
A modular neural network architecture that selects a different set of

features per module

Diogo S. Severo, Everson Verı́ssimo, George D. C. Cavalcanti and Tsang Ing Ren

Abstract—Modular Neural Network (MNN) divides a problem
into smaller and easier sub-problems, and each sub-problem is
solved by a neural network called expert. In previous MNN
architectures, all experts used the same set of features. This
work proposes a modular neural network architecture in which
a specialized set of features is selected per expert. As each
expert deals with a different sub-problem, it is expected an
improvement in the accuracy rate when different and specialized
features are selected per expert. The feature selection procedure
is an optimization method based on the binary particle swarm
optimization. Experimental results over public datasets show that
the proposed modular neural network obtains better accuracy
rates than literature MNNs.

I. INTRODUCTION

A rtificial neural networks are inspired by the way the
human brain performs a task, however they lack mo-

dularization. In contrast, our brain has distinct specialized
areas that are responsible for specific tasks, such as: vision,
audition, and speech [1]. Modular neural networks (MNNs)
aim to construct specialized neural networks using the divide-
to-conquer approach [2][3][4].

In a supervised scenario, where C represents the set of all
possible classes, a modular neural network works as follows.
First, the original problem is divided into smaller and sim-
pler sub-problems and these sub-problems are distributed into
different modules. Each sub-problem contains only a subset C′

of the whole set of classes C (C′

⊆ C). After, each module
is responsible for solving a specific sub-problem by training
a classifier, called expert. So each expert is a specialized
classifier that responds only for a subset of the whole possible
classes of the problem at hand.

Modular Neural Networks take advantage of modulariza-
tion to overcome the accuracy rate of single neural networks
when dealing with complex problems. This modularization
is performed by Task Decomposition methods [5], [6], [7],
[8] that aim to divide a complex problem into easier sub-
problems. After decomposition, each module uses the whole
set of features to train each expert. However, it is expected
that different modules require different subsets of the original
features to better perform their task. Thus, it is important
to choose the features that best preserve the discriminant
information among classes per module.

This paper proposes a modular neural network in which a
different subset of the original features is selected per module.
The proposed MNN architecture is based on the Pattern

Diogo S. Severo, Everson Verı́ssimo, George D. C. Cavalcanti and Tsang
Ing Ren are with the Centro de Informática, Universidade Federal de Pernam-
buco, Brazil, site: http://www.cin.ufpe.br/∼viisar (email: {dss2, evs2, gdcc,
tir}@cin.ufpe.br).

This work was supported by Brazilian agencies: CNPq, Capes, and Facepe.

Distributor (PD) architecture proposed by Guan et al. [10]. As
well as other MNN architectures, the PD architecture divides
the problem into sub-problems where each one is treated by a
different module. The main difference between PD architecture
and other MNN architectures is the presence of a special
module called distributor. The distributor module selects the
expert that is responsible for the final classification of a given
query pattern. Thus, the selection of the winner module is
made before classification unlike other MNN architectures
where the selection of the winner module is usually made after
classification of the query pattern.

This paper is organized as follows. Section II describes
the proposed method that selects a different set of features
per module. Section III gives an overview about particle
swarm optimization (PSO) which is the optimization approach
used to select the subset of features. Section IV presents the
experimental study and Section V draws the final remarks.

II. THE PROPOSED ARCHITECTURE

Figure 1 shows the training architecture of the proposed
approach. It is composed of three main parts: Task Decompo-
sition, Pattern Distributor Training and Training Expertk. The
aim of the Task Decomposition is to split the database G into
k disjoint subsets {G1, G2, . . . , Gk}. The Pattern Distributor
PDmod is a classifier that returns one of the possible subsets
{1, 2, . . . , k} given a pattern x ∈ G. The first step of the
Training Expertk phase is to select the best features Mk in
the Gk dataset. These best features are used to train the expert
Ek.

