we can
get m kernel matrix (K(f1, f

′

1),K(f2, f
′

2), · · · ,K(fm, f
′

m)). To
learn a “good” combination of features, we need to learn a
“good” combination of these kernels since it reflects every
features. Similar as [35], we define a new instance space,
which called K-space, to achieve kernel selection through
a binary classification. In order to keep the nature of fea-
tures, we just use the linear kernel k(x, x

′
) = x × x

′
to

project feature space to K-space. However, other kernels can
be used in this approach either. We construct K-space as
{(zx,x′ , ty,y′)|(x, y), (x

′
, y

′
) ∼ P × P} ⊂ Rm × {±1} where

zx,x′ = (K(fx1, f
′

x1),K(fx2, f
′

x2), · · · ,K(fxm, f
′

xm))

tyy′ = 2 · 1{y = y
′} − 1.

(1)
Our approach, which is based on the K-space, will be discussed
in the following part.

B. Supervised Binary Feature Selection

For m-dimensional features (f1, f2, · · · , fm), the feature
selection problem can be seen as finding a m × 1 vector µ,
which represents the importance of each feature dimension,
and select k most significant features based on µ. In particular,
for the classification problem, feature selection needs to find
the µ that can select the features combination, which have the
most discrimination for different class. Therefore, if we project
features from the original feature space into the K-space, in
which zx,x′ represent feature combination and tyy′ represent
discrimination of different class, we can find this µ by ensuring
µ · zx,x′ can derive most correct tyy′ . In this end, feature
selection problem has transformed to a binary classification
problem and µ is equal to the parameters of linear classifier.
What’s more [35] had improved the feasibility using binary
classification method finds “good” kernel combination. So
one can introduce any binary classification method to select
feature. There are at least two advantages: 1) it is robust
to different data; 2) it is easily expanded to semi-supervised
feature selection. For the first one, our approach will be robust

because there is no assumption in data structure. Meanwhile,
in the worst case, one can use different binary classification
method to overcome the impaction of different data structure.
For the second one, because our approach has transformed
feature selection to binary classification and there are many
existing methods that can expand supervised classification
problem to semi-supervised classification straightforwardly,
such as [34], so we can develop it to semi-supervised feature
selection conveniently.

In this paper, we just consider least squares classifier.
However, various classifiers can be used as well, such as
SVM [36], ELM [37] and so on. Moreover, we take into
account the nature of feature selection, which is to select lesser
features with better performance. Therefore, we add a `1-norm
regularization to the objective function in order to ensure the
sparsity of µ [38]. Finally the µ needs to be increased the
limit of non-negative since we only need the positive impact
of features.

To train this classifier, we put all zx,x′ and the correspond-
ing ty,y′ in K-space as training samples. If we have n samples
in the original feature space, then we can get N (zx,x′ ,ty,y′ )
pairs in K-space as training samples (Z,T). Here, N equal to
n(n−1)

2 is the number of projected samples in K-space. Our
objective function can be written as follow:

min
µ

‖Z · µ−T‖22 + α1‖µ‖1
s.t. µ ≥ 0

(2)

where α1 is a constraint parameter that controls the sparse
degree of µ. We solve this least squares problem using
an interior-point method for large-scale `1-regularized least
squares proposed in [39]. The largest k values in µ represent
the most k important kernel matrix. Since each kernel matrix
is projected from a corresponding feature, the important kernel
matrixes correspond to the important features. Thus, we can
select features according to the k largest values in µ. We
summarize our approach in Algorithm 1.

Algorithm 1 Our proposed BFS
1: Input: training data X ∈ Rn×m and Y ∈ Rn×1, the

number of selected features k.
2: Output: the selected features Fset.
3: Construct K-space using Eq. 1.
4: Calculate µ in K-space for Eq. 2
5: Select features from X according to the largest k values

in µ

C. Semi-supervised Binary Feature Selection

Consider there are n samples in the original feature space,
in which nl are labeled samples while n − nl are unlabeled
samples. After projected to K-space, the new samples have
label only when both corresponding samples have label. So
we can get N new samples with l labeled and u unlabeled.
Here, l equal to n2

l (n
2
l−1)
2 and u equal to N − l. We denote

the set of new samples in K-space as {(zi, ti)Ni=1}.
We use the manifold regularization term to extend BF-

