
Adaptive Self-constructing Radial-Basis-Function Neural Control
for MIMO Uncertain Nonlinear Systems with Unknown

Disturbances

Ning Wang, Bijun Dai, Yancheng Liu and Min Han

Abstract— In this paper, an adaptive self-constructing RBF
neural control (AS-RBFNC) scheme for trajectory tracking of
MIMO uncertain nonlinear systems with unknown time-varying
disturbances is proposed. System uncertainties and unknown
dynamics can be exactly identified online by a self-constructing
RBF neural network (SC-RBFNN) which is implemented by
employing dynamically constructive hidden nodes according to
the structure learning criteria including hidden node generating
and pruning. The globally asymptotical stability of the entire
AS-RBFNC control system is derived from Lyapunov approach.

I. INTRODUCTION

TRADITIONAL nonlinear controllers are essentially
model-based approaches which would inevitably rely on

partially or fully known model dynamics since the equivalent
control is directly derived from nonlinearity cancellation or
dominance while an additional robustness term is designed
to attenuate residual errors. In addition to uncertain dynam-
ics, unknown external disturbances are actually of greater
importance for tracking control of nonlinear systems.

Alternatively, the approximation-based approaches via
fuzzy logic systems (FLS) [1]–[3], neural networks (NN)
[4], [5] and fuzzy neural networks (FNN) [6]–[8], etc.,
do not require parametric or functional certainty. Due to
model uncertainties and unknown disturbances imposed on
nonlinear systems, the approximation-based control meth-
ods are highly desired to realize online adaptation and
robustness to unknown dynamics. In spite of the various
achievements, the learning ability of the aforementioned
adaptive approximation-based control schemes with only
output weights being updated is actually limited by the
predefined regressors since the weight adaptation is merely
required to guarantee stability of closed-loop system rather
than uncertainty identification. In this context, the FNN
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can enhance the learning capability of FIS by incorporating
the NN topology [6]–[8], which allows all free parameters
to be adaptively updated according to performance criteria
[9]–[12]. Note that adaptive laws only consider parameter
learning without structure update, i.e., the number of fuzzy
rules or hidden nodes must be determined a priori, although
the resulting performance is acceptable due to the truth that
convergence of the tracking error does not necessarily imply
convergence (or even robustness) of the estimated parameters
[13]. It implies that the approximation accuracy would be
much poorer if inadequate fuzzy rules, i.e. too many or too
few, are predefined.

To circumvent the foregoing problem, the self-organizing
FNN (SOFNN) with structure and parameter updated simul-
taneously have been proposed in [14]–[20] and references
therein, which can automatically generate fuzzy rules or
hidden nodes in addition to parameter update.

In this context, an adaptive self-constructing RBF neu-
ral control (AS-RBFNC) scheme for trajectory tracking of
MIMO nonlinear systems in the presence of system un-
certainties and unknown time-varying disturbances is pro-
posed in this paper. In the AS-RBFNC, system uncertainties
and unknown dynamics can be identified online by a self-
constructing RBF neural network (SC-RBFNN) which is
implemented by employing dynamically constructive hidden
nodes according to the structure learning criteria including
hidden node generating and pruning.

II. PROBLEM FORMULATION

Consider a class of 𝑛th-order multivariable nonlinear sys-
tems as follows:

x(𝑛) = f(z) +G(z)u+ d(z, 𝑡) (1)

where x = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚]𝑇 ∈ 𝑅𝑚 is a part of the state
vector z = [x𝑇 , ẋ𝑇 , ⋅ ⋅ ⋅ , (x(𝑛−1))𝑇 ]𝑇 ∈ 𝑅𝑟, 𝑟 = 𝑚𝑛, f(z) ∈
𝑅𝑚 and G(z) ∈ 𝑅𝑚×𝑚 are unknown smooth functions,
u ∈ 𝑅𝑚 is the control input, and d(z, 𝑡) ∈ 𝑅𝑚 is an un-
known bounded function representing system uncertainty and
external disturbance in the system, satisfying ∥d(z, 𝑡)∥ ≤ 𝜀𝑑
for every z ∈ 𝑅𝑟 and all 𝑡 ≥ 0. To ensure the controllability
of the system, the input matrix G(z) needs to be invertible
for all z in a particular compact region 𝑈𝑧 ⊂ 𝑅𝑟 in which
𝑔𝑙, 𝑔𝑢 > 0 exists, such that 𝑔𝑙 ≤ ∥G(z)∥ ≤ 𝑔𝑢 < ∞. Given
the desired trajectory z𝑑 = [x𝑇𝑑 , ẋ

𝑇
𝑑 , ⋅ ⋅ ⋅ , (x(𝑛−1)

𝑑 )𝑇 ]𝑇 , the
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Fig. 1. Archtecture of the SC-RBFNN.

tracking error and sliding surface are defined as follows:

e = x− x𝑑 (2)

s = e(𝑛−1) +ΛΛΛ𝑛e
(𝑛−2) + ⋅ ⋅ ⋅+ΛΛΛ1

∫ 𝑡

0

e(𝜏)𝑑𝜏 (3)

where ΛΛΛ𝑘 = 𝑑𝑖𝑎𝑔(𝜆𝑘,1, 𝜆𝑘,2, ⋅ ⋅ ⋅ , 𝜆𝑘,𝑚), 𝜆𝑘,𝑖 > 0, 𝑘 =
1, 2, ⋅ ⋅ ⋅ , 𝑛, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚.