1) Task Decomposition: The original dataset is divided
into the modules using a task decomposition technique.
The architecture is flexible enough to admit different task
decomposition methods. The choice of the algorithm is a
crucial factor in the MNN since a bad decomposition can
lead to a bad system performance. Given a training dataset
{(x1, c1), (x2, c2), . . . , (xn, cn)} where xi is a pattern and ci
is its respective class, all entries are used by the decomposition
technique to find the number of groups represented by k.
Ended the decomposition, a set of data groups is returned:
G = {G1, G2, . . . , Gk}

2) Training of the PD Module: The patterns from all groups
are used to train the pattern distributor module (PD). The
patterns in the groups have their classes relabeled to a new
class that indicates the group where they come from. Thus, the
patterns from G1 have their classes relabeled to 1, the patterns
from G2 have their classes relabeled to 2 and so on until the
group Gk. Afterwards, the PD module is trained to decide to
which group a pattern belongs. The distributor module already
trained is represented by PDmod (Figure 1).

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1370

��

����

����	
������
�

������ �����������

������

������

��
��� �

�������

����	�
��

��
�
���

������

������

��
��� �

�
�

�
�

�

�������

����	�
��

��
�
���

������

�
�
�

� ����
�
���

�
��������

�
	

�
���

�
�

�
�

�
�

�
�

Fig. 1: Proposed architecture: Training phase. The database G is composed of k disjoint parts. The output of this phase is
composed of: one Pattern Distributor classifier PDmod; k experts Ek and the features selected Mk per expert

3) Feature Selection: The best features are selected per
group Gk and this procedure aims to preserve the discriminant
information required to classify the patterns of each group. An
optimization procedure is used to this task and the output is
a binary vector (Figure 2) where each position represents a
feature; “1” means presence and “0” means absence of the
respective feature. After the definition of the binary vector, all
features that have value equal to “0” are removed. This di-
mensionality reduction procedure can be performed in parallel
because the modules are independent.

� � � � ��

Fig. 2: Particle coded as a binary vector

4) Training of the Modules: After performing the feature
selection, the new patterns of each module are used to train
their respective experts (single NNs). Thus, the i-th module
uses only the patterns that belong to group Gi with their
original classes to train the expert Ei. If a group has only
one class, it is not necessary to train a classifier, since only
one output is possible. Otherwise, a classifier is trained to
discriminate patterns among the existing classes. As well as
the feature selection procedure, the training of the modules can
be performed in parallel since the modules are independent.
At the end of the training procedure, the system returns the
experts trained (E1, E2, . . . , Ek) as well as their masks (M1,
M2, . . . , Mk) as shown in Figure 1.

After training, the unseen patterns (xquery) are classified
by the system. First, the PD module selects the proper expert
which in turn applies the mask to the input pattern to filter
the features and then the expert gives the predicted class for
the input pattern. Depending on the decomposition technique
used, the results are non-redundant groups, i.e., patterns from
a particular class are present only in one group.

Thus, if the PD module makes a mistake, the expert

�������

��	���
����

��
���

����� �

������

�
✁

�
�
�

�����	
����� �

������

�
✂

�
�
�

����� �

������

�
✄

�
�
�

�
�

�
�

�
�

�����

Fig. 3: Proposed architecture: Test phase

selected is not able to fix the problem and the error is
propagated. This test procedure of the proposed approach is
shown in Figure 3.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization was developed originally by
Kennedy and Eberhart [12] in 1995. The idea of the algorithm
is to simulate the social behavior of animals looking for
resources, for example, birds in a flock and fish in a school.
Basically, the standard PSO is composed by three vectors of
n components. The size n is determined by the search space
dimensionality. Therefore, for each dimension i of a particle
p, we have:

(i) xi, the current position.
(ii) vi, the current velocity.
(iii) pbi, the best position visited by that particle.