S method to semi-BFS method, which can adapt to semi-
supervised feature selection. This is a very natural but extreme-
ly significant extension, because in most reality cases people
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cannot supervised label all samples. A basic assumption of
manifold regularization is that points, which are close in the
manifold, are more likely to have the same nature. In other
word, if two points x1, x2 ∈ X are close in the manifold, then
the conditional distribution P(y|x1) and P(y|x2) are similar.
So manifold regularization term is essentially a smoothness
penalty to the probability distribution. It can mine the informa-
tion of unlabeled data using labeled data based on their position
on the manifold. If we note l labeled samples {(zi, ti)li=1} and
u unlabeled samples {zj}j=l+uj=l+1 , the manifold regularization

term can be written as
l+u∑
i,j=1

(f(zi) − f(zj))2Wij , where Wij

represents the distance between zi and zj . However, manifold
regularization assume a low-dimensional manifold is embed-
ded into a high-dimensional space. Therefore, the Euclidean
distance in the high-dimensional space can approximate dis-
tance in low-dimensional manifold only when points are very
close in a local space. Thus we only consider the h-nearest
neighbor of a point in the manifold regularization term. We
define

Sij =

{
exp(−‖zi−zj‖2

σ2 ) zi ∈ Nh(zj) or zj ∈ Nh(zi)
0 otherwise,

(3)

where Nh(z) is the set of h-nearest neighbor of z. Then the
manifold regularization is minimization the following:

min
f

l+u∑
i,j=1

(f(zi)− f(zj))2Sij = min
f

f>Lf , (4)

where f = [f(z1), f(z1), · · · , f(zl+u)], and L given by
L = D−

1
2 (D− S)D−

1
2 is the normalized graph Laplacian

matrix. Here D is a diagonal matrix with

Dii =

N∑
j=1

Sij . (5)

In K-space, f(z) is equal to z · µ. The objective function of
semi-BFS can be defined as:

min
µ

‖Zl · µ−Tl‖22 + α1‖µ‖1 + α2µ
>Z>LZµ

s.t. µ ≥ 0
(6)

where Zl is the l×m matrix composed of labeled z, T is the
l× 1 label vector correspond to Z, and α2 is a parameter that
controls the importance of the manifold regularization term.
Since µ is limited greater than 0, the `1-norm term ‖µ‖1 is
equal to 1>µ, where 1 is a m× 1 vector with all elements is
1 i.e. (1, 1, · · · , 1)>m. This objective function can be rewrite as
a typically quadratic programming problem. Obviously, it can
be efficiently solved by existing approaches. The semi-BFS
approach is summarized as Algorithm 2.

D. Discussion

In this section, we will discuss several of the problems
mentioned above and give a supplementary description of our
approach.

Algorithm 2 Our proposed semi-BFS
1: Input: training data X ∈ Rn×m and Y ∈ Rnl×1 with nl

labeled samples and n−nl unlabeld samples, the number
of selected features k.

2: Output: the selected features Fset.
3: Construct K-space as Eq. 1 where tyy′ is meaningful only

when x and x
′

are labeled .
4: Calculate Laplacian matrix L.
5: Calculate µ in K-space for Eq. 6
6: Select features from X according to the largest k values

in µ

1) Kernel choice: As mentioned above, we only use linear
kernel to project feature space to K-space in this paper. The
reason is that linear kernel can keep the absolute position in-
formation between the original features, but other kernels like
Gaussian kernel only retain the relative position information.
Since we want to use the new samples, which are projected
from the original space, to train a classifier in K-space,
samples only contain relative position information that will
even reduce the information in the original space. For example,
consider we have three samples {x1 = (1, 2, 3); y1 = 1},
{x2 = (2, 3, 4); y2 = 1}, {x3 = (3, 4, 5); y3 = 2}, after
projected to K-space using Gaussian kernel (with σ = 1)
we will get new samples as {zx1,x2

= ( 1e ,
1
e ,

1
e ); ty1,y2 = 1},

{zx2,x3 = ( 1e ,
1
e ,

1
e ); ty2,y3 = −1} etc. As can be seen from the

above, we got two new samples that have the same position
in the K-space but with different labels, which were due
to the only containing of original feature’s relative position
information. Quite clearly, such samples would bring great
classification error, which may produce a “bad” classifier. So
kernels that only contain relative information cannot be used
in our approach. However, there are more kernels not only
contain it, e.g. Polynomial kernel. The best way choice kernel
to project original features to K-space is introducing kernel
learning method.