In this context, combining (1) with (3), we have

ṡ = f(z) +G(z)u+ d(z, 𝑡)− x
(𝑛)
𝑑 +ΛΛΛe (4)

where e = z − z𝑑 = [e𝑇 , ė𝑇 , ⋅ ⋅ ⋅ , (e(𝑛−1))𝑇 ]𝑇 and ΛΛΛ =
[ΛΛΛ1,ΛΛΛ2, ⋅ ⋅ ⋅ ,ΛΛΛ𝑛] ∈ 𝑅𝑚×𝑟.

If f(z), G(z) and d(z, 𝑡) are known, the ideal control law
u∗ can be designed according to the well-known feedback
linearization method as follows:

u∗ = −G−1(z)
(
Ks+ f𝑑(z)− x

(𝑛)
𝑑 +ΛΛΛe

)
(5)

where f𝑑(z) = f(z) + d(z, 𝑡), and K ∈ 𝑅𝑚×𝑚 is a
symmetric positive-definite matrix. It implies that tracking
errors converge exponentially to zero in a precisely modeled
system without disturbances. However, it is impossible to
implement this ideal controller in practical applications since
dynamics f(z) and G(z) in the presence of disturbance
d(z, 𝑡) are perturbed or unknown. In this context, our objec-
tive will propose an adaptive self-constructing radial-basis-
function neural control (AS-RBFNC) scheme for tracking the
MIMO nonlinear system (1) with unknown dynamics and
disturbances.

III. SELF-CONSTRUCTING RADIAL-BASIS-FUNCTION

NEURAL NETWORK

A. Architecture of SC-RBFNN

Since dynamics f , G and d are actually unknown, a
self-constructing radial-basis-function neural network (SC-
RBFNN) shown in Fig. 1 is proposed to identify on-
line the lumped unknown dynamics f𝑑(z) and G(z) =
[g1,g2, ⋅ ⋅ ⋅ ,g𝑚] as follows:

fNN(z) = [𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑚]𝑇 = W𝑇
𝑓ΦΦΦ (z; c,𝜎𝜎𝜎) (6)

g𝑗,NN(z) = [𝑔1𝑗 , 𝑔2𝑗 , ⋅ ⋅ ⋅ , 𝑔𝑚𝑗 ]𝑇 = W𝑇
𝑔𝑗ΦΦΦ (z; c,𝜎𝜎𝜎) (7)

where fNN,g𝑗,NN : 𝑈𝑧 ⊂ 𝑅𝑟 → 𝑅𝑚, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚,
W𝑓 = [𝜔𝜔𝜔𝑓,1,𝜔𝜔𝜔𝑓,2, ⋅ ⋅ ⋅ ,𝜔𝜔𝜔𝑓,𝑚] ∈ 𝑅𝑁×𝑚, 𝜔𝜔𝜔𝑓,𝑗 =
[𝑤1
𝑓,𝑗 , 𝑤

2
𝑓,𝑗 , ⋅ ⋅ ⋅ , 𝑤𝑁𝑓,𝑗 ]𝑇 , W𝑔𝑗 = [𝜔𝜔𝜔𝑔𝑗 ,1,𝜔𝜔𝜔𝑔𝑗 ,2, ⋅ ⋅ ⋅ ,𝜔𝜔𝜔𝑔𝑗 ,𝑚] ∈

𝑅𝑁×𝑚, 𝜔𝜔𝜔𝑔𝑖,𝑗 = [𝑤1
𝑔𝑖,𝑗

, 𝑤2
𝑔𝑖,𝑗

, ⋅ ⋅ ⋅ , 𝑤𝑁𝑔𝑖,𝑗 ]𝑇 , c =
[c𝑇1 , c𝑇2 , ⋅ ⋅ ⋅ , c𝑇𝑁 ]𝑇 ∈ 𝑅𝑟𝑁 , 𝜎𝜎𝜎 = [𝜎𝜎𝜎𝑇1 ,𝜎𝜎𝜎𝑇2 , ⋅ ⋅ ⋅ ,𝜎𝜎𝜎𝑇𝑁 ]𝑇 ∈ 𝑅𝑟𝑁

and ΦΦΦ = [𝜙1, 𝜙2, ⋅ ⋅ ⋅ , 𝜙𝑁 ]𝑇 . Here, the activation function
𝜙𝑙 is defined by

𝜙𝑙 = exp

(

−
𝑟∑

𝑖=1

(𝑧𝑖 − 𝑐𝑙𝑖)
2

(𝜎𝑙𝑖)
2

)