During the iterative process, the particles of the swarm
search for the best solution for the problem exploring the
search space. For that purpose, each particle is guided by the

1371

combination of the best position reached by the particle (pbi
- cognitive factor) and the best position reached by the whole
swarm (gbi - social factor) in a period of time t. The velocity
and position of each particle are updated as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (1)

vi(t+1) = vi(t) + c1r1[pbi(t)− xi(t)] + c2r2[gbi(t)− xi(t)] (2)

In equation 2, the variables r1 and r2 are random numbers
in the interval [0,1] and c1 and c2 are acceleration coefficients
with fixed and equal values, generally in the interval [0,2]
[13]. Shi and Eberhart [13] introduced the inertia weight (w)
in the velocity update rule (equation 2) to control the degree
of exploration of the search space and generally its value
decreases linearly from 0.9 to 0.4. The new velocity update
rule becomes:

vi(t+1) = wvi(t)+c1r1[pbi(t)−xi(t)]+c2r2[gbi(t)−xi(t)] (3)

In this work, we use the IBPSO (Improved Binary Particle
Swarm Optimization) algorithm [9] that is based on the BPSO
(Binary Particle Swarm Optimization) algorithm [11] which in
turn is based on the well-known PSO [12] defined above.

PSO deals with continuous spaces. However, there are
problems that are represented in a discrete feature space. With
this in mind, Kennedy and Eberhart proposed the binary PSO
(BPSO) [11], i.e., a PSO approach that can be applied to
discrete problems. One of these discrete problems is feature
selection. As an optimization problem, a possible solution to
the problem of feature selection can be seen as a binary vector
whose length is equal to the size of the feature space of a given
problem. Therefore, bit of value 0 in the binary vector indicates
the absence (non-selected) of the feature, while a bit of value
1 reveals the presence (selected) of the feature in the subset
of features to be returned by BPSO algorithm.

During the search for the best solution, the algorithm can
be trapped in a local optimum and the search can be restricted
to this poor region. To deal with this problem, Chuang et al.
[9] proposed the IBPSO method where gbest (best solution
found by the whole swarm) is reset to zero if its value does
not change after three iterations. This is the only difference
between the BPSO and IBPSO algorithms. The meaning of
reseting gbest is that local optimum may be avoided, better
results and a lower number of features are expected.

IV. EXPERIMENTAL STUDY

A modular neural network based on pattern distributor
architecture was developed using crosstalk tables (CT-PD)
and genetic algorithms (GA-PD) as task decomposition me-
thods [10]. These two MNNs were compared with the proposed
approach. In addition to these experiments, a single NN with
and without the feature selection procedure was also used in
the comparison procedure.

A. Datasets and Experimental Methodology

Many experiments were performed in order to demonstrate
the accuracy of the proposed technique. Eight benchmarks
were used for this purpose. Except for vowel [14], all the other
datasets were obtained from the UCI repository [15]. A brief

description of them can be seen in Table I. In this table, we
can see the number of patterns, the number of features as well
as the number of classes of each dataset.

TABLE I: Datasets Description

Datasets Patterns Features Classes

Balance 625 4 3

Ionosphere 351 34 2

Iris 150 4 3

Libras 360 91 15

Liver 345 6 2

Semeion 1593 256 10

Vehicle 846 18 4

Vowel 990 10 11

All classifiers used in the proposed approach are Multilayer
Perceptrons with fixed values of learning rate and momentum,
0.1 and 0.5 respectively. The maximum number of iterations
for all neural networks was set to 1000. The number of hidden
neurons were defined empirically in the range [10,180], for
this purpose a single NN had its number of hidden neurons
changed from 10 to 180 and was tested on the original datasets.
The neural network that presented the highest accuracy clas-
sification rate provided the number of hidden neurons to be
used in later experiments. Table II shows the number of hidden
neurons used for each dataset as well as the number of modules
found by the task decomposition methods.

TABLE II: Number of hidden neurons and number of modules
per task decomposition procedure (GA - Genetic Algorithm;
CT - Crosstalk Tables)

Datasets Number of neurons GA CT

Balance 70 2 3

Ionosphere 170 2 2

Iris 20 2 2

Libras 90 3 12

Liver 10 2 2

Semeion 90 2 7

Vehicle 50 2 4

Vowel 170 2 5

It was used 10-fold cross validation for all datasets: one
fold for test and nine folds for the task decomposition. After
creating the modules, 80% of the patterns of each group
were used for training the correspondent expert (MLP Neural
Network) and 20% were used to validate the training procedure
of the MLP Neural Network. The IBPSO algorithm (described
in Section III) is used to select the best features per expert.