2) Feature Redundancy: Reduce redundancy in the selected
feature can effectively improve the classification accuracy.
Thus, some existing methods, such as [25], are carried out
based on this. Since our approach projects feature into kernel
space and each dimensional of feature corresponds to a kernel
matrix, so reducing the redundancy of selected features is
equivalent to reducing the kernel matrix correlation. We can
reduce kernel matrix correlation by minimizing alignment
between kernels. Following [40] alignment between kernels
K,K

′ ∈ Rm×m can be defined as:

ρ̂(K,K
′
) =

〈Kc,K
′

c〉F
‖Kc‖F ‖K′

c‖F
(7)

where Kc is the centered kernel matrix defined as:

Kc = [I− 11T

m
]K[I− 11T

m
] (8)

where 1 ∈ Rm×1 denote the vector with all entries equal to
one, and I is the identity matrix. The alignment matrix in K-
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space can be rewritten as:

ρ =

 ρ̂(K1,K1) · · · ρ̂(K1,Km)
...

. . .
...

ρ̂(Km,K1) · · · ρ̂Km,Km

 (9)

where Ki = K(fi, fi) is the kernel matrix correspond to
the i-th dimensional feature. To minimize the alignment, our
objective function can be rewrite as:

min
µ

‖Zl · µ−Tl‖22 + α1‖µ‖1
+α2µ

TZ>LZµ+ α3µ
Tρµ

s.t. µ ≥ 0

(10)

where α3 controls penalties for kernel matrix relevance and
α2 will be set as 0 in supervised feature selection. In the
experiment, we found that if using a linear kernel to project
feature, the selected features would have low redundancy. But
using other kernels does not have this nature. We will show
these results in IV-D4. So one can ignore the redundancy
regularization when use linear kernel in our approach. And
all of results in section IV not consider this regularization.

III. THEORETICAL RESULTS

In this section, we present our theoretical results to analyze
the generalization error of the proposed method. We show that
a “good” classifier in the K-space will induce a “good” subset
of features.

Theorem 1: Let P be a distribution on X × Y , zx,x′

and ty,y′ be as in Eq.(1), µ is the parameters of the linear
classifier in K-space, µset is the vector which only retains the
k largest values in µ while others are set to be 0, and R is a
constant s.t. Z · µset ≤ R2 ∀x ∈ X . Let Lµ be the expected
K-space loss of the K-classifer with the parameters µ. Then,
with probability 1− δ, a classifier f̂ with generalization error

P(x,y)(yf̂ ≤ 0) ≤ Lµset
+O(

√
R4 ln(1/δ)

γ2n
),

where γ is the margin of the f̂ , can be learned efficiently from
a training samples of n instances drawn i.i.d. from P .

The Lµ in the above theorem will be different based on
different classifiers in the K-space. If SVM is used as the
classifier, Lµ can be written as:

Lµ = E((x,y),(x′ ,y′ ))∈P×P([1−
ty,y′zx,x′ · µ

γ
]+), (11)

where [1−s]+ = max{0, 1−s} is the hinge loss. In this case,
Theorem 1 can be proved by Theorem 3.1 in [35]. When a
least squares classifier is adopted, Lµ can be written as:

Lµ = E((x,y),(x′ ,y′ ))∈P×P((ty,y′ − zx,x′ · µ)2). (12)

In this case, Theorem 1 can be proven according to the
following definition and lemmas.

Definition 1 formally defines what is a “good” set of
features.

Definition 1: Considering n samples (x, y) drawn
i.i.d. from X × Y , F is the completed set of sample features.

A set of features Fset ⊆ F is an ε-good set of features if there
exist a classifier µ s.t.

E(xset,y)((T− Zset · µ)2) ≤ ε

where T and Zset are new samples matrix in K-space cor-
respond to n samples (xset, y) only contain Fset features in
original space by projecting each features using same kernel.

We first use Lemma 1 to show that a good set of features
can be induced by a K-classifier, which has low expected
loss in K-space. Then Lemma 2 is used to show that we can
effectively obtained a good set of features from a finite training
sample, which directly follows from Theorem 21 in [41].

Lemma 1: Let P , µset, Lµset , R be as in Theorem 1.
Then the F̂ is a Lµ-good set of features with respect to P .