= exp
(
− (z− c𝑙)

𝑇ΣΣΣ−2𝑙 (z− c𝑙)
)

(8)

where ΣΣΣ𝑙 = 𝑑𝑖𝑎𝑔
(
𝜎𝑙1, ⋅ ⋅ ⋅ , 𝜎𝑙𝑟

)
, and c𝑙 = [𝑐𝑙1, 𝑐

𝑙
2, ⋅ ⋅ ⋅ , 𝑐𝑙𝑟]𝑇

and 𝜎𝜎𝜎𝑙 = [𝜎𝑙1, 𝜎
𝑙
2, ⋅ ⋅ ⋅ , 𝜎𝑙𝑟]𝑇 are the center and width vectors,

respectively.
Without loss of generality, assume that there exists an

optimal RBFNN with 𝑁∗ hidden nodes using c∗ and 𝜎𝜎𝜎∗

that can identify the nonlinear function f𝑑(z) and G(z) with
the minimal functional approximation errors (MFAEs), i.e.,

f𝑑(z) = f∗NN(z;W
∗
𝑓 , c
∗,𝜎𝜎𝜎∗) + 𝜀𝜀𝜀𝑓 (z, 𝑁

∗)

= (W∗
𝑓 )
𝑇ΦΦΦ (z; c∗,𝜎𝜎𝜎∗) + 𝜀𝜀𝜀∗𝑓 (z) (9)

g𝑗(z) = g∗𝑗,NN(z;W
∗
𝑔𝑗 , c

∗,𝜎𝜎𝜎∗) + 𝜀𝜀𝜀𝑔𝑗 (z, 𝑁
∗)

= (W∗
𝑔𝑗 )

𝑇ΦΦΦ (z; c∗,𝜎𝜎𝜎∗) + 𝜀𝜀𝜀∗𝑔𝑗 (z) (10)

where, 𝜀𝜀𝜀∗𝑓 (z), 𝜀𝜀𝜀
∗
𝑔𝑗 (z) ∈ 𝑅𝑚 are the MFAEs and satisfy

∥𝜀𝜀𝜀∗𝑓 (z)∥ ≤ 𝜀𝑓 and ∥𝜀𝜀𝜀∗𝑔𝑗 (z)∥ ≤ 𝜀𝑔𝑗 , and the optimal output
weights W∗

𝑓 and W∗
𝑔𝑗 are derived from

W∗
𝑓 = argmin

W𝑓

(
max
z∈𝑈𝑧

∥fNN(z;W𝑓 , c
∗,𝜎𝜎𝜎∗)− f𝑑(z)∥

)

W∗
𝑔𝑗 = argmin

W𝑔𝑗

(
max
z∈𝑈𝑧

∥g𝑗,NN(z;W𝑔𝑗 , c
∗,𝜎𝜎𝜎∗)− g𝑗(z)∥

)

B. Self-constructing Scheme

Actually, each hidden node in the RBFNN represents a
local receptive domain. Accordingly, finding the suitable
number of hidden nodes online is to optimize the input space
partition such that the current input can be accommodated
well by at least one RBF hidden node. It is yet unexpected
that too many hidden nodes are activated simultaneously with
low firing strength, and thereby resulting in redundant hidden
nodes. In this context, an SC-RBFNN with self-organizing
structure corresponding to current input z(𝑡) is proposed.

To be specific, the SC-RBFNN begins with no any hidden
nodes, i.e., c(0) = ∅, 𝜎𝜎𝜎(0) = ∅, W𝑓 (0) = ∅, W𝑔𝑗 (0) = ∅,
𝑁(0) = 0. According to the novelty of current observation
z(𝑡) to the existing RBF hidden nodes, the self-constructing
scheme decides to generate new hidden nodes or to prune
redundant ones in the whole structure learning process.
Without loss of generality, consider the input z(𝑡) at time
instant 𝑡, i.e., c(𝑡− 1) = [c𝑇1 , c𝑇2 , ⋅ ⋅ ⋅ , c𝑇𝑁(𝑡−1)]

𝑇 and 𝜎𝜎𝜎(𝑡−
1) = [𝜎𝜎𝜎𝑇1 ,𝜎𝜎𝜎𝑇2 , ⋅ ⋅ ⋅ ,𝜎𝜎𝜎𝑇𝑁(𝑡−1)]

𝑇 .
Calculate the generalized distance between the current

input z(𝑡) and the existing RBF hidden nodes as follows:

𝑑𝑙 =
(
z(𝑡)− c𝑙(𝑡− 1)

)𝑇
ΣΣΣ−2𝑙 (𝑡− 1)

(
z(𝑡)− c𝑙(𝑡− 1)

)
,

𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝑁(𝑡− 1) (11)

3279



where c𝑙(𝑡 − 1) = [𝑐
𝑙(𝑡−1)
1 , ⋅ ⋅ ⋅ , 𝑐𝑙(𝑡−1)𝑟 ]𝑇 and ΣΣΣ𝑙(𝑡 − 1) =

𝑑𝑖𝑎𝑔(𝜎
𝑙(𝑡−1)
1 , ⋅ ⋅ ⋅ , 𝜎𝑙(𝑡−1)𝑟 ).