B. Results

In a feature selection task, the goal is to select a small
feature subset that is capable of retaining the discriminant
information present in the original dataset. Therefore, the main
results to be seen in this work are the dimensionality reduction
obtained for each module of the proposed approach as well as
the accuracy rate obtained in each dataset. Figure 4 presents
the original dimensionality d, the minimum (dmin) and the
maximum (dmax) dimensions after the feature selection in
terms of percentage. Table III shows the accuracy rate and
standard deviation for all datasets. The best performances are

1372

TABLE III: Accuracy classification rate (%) and standard deviation in parenthesis

Single NN Modular Neural Networks

Datasets NN NN + IBPSO GA Proposed using GA CT Proposed using CT

Balance 95.57 (2.82) 95.85 (2.38) 90.74 (3.92) 86.06 (7.85) 96.20 (2.81) 96.20 (2.81)

Ionosphere 92.87 (3.63) 91.17 (3.89) 94.87 (2.95) 94.87 (2.95) 94.31 (4.84) 94.31 (4.84)

Iris 95.33 (4.50) 91.33 (6.32) 98.00 (3.22) 97.33 (3.44) 94.00 (10.16) 86.00 (14.89)

Libras 65.00 (23.36) 69.17 (9.75) 51.94 (29.34) 60.83 (26.53) 72.22 (9.07) 74.44 (9.05)

Liver 67.91 (11.34) 57.88 (7.54) 69.09 (9.68) 69.09 (9.68) 62.14 (10.79) 62.14 (10.79)

Semeion 91.34 (1.21) 88.70 (1.66) 90.84 (2.44) 89.02 (2.02) 91.40 (2.31) 91.40 (2.40)

Vehicle 50.50 (6.43) 51.33 (12.26) 49.46 (6.42) 52.05 (9.20) 53.13 (7.78) 53.13 (7.78)

Vowel 32.22 (4.91) 31.11 (4.33) 34.75 (4.69) 31.31 (4.57) 36.67 (7.87) 38.08 (4.44)

balance ion iris libras liver semeion vehicle vowel
0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 R

e
d
u
c
ti
o
n

(a) Single Neural Network + IBPSO

balance ion iris libras liver semeion vehicle vowel
0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 R

e
d
u
c
ti
o
n

(b) Proposed Architecture using the GA task decomposition algorithm

balance ion iris libras liver semeion vehicle vowel
0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 R

e
d
u
c
ti
o
n

(c) Proposed Architecture using the CT task decomposition algorithm

� �
���

�
���

Fig. 4: Comparison of the dimensionality reduction percentage. d, dmin, and dmax are the original, minimum and maximum
dimensionalities, respectively

1373

in bold. The number of modules found by the decomposition
techniques (CT and GA) that provided the best results is shown
in Table II along with the hidden neurons.

Except for Iris, the proposed approach was better than the
single neural networks (with and without feature selection)
and better than the modular neural networks without feature
selection (PD). In Table III, we can notice that the idea of
applying feature selection to the individual modules from an
MNN was effective, since for seven databases out of eight,
the accuracy classification rates were higher with the feature
space dimension reduced. For Libras and Vowel datasets, for
example, the proposed approach using CT obtained the best
performance when compared with other implemented methods.
For Libras, only 48 features at most were used by each module
instead of the original size which is 91 features. This shows
that not all features are essential to perform this classification
task.

For Balance, Ionosphere, Liver, Semeion and Vehicle
datasets, the accuracy classification rates achieved by the
PD approach (without feature selection) were similar to the
proposed approach. However, the amount of features used by
the proposed approach was much inferior when compared with
the PD amount. In the experiments with Libras, for example,
the proposed approach obtained similar performance when
compared with the modular neural networks without feature
selection (PD) using only 46% of the features present in the
original dataset while for Ionosphere dataset only 41% of
the features were used. These results are consistent with the
purpose of feature selection tasks since feature selection aims
to choose a small number of relevant features to achieve similar
or even better results. Although the single NNs did not achieve
better results than PD and the proposed approach, the use of
feature selection was useful too. For some datasets, the biggest
reduction was obtained by single NNs.