Lemma 2: Let Fset be an ε-good set of features, Zset
and T are represented as in Definition 1 correspond to n
original samples, and f̂(x) = Z ·µset. Then, with probability
at least 1− δ, the generalization error is:

P(x,y)(yf̂ ≤ 0) ≤ ε+O(

√
R2 ln(1/δ)

γ2n
)

IV. PERFORMANCE EVALUATION

A. Experimental Setting

In this section, we evaluate our proposed BFS and semi-
BFS methods with respect to many current supervised and
semi-supervised methods. We aim to show that for supervised
feature selection our method can get excellent and robust
results while for semi-supervised feature selection our method
can outperform state-of-arts.

For supervised feature selection, some methods such as
SPFS [24], LLFS [27], L21RFS [26], mRMR [25] are adopted
to serve as comparative methods with our BFS method. For
semi-supervised feature selection, another group of methods,
including LSDF [32], FS-Manifold [33] and semiMRSF [29],
are selected as the comparative methods. All these methods
setting follow the authors’s suggestions.

B. Data Sets

Following [29], six real-world data sets are used in our
experiments. The data sets downloaded from [42] that involves
image and microarray applications. We show detailed informa-
tion on the data sets in Table I. In supervised cases, training
data are randomly selected form 50% samples and test data
is selected as the rest samples for each data set. In semi-
supervised case, we randomly choose 20% and 40% samples
as labeled and unlabeled data respectively, and the rest 40%
samples are used as test data. In order to eliminate the effects
caused by randomly chosen, we repeat this process 20 times
and obtain 20 partitions of original data. We evaluate above
feature selection methods on each partition and report averaged
results.
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TABLE I. SUMMARY OF THE DATA SETS

Data Set # Features # Instances # Classes

AR10P 2400 130 10
CLL-SUB-111 11340 111 3

ORL10P 10304 100 10
PIX10P 10000 100 10
PIE10P 2420 210 10

TOX-171 5748 171 4

C. Evaluation Criteria

We use classification accuracy, which is obtained by linear
SVM using selected feature, to evaluate the feature selection
methods for both supervised and semi-supervised cases. And
we use paired student’s t-test to evaluate the statistical signifi-
cance of the improvement. The p-value of the t-test represents
tdhe probability whether two sets of compared results come
from distributions with an equal mean. One can consider two
sets have statistically significant if p-value is smaller than 0.05.

D. Experimental Results

1) Results of the supervised case: We show the averaged
SVM classification accuracy on data set CLL-SUB-111 in Fig.
1. The result of BFS has no significant difference with state-
of-the-arts. And the “aggregated” SVM classification accuracy
of different methods on each data set is showed in table II
following [29]. The “aggregated” SVM classification accuracy
is defined as the averaging the averaged SVM classification
accuracy when 10, 20, · · · , 200 features are selected. Table
II has the following meanings, the first part is the mean ±
standard deviation and the second part is the p-value obtained
by the paired student’s t-test. The bold values in each cell of II
represent the highest accuracy and those having no significant
difference from the highest one.

As can be seen from the above results, the biggest advan-
tage of BFS is that it has strong robustness. In the experiment,
BFS has reached the highest accuracy or has no significant
difference from the highest one for all data sets. But other
methods may reach high accuracy in some data sets and cannot
reach high accuracy in the others. What’s more, since one can
use different classifiers to implement our approach for different
data structures, there is possibility for better classification
accuracy. Due to reasons of time, we have not used other
classifiers in this paper.

2) Results of the semi-supervised case: We show the av-
eraged SVM classification accuracy on data set TOX-171 in
Fig. 2. As can be seen, semi-BFS have the top classification
performance. As previously, “aggregated” SVM classification
accuracy is reported in table III. These results show our semi-
BFS can be the highest accuracy except in PIX10P.

3) Discuss the importance of manifold regularization: In
the semi-supervised feature selection, we use the manifold
regularization to extent BFS to semi-BFS. As we mentioned
above, α3 controls the importance of manifold regularization,
which reflect the local information of both labeled and unla-
beled samples. Here we range α3 from e1 to e5. The result in
benchmark PIE10P shows in Fig. 3. We can see when α2 is
set as e4 the classification accuracy is the highest. In this case,
the value of manifold regularization term and the loss term is
in one order of magnitude.
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Fig. 1. Supervised case: Comparison of linear SVM classification accuracy
of different supervised feature selection algorithms on the CLL-SUB-111 data
set.
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Fig. 2. Semi-supervised case: Comparison of linear SVM classification
accuracy of different semi-supervised feature selection algorithms on the TOX-
171 data set.