1) Hidden Node Generating: Find the nearest hidden node

𝑑min = min
𝑙=1,2,⋅⋅⋅ ,𝑁(𝑡−1)

𝑑𝑙. (12)

If

𝑑min > 𝑑thmin (13)

there does not exist any hidden node representing the current
input. It needs to generate a new RBF unit according to the
current input partition, i.e.,

c𝑁(𝑡) = z(𝑡), 𝜎𝜎𝜎𝑁(𝑡) = 𝜎𝜎𝜎init, w𝑓,𝑁(𝑡) = 0, w𝑔𝑗 ,𝑁(𝑡) = 0,

𝑁(𝑡) = 𝑁(𝑡− 1) + 1 (14)

where w𝑓,𝑙 = [𝑤𝑙𝑓,1, 𝑤
𝑙
𝑓,2, ⋅ ⋅ ⋅ , 𝑤𝑙𝑓,𝑚] and w𝑔𝑗 ,𝑙 =

[𝑤𝑙𝑔𝑗 ,1, 𝑤
𝑙
𝑔𝑗 ,2, ⋅ ⋅ ⋅ , 𝑤𝑙𝑔𝑗 ,𝑚].

Here, 𝑑thmin is the user-defined threshold and can be easily
chosen as 𝑑thmin = ln(1/𝜖), 0 < 𝜖 ≤ 1, such that the dominant
firing strength is no less than 𝜖, and 𝜎𝜎𝜎init is the initial width
for the newly generated RBF node. Otherwise, no any new
hidden node is recruited, i.e., 𝑁(𝑡) = 𝑁(𝑡− 1).

2) Hidden Node Pruning: In sequential, find the redun-
dant RBF hidden nodes as follows:

𝐽𝑟 = {𝑙∘}, 𝑑𝑙
∘
> 𝑑0. (15)

If

𝐽𝑟 ∕= ∅ (16)

it needs to prune redundant hidden nodes, i.e.,

c𝑙∘ = ∅, 𝜎𝜎𝜎𝑙∘ = ∅, w𝑓,𝑙∘ = ∅, w𝑔𝑗 ,𝑙∘ = ∅,
𝑁(𝑡) = 𝑁(𝑡)− ∣𝐽𝑟∣, 𝑙∘ ∈ 𝐽𝑟 (17)

Here, 𝑑0 is the user-defined threshold under which the fuzzy
rule is considered to be inactive, and thereby being simply
chosen as 𝑑0 = ln(1/𝜍), 0 < 𝜍 ≤ 1.

IV. ADAPTIVE SELF-CONSTRUCTING

RADIAL-BASIS-FUNCTION NEURAL CONTROL

By employing the proposed SC-RBFNN approximation
in (6) and (7), an adaptive self-constructing radial-basis-
function neural control (AS-RBFNC) scheme is designed for
tracking the MIMO nonlinear system (1) as follows:

uNN = −Ĝ−1(z)
(
Ks+ f̂NN(z)− x

(𝑛)
𝑑 +ΛΛΛe

)
(18)

where f̂NN

(
z;Ŵ𝑓 , ĉ,𝜎𝜎𝜎

)
and ĜNN

(
z;Ŵ𝐺, ĉ,𝜎𝜎𝜎

)
are the SC-

RBFNN-based approximations which are parameterized by
parameter estimates Ŵ𝑓 ,Ŵ𝐺, ĉ,𝜎𝜎𝜎 and derive from the
adaptive laws in the following subsections.

A. SC-RBFNN Approximation

In the AS-RBFNC (18), the unknown dynamics f𝑑(z)
and G(z) are identified online by the proposed SC-RBFNN
with adaptive parameters in addition to dynamic structure
according to (9) and (10) with 𝑁(𝑡) fuzzy rules as follows:

f𝑑(z) = Ŵ𝑇
𝑓ΦΦΦ (z; ĉ,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑓 (z) (19)

g𝑗(z) = Ŵ𝑇
𝑔𝑗ΦΦΦ (z; ĉ,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑔𝑗 (z) (20)

where Ŵ𝑓 ,Ŵ𝑔𝑗 ∈ 𝑅𝑁×𝑚, ĉ,𝜎𝜎𝜎 ∈ 𝑅𝑟𝑁 are estimated
parameters, and 𝜀𝜀𝜀𝑓 and 𝜀𝜀𝜀𝑔𝑗 are actual approximation errors
determined by

𝜀𝜀𝜀𝑓 = f𝑑(z)− f̂NN(z) = f∗NN(z)− f̂NN(z) + 𝜀𝜀𝜀∗𝑓 (z)

= (W∗
𝑓 )
𝑇ΦΦΦ∗ − Ŵ𝑇

𝑓 Φ̂ΦΦ + 𝜀𝜀𝜀∗𝑓 (21)