V. CONCLUSION

This paper proposed a modular neural architecture in which
a different set of features is selected per module. The proposed
approach discarded irrelevant features per module and this
elimination improved the classification performance in terms
of accuracy when compared with modular neural networks
without feature selection. Given a smaller set of features,
single neural networks had their storage and computational
costs decreased since it is necessary less neurons in the input
layer and consequently less connections between the input
layer and the hidden layer. With less connections, the neural
networks size decreased as well as the interference in weight-
updating directions during the weight-update processing [10].
The experiments showed that the proposed approach obtains
better results (accuracy rates combined with smaller subsets of
features) than traditional modular neural networks.

As future works, other task decomposition methods, pa-
rameter that directly impacts the performance of the whole
system, as well as other feature selection algorithms can be
evaluated since the architecture proposed is flexible.

REFERENCES

[1] T. Kohonen, Self-Organization and Associative Memory, Springer Series
in Information Sciences, vol. 8, pp. 1-29, 1984.

[2] E. Micheli-Tzankou, A Neural Network Model for Invertebrate Retina,
In IEEE Engineering in Medicine and Biology Society, pp. 13-16, 1987.

[3] E. Fiesler and A. Choudry, Neural Networks as a Possible Architecture
for the Distributed Control of Space Systems, In Conference on Artificial
Intelligence Space Applications, pp. 401-408, 1987.

[4] D. Hartline, Models for Simulation of Real Neural Networks, In Inter-
national Neural Network Society (INNS) First Ann. Meeting (Boston,
EUA), pp. 256-261.

[5] D. Acheson, Trends in Neural Computation, vol 35. Springer
Berlin/Heidelberg, 2007.

[6] G. Auda, M. Kamel and H. Raafat, Modular Neural Network Architec-
ture for Classification, In Proceedings of IEEE International Conference
on Neural Networks, 1996, vol. 2, pp. 1279-1284.

[7] N. Takahashi and T. Nishi, Global Convergence of Decomposition
Learning Methods for Support Vector Machines, IEEE Transactions on
Neural Networks, vol. 17, no. 6, pp. 1362-1369, Nov. 2006.

[8] Y. Li, M. Dong and R. Kohari, Classifiability-based Omnivariate Deci-
sion Trees, IEEE Transactions on Neural Networks, vol. 16, no. 6, pp.
1547-1560, Nov. 2005.

[9] L. Y. Chuang, H. W. Chang, C. J. Tu and C. H. Yang, Improved Binary
PSO for Feature Selection Using Gene expression Data, Computational
Biology and Chemistry, pp. 29-38, 2007.

[10] S. U. Guan, C. Bao and T. Neo, Reduced Pattern Training Based on Task
Decomposition using Pattern Distributor, IEEE Transactions on Neural
Networks, vol. 18, pp. 1738-1740, 2007.

[11] J. Kennedy and R. C. Eberhart, A Discrete Binary Version of the
Particle Swarm Algorithm, Systems, Man and Cybernetics, 1997. In:
Proceedings of the IEEE International Conference on Computational
Cybernetics and Simulation, vol. 5, October 12-15, pp. 4104-4108.

[12] J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, In:
Proceedings of the IEEE International Conference on Neural Networks,
vol. 4, Perth, Australia, pp. 1942-1948, 1995.

[13] Y. Shi and R. C. Eberhart, A Modified Particle Swarm Optimizer,
Evolutionary Computation Proceedings in IEEE World Congress on
Computatational Intelligence, pp. 69-73, 1998.

[14] ELENA benchmark [http://www.dice.ucl.ac.be/neural-
nets/Research/Projects/ELENA/elena.html].

[15] A. Asuncion and D. J. Newman, UCI Machine Learning Reposi-
tory,[http://www.ics.uci.edu/mlearn/MLPRepository.html].

1374