4) Feature Redundancy: As we mentioned above, a good
set of features always has low redundancy. Here we compared
the redundancy of selected features by BFS with linear kernel
and Gaussian kernel. Results show in Fig. 4. From the result,
using linear kernel can obtain least redundancy. We also test
the redundancy of selected features by BFS with redundancy
regularization. We also test the redundancy of selected features
using linear kernel with and without redundancy regularization.
It gets the same result. Finally, in Fig. 5 we compared the
redundancy of selected features by SPFS [24], LLFS [27],
L21RFS [26] , and mRMR [25] in the same data set. Result
shows the lower redundancy the higher classification accuracy
it will have.
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TABLE II. SUPERVISED CASE: AGGREGATED LINEAR SVM CLASSIFICATION ACCURACY. BOLDFACE MEANS NO STATISTICAL DIFFERENCE FROM THE
BEST ONE (P-VAL ≥ 0.05).

Data BFS SPFS [24] L21RFS [26] mRMR [25] LLFS [27]

TOX-171 77.65± 3.86 (1.00) 77.10± 4.60 (0.08) 77.55± 5.60 (0.56) 75.72± 3.60 (0.00) 77.43± 4.59 (0.63)

PIX10P 95.91± 1.79 (0.51) 95.91± 2.55 (0.05) 95.28± 2.55 (0.00) 95.39± 2.42 (0.02) 97.19± 2.15 (1.00)

ORL10P 93.13± 2.55 (0.37) 91.63± 3.92 (0.01) 91.44± 3.62 (0.01) 93.76± 2.58 (1.00) 92.74± 2.37 (0.09)

AR10P 86.81± 4.23 (1.00) 85.34± 5.88 (0.23) 86.11± 4.66 (0.44) 85.80± 4.56 (0.19) 78.93± 6.69 (0.00)

CLL-SUB-111 74.42± 4.56 (1.00) 72.69± 6.56 (0.12) 74.12± 4.69 (0.66) 70.31± 4.80 (0.00) 74.29± 4.24 (0.87)

PIE10P 97.85± 1.26 (0.06) 98.25± 2.04 (0.37) 98.55± 0.78 (1.00) 96.18± 1.57 (0.00) 93.22± 4.44 (0.00)

AVG 87.63 86.82 87.18 86.14 85.63

TABLE III. SEMI-SUPERVISED CASE: AGGREGATED LINEAR SVM CLASSIFICATION ACCURACY. BOLDFACE MEANS NO STATISTICAL DIFFERENCE
FROM THE BEST ONE (P-VAL ≥ 0.05).

Data semi-BFS LSDF [32] FS-Manifold [33] semiMRSF [29]

TOX-171 64.97± 4.22 (1.00) 60.64± 5.42 (0.00) 58.29± 3.74 (0.00) 51.63± 6.18 (0.00)

PIX10P 90.82± 3.30 (0.03) 93.63± 3.68 (1.00) 84.57± 11.22 (0.00) 92.59± 3.18 (0.20)

ORL10P 86.06± 4.35 (0.48) 81.73± 7.76 (0.01) 75.74± 5.82 (0.00) 86.96± 3.85 (1.00)

AR10P 69.81± 6.25 (0.07) 73.54± 5.14 (0.69) 70.49± 7.78 (0.04) 74.23± 8.90 (1.00)

CLL-SUB-111 62.67± 9.17 (1.00) 53.55± 6.06 (0.00) 55.63± 1.41 (0.00) 57.85± 0.68 (0.00)

PIE10P 87.75± 3.76 (1.00) 82.53± 3.70 (0.00) 82.72± 6.32 (0.00) 80.37± 5.61 (0.00)

AVG 77.01 74.27 71.24 73.94

exp(1) exp(2) exp(3) exp(4) exp(5)
86.5

87

87.5

88

The value of a
2

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Fig. 3. Importance of manifold regularization

V. CONCLUSIONS

In this paper, we have proposed a novel method for both
supervised and semi-supervised feature selection using binary
classification in kernel space. This is a new view of feature
selection, which makes it possible to solve the feature se-
lection problem through any state-of-arts binary classification
methods. Theoretical and experimental results show that the
proposed method has good performance in both supervised and
semi-supervised feature selection. What’s more, the method is
robust due to the fact that it has no assumption towards data
structure. In future work, how to effectively learn the kernel,
which projects features to K-space, will be considered. And
the speed of this method needs to be improved as well.
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Fig. 4. Redundancy of selected features by different kernels, the value range
of redundancy from 0 to 0.9 each represent a redundancy interval in step of
0.1.
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