𝜀𝜀𝜀𝑔𝑗 = g𝑗(z)− ĝ𝑗,NN(z) = g∗𝑗,NN(z)− ĝ𝑗,NN(z) + 𝜀𝜀𝜀∗𝑔𝑗 (z)

= (W∗
𝑔𝑗 )

𝑇ΦΦΦ∗ − Ŵ𝑇
𝑔𝑗Φ̂ΦΦ + 𝜀𝜀𝜀∗𝑔𝑗 (22)

where ΦΦΦ∗ = ΦΦΦ(z; c∗,𝜎𝜎𝜎∗) ∈ 𝑅𝑁∗ and Φ̂ΦΦ = ΦΦΦ (z; ĉ,𝜎𝜎𝜎) ∈
𝑅𝑁 . Without loss of generality, assume 𝑁∗ ≥ 𝑁 and
ΦΦΦ∗ = [ΦΦΦ∗1,0],ΦΦΦ

∗
1 ∈ 𝑅𝑁 , i.e. (W∗

𝑓 )
𝑇ΦΦΦ∗ = (W∗

𝑓1)
𝑇ΦΦΦ∗1 and

(W∗
𝑔𝑗 )

𝑇ΦΦΦ∗ = (W∗
𝑔𝑗1)

𝑇ΦΦΦ∗1, where W∗
𝑓1 ∈ 𝑅𝑁×𝑚,W∗

𝑔𝑗1 ∈
𝑅𝑁×𝑚𝑚,ΦΦΦ∗1 = ΦΦΦ(z; c∗1,𝜎𝜎𝜎

∗
1) ∈ 𝑅𝑁 . From (21) and (22),

𝜀𝜀𝜀𝑓 = W̃𝑇
𝑓

(
Φ̂ΦΦ + Φ̃ΦΦ

)
+ Ŵ𝑇

𝑓 Φ̃ΦΦ + 𝜀𝜀𝜀∗𝑓 (23)

𝜀𝜀𝜀𝑔𝑗 = W̃𝑇
𝑔𝑗

(
Φ̂ΦΦ + Φ̃ΦΦ + Ŵ𝑇

𝑔𝑗Φ̃ΦΦ
)
+ 𝜀𝜀𝜀∗𝑔𝑗 (24)

where W̃𝑓 = W∗
𝑓1 − Ŵ𝑓 , W̃𝑔𝑗 = W∗

𝑔𝑗1 − Ŵ𝑔𝑗 and Φ̃ΦΦ =

ΦΦΦ∗1 − Φ̂ΦΦ are the output weight errors and regressor error,
respectively. By applying the Taylor series expansion of ΦΦΦ(.)
to (ĉ,𝜎𝜎𝜎) in (23) and (24), we have

𝜀𝜀𝜀𝑓 = W̃𝑇
𝑓 Φ̂ΦΦ + Ŵ𝑇

𝑓 Φ̃ΦΦ + W̃𝑇
𝑓 Φ̃ΦΦ + 𝜀𝜀𝜀∗𝑓

= W̃𝑇
𝑓 Φ̂ΦΦ + Ŵ𝑇

𝑓

(
ΦΦΦ′cc̃+ΦΦΦ′𝜎𝜎𝜎𝜎𝜎𝜎 + h(z; c̃,𝜎𝜎𝜎)

)
+ W̃𝑇

𝑓 Φ̃ΦΦ + 𝜀𝜀𝜀∗𝑓

= W̃𝑇
𝑓 Φ̂ΦΦ + Ŵ𝑇

𝑓ΦΦΦ
′
cc̃+ Ŵ𝑇

𝑓ΦΦΦ
′
𝜎𝜎𝜎𝜎𝜎𝜎 + 𝜀𝜀𝜀𝑓 (25)

𝜀𝜀𝜀𝑔𝑗 = W̃𝑇
𝑔𝑗Φ̂ΦΦ + Ŵ𝑇

𝑔𝑗Φ̃ΦΦ + W̃𝑇
𝑔𝑗Φ̃ΦΦ + 𝜀𝜀𝜀∗𝑔𝑗

= W̃𝑇
𝑔𝑗Φ̂ΦΦ + Ŵ𝑇

𝑔𝑗ΦΦΦ
′
cc̃+ Ŵ𝑇

𝑔𝑗ΦΦΦ
′
𝜎𝜎𝜎𝜎𝜎𝜎 + 𝜀𝜀𝜀𝑔𝑗 (26)

where c̃ = c∗1 − ĉ,𝜎𝜎𝜎 = 𝜎𝜎𝜎∗1 − 𝜎𝜎𝜎, h(z; c̃,𝜎𝜎𝜎) is the high order
term of c̃ and 𝜎𝜎𝜎, ΦΦΦ′c and ΦΦΦ′𝜎𝜎𝜎 are Jacobian matrices derived
from

ΦΦΦ′c =
∂ΦΦΦ

∂c

∣
∣
∣

c=ĉ
𝜎𝜎𝜎=�̂�𝜎𝜎

= 𝑑𝑖𝑎𝑔
(
𝜙𝜙𝜙𝑇c1

, ⋅ ⋅ ⋅ ,𝜙𝜙𝜙𝑇c𝑁
) ∈ 𝑅𝑁×𝑟𝑁 (27)

ΦΦΦ′𝜎𝜎𝜎 =
∂ΦΦΦ

∂𝜎𝜎𝜎

∣
∣
∣

c=ĉ
𝜎𝜎𝜎=�̂�𝜎𝜎

= 𝑑𝑖𝑎𝑔
(
𝜙𝜙𝜙𝑇𝜎𝜎𝜎1

, ⋅ ⋅ ⋅ ,𝜙𝜙𝜙𝑇𝜎𝜎𝜎𝑁
) ∈ 𝑅𝑁×𝑟𝑁 (28)

Here, 𝜙𝜙𝜙𝑇c𝑙 = ∂𝜙𝑙
∂c𝑇𝑙

=
[
∂𝜙𝑙
∂𝑐𝑙1

, ⋅ ⋅ ⋅ , ∂𝜙𝑙
∂𝑐𝑙𝑚

]
and 𝜙𝜙𝜙𝑇𝜎𝜎𝜎𝑙 = ∂𝜙𝑙

∂𝜎𝜎𝜎𝑇𝑙
=

[
∂𝜙𝑙
∂𝜎𝑙1

, ⋅ ⋅ ⋅ , ∂𝜙𝑙
∂𝜎𝑙𝑚

]
. From (8), we get

𝜙𝜙𝜙𝑇c𝑙 =
[
𝜙𝑐,𝑙1 , ⋅ ⋅ ⋅ , 𝜙𝑐,𝑙𝑚

]
= 2𝜙𝑙

[
𝑧1 − �̂�𝑙1
(𝜎𝑙1)

2
, ⋅ ⋅ ⋅ , 𝑧𝑚 − �̂�𝑙𝑚

(𝜎𝑙𝑚)2

]

𝜙𝜙𝜙𝑇𝜎𝜎𝜎𝑙 =
[
𝜙𝜎,𝑙1 , ⋅ ⋅ ⋅ , 𝜙𝜎,𝑙𝑚

]
= 2𝜙𝑙

[
(𝑧1 − �̂�𝑙1)

2

(𝜎𝑙1)
3

, ⋅ ⋅ ⋅ , (𝑧𝑚 − �̂�𝑙𝑚)2

(𝜎𝑙𝑚)3

]
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and 𝜀𝜀𝜀𝑓 , 𝜀𝜀𝜀𝑔𝑗 are the residual approximation errors given by

𝜀𝜀𝜀𝑓 = Ŵ𝑇
𝑓 h(z; c̃,𝜎𝜎𝜎) + W̃𝑇

𝑓 Φ̃ΦΦ + 𝜀𝜀𝜀∗𝑓 (29)

𝜀𝜀𝜀𝑔𝑗 = Ŵ𝑇
𝑔𝑗h(z; c̃,𝜎𝜎𝜎) + W̃𝑇

𝑔𝑗Φ̃ΦΦ + 𝜀𝜀𝜀∗𝑔𝑗 (30)

B. Adaptive Laws

Choose the adaptive laws as follows:

˙̂𝜔𝜔𝜔𝑓,𝑗 = 𝜂𝑓𝑠𝑗Φ̂ΦΦ (31)
˙̂𝜔𝜔𝜔𝑔𝑗 ,𝑘 = 𝜂𝑔𝑗𝑢𝑗𝑠𝑘Φ̂ΦΦ (32)

˙̂c = 𝜂𝑐(ΦΦΦ
′
c)
𝑇

(
Ŵ𝑓 −

𝑚∑

𝑗=1

𝑢𝑗Ŵ𝑔𝑗

)
s (33)

˙̂𝜎𝜎𝜎 = 𝜂𝜎(ΦΦΦ
′
𝜎𝜎𝜎)
𝑇

(
Ŵ𝑓 −

𝑚∑

𝑗=1

𝑢𝑗Ŵ𝑔𝑗

)
s (34)

where 𝜂𝑓 , 𝜂𝑔𝑗 , 𝜂𝑐, 𝜂𝜎 > 0 are gains and design the parameter
matrix K in (18) as

K =
I+ΔΔΔ−2

2
(35)

where ΔΔΔ = 𝑑𝑖𝑎𝑔 (𝛿1, 𝛿2, ⋅ ⋅ ⋅ , 𝛿𝑚) , 𝛿𝑗 > 0.

C. Stability Analysis

Theorem 1: Consider the MIMO nonlinear system (1)
with the proposed AS-RBFNC scheme using (18), and the
adaptive laws for parameter updates using (31)-(34), where
the online approximation f̂NN and ĝ𝑗,NN, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑚 are
realized by the SC-RBFNN (19) and (20), respectively. Then,
the tracking errors e(𝑡) are globally asymptotical stable.

Proof: Substituting the control law (18) into (1) yields

ṡ =−Ks+ �̂�𝜀𝜀𝑓 − �̂�𝜀𝜀𝐺u

=−Ks+ W̃𝑇
𝑓 Φ̂ΦΦ + Ŵ𝑇

𝑓ΦΦΦ
′
cc̃+ Ŵ𝑇

𝑓ΦΦΦ
′
𝜎𝜎𝜎𝜎𝜎𝜎

−
𝑚∑

𝑗=1

𝑢𝑗

(
W̃𝑇

𝑔𝑗Φ̂ΦΦ + Ŵ𝑇
𝑔𝑗ΦΦΦ
′
cc̃+ Ŵ𝑇

𝑔𝑗ΦΦΦ
′
𝜎𝜎𝜎𝜎𝜎𝜎
)
+ 𝜀𝜀𝜀 (36)

where 𝜀𝜀𝜀 = 𝜀𝜀𝜀𝑓 −
∑𝑚
𝑗=1 𝑢𝑗𝜀𝜀𝜀𝑔𝑗 and 𝜀𝜀𝜀𝐺 = [̂𝜀𝜀𝜀𝑔1 , 𝜀𝜀𝜀𝑔2 , ⋅ ⋅ ⋅ , 𝜀𝜀𝜀𝑔𝑚 ].

Consider the following Lyapunov function,

𝑉
(
s,W̃𝑓 ,W̃𝑔𝑗 , c̃,𝜎𝜎𝜎; 𝑡

)
=

1

2
×

[
s𝑇 s+

tr
(
W̃𝑇

𝑓 W̃𝑓

)

𝜂𝑓
+

𝑚∑

𝑗=1

tr
(
W̃𝑇

𝑔𝑗W̃𝑔𝑗

)

𝜂𝑔𝑗
+

c̃𝑇 c̃

𝜂𝑐
+

𝜎𝜎𝜎
𝑇
𝜎𝜎𝜎

𝜂𝜎

]

Differentiating 𝑉 with respect to time 𝑡 and using (36), we
have

�̇� =s𝑇 ṡ+
tr
(
W̃𝑇

𝑓
˙̃
W𝑓

)
𝜂𝑓

+

𝑚∑
𝑗=1

tr
(
W̃𝑇

𝑔𝑗

˙̃
W𝑔𝑗

)
𝜂𝑔𝑗

+
c̃𝑇 ˙̃c

𝜂𝑐
+

𝜎𝜎𝜎𝑇 ˙̃𝜎𝜎𝜎

𝜂𝜎

=− s𝑇Ks+ s𝑇𝜀𝜀𝜀+ s𝑇W̃𝑇
𝑓 Φ̂ΦΦ + s𝑇

𝑚∑
𝑗=1

𝑢𝑗W̃
𝑇
𝑔𝑗
Φ̂ΦΦ + s𝑇Ŵ𝑇

𝑓 ΦΦΦ
′
cc̃

+ s𝑇Ŵ𝑇
𝑓 ΦΦΦ

′
𝜎𝜎𝜎𝜎𝜎𝜎 −

𝑚∑
𝑗=1

𝑢𝑗s
𝑇
(
Ŵ𝑇

𝑔𝑗
ΦΦΦ′

cc̃+ Ŵ𝑇
𝑔𝑗
ΦΦΦ′

𝜎𝜎𝜎𝜎𝜎𝜎
)− 𝜂−1

𝑐 c̃𝑇 ˙̂c

− 𝜂−1
𝑓 tr

(
W̃𝑇

𝑓
˙̂
W𝑓

)−
𝑚∑

𝑗=1

𝜂−1
𝑔𝑗

tr
(
W̃𝑇

𝑔𝑗

˙̂
W𝑔𝑗

)− 𝜂−1
𝜎 𝜎𝜎𝜎𝑇 ˙̂𝜎𝜎𝜎

=
𝑚∑

𝑗=1

𝜔𝜔𝜔𝑇
𝑓,𝑗

(
𝑠𝑗Φ̂ΦΦ− 𝜂−1

𝑓
˙̂𝜔𝜔𝜔𝑓,𝑗

)
+

𝑚∑
𝑗=1

𝑚∑
𝑘=1

𝜔𝜔𝜔𝑇
𝑔𝑗 ,𝑘

(
𝑢𝑗𝑠𝑘Φ̂ΦΦ− 𝜂−1

𝑔𝑗
˙̂𝜔𝜔𝜔𝑔𝑗 ,𝑘

)

+ c̃𝑇
(
(ΦΦΦ′

c)
𝑇Ŵ𝑓 s−

𝑚∑
𝑗=1

𝑢𝑗(ΦΦΦ
′
c)

𝑇Ŵ𝑔𝑗 s− 𝜂−1
𝑐

˙̂c

)

+ 𝜎𝜎𝜎𝑇

(
(ΦΦΦ′

𝜎𝜎𝜎)
𝑇Ŵ𝑓 s−

𝑚∑
𝑗=1

𝑢𝑗(ΦΦΦ
′
𝜎𝜎𝜎)

𝑇Ŵ𝑔𝑗 s− 𝜂−1
𝜎

˙̂𝜎𝜎𝜎

)

− s𝑇Ks+ s𝑇𝜀𝜀𝜀

From (31) - (34) and (35), we further have

�̇� = −1

2
s𝑇
(
I+ΔΔΔ−2

)
s+ s𝑇𝜀𝜀𝜀

= −1

2

(
s𝑇 s+

(
ΔΔΔ−1s−ΔΔΔ𝜀𝜀𝜀

)𝑇 (
ΔΔΔ−1s−ΔΔΔ𝜀𝜀𝜀

)− 𝜀𝜀𝜀𝑇ΔΔΔ2𝜀𝜀𝜀
)

≤ −s𝑇 s

2
+

𝛿2𝜀𝜀𝜀𝑇𝜀𝜀𝜀

2
(37)

where 𝛿 = max (𝛿1, 𝛿2, ⋅ ⋅ ⋅ , 𝛿𝑚).
Assume 𝜀𝜀𝜀 ∈ 𝐿2[0, 𝑇 ), ∀ 𝑇 ∈ [0,∞), i.e.

∫ 𝑇
0
∥𝜀𝜀𝜀∥2𝑑𝑡 <∞,

we have

1

2

∫ 𝑇

0

∥s∥2𝑑𝑡 ≤ 𝑉 (0) +
1

2
𝛿2
∫ 𝑇

0

∥𝜀𝜀𝜀∥2𝑑𝑡 (38)

Since 𝑉 (0) is finite, we have s ∈ 𝐿2. By the Barbalat’s
lemma, lim𝑡→∞ s(𝑡) = 0. From (3), lim𝑡→∞ e(𝑡) = 0. It
further implies that e(𝑡) = [e𝑇 , ė𝑇 , ⋅ ⋅ ⋅ , (e(𝑛−1))𝑇 ]𝑇 → 0
while 𝑡→∞. This concludes the proof.

V. SIMULATION STUDIES

In order to demonstrate the effectiveness of the proposed
AS-RBFNC scheme, we conduct simulation studies on a two-
link robot manipulator governed by

ẍ = −M−1(x)
[
C(x, ẋ) + Ğ(x)

]
+M−1(x)(u+ u𝑑)

≡ f(z) +G(z)u+ d(z, 𝑡) (39)

with

M(x) =

[
𝑚11 𝑚12

𝑚21 𝑚22

]
,

C(x, ẋ) = (𝑚2𝑙1𝑙𝑐2 sin𝑥2)

[ −�̇�2 −(�̇�1 + �̇�2)
�̇�1 0

]
,

Ğ(x) =

[
𝑚1𝑔𝑙𝑐1 cos𝑥1 + 𝑚2𝑔(𝑙1 cos𝑥1 + 𝑙𝑐2 cos(𝑥1 + 𝑥2))

𝑚2𝑔𝑙𝑐2 cos(𝑥1 + 𝑥2)

]
,

𝑚11 = 𝑚1𝑙
2
𝑐1 + 𝑚2(𝑙

2
1 + 𝑙2𝑐2 + 2𝑙1𝑙𝑐2 cos𝑥2), 𝑚12 = 𝑚21 =

𝑚2(𝑙
2
𝑐2 + 𝑙1𝑙𝑐2 cos𝑥2), 𝑚22 = 𝑚2𝑙

2
𝑐2 , where x = [𝑥1, 𝑥2]

𝑇
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Fig. 2. Reference and actual trajectories.
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Fig. 3. Desired and actual states 𝑥1 and 𝑥2.

is the joint angular vector, z = [x𝑇 , ẋ𝑇 ]𝑇 is the state vector,
M(x),C(x, ẋ), Ğ(x) are the matrices of inertia, centripetal
and Coriolis forces, and gravitational forces, respectively,
u𝑑 is the disturbance vector, 𝑚1,𝑚2, 𝑙1, 𝑙2 and 𝑙𝑐1 , 𝑙𝑐2 are
the masses, lengths and center-of-gravity lengths of the two
robot links. The parameters of the two-link manipulator are
as follows: 𝑚1 = 4kg, 𝑚2 = 2kg, 𝑙1 = 1m, 𝑙2 = 0.5m,
𝑙𝑐1 = 0.5m, 𝑙𝑐2 = 0.25m.

In this section, our objective is to track exactly the smooth
trajectory x𝑑(𝑡) given by

x𝑑(𝑡) =

[
sin (0.05𝜋𝑡)
sin (0.1𝜋𝑡)

]
(40)

The unknown external disturbances u𝑑(𝑡) are assumed to
be governed by

u𝑑(𝑡) =

[
2 sin(0.1𝜋𝑡)
2 cos(0.2𝜋𝑡)

]
(41)

and the initial conditions are set as z(0) = [0.5,−0.5, 0, 0]𝑇 .
Accordingly, the design parameters of the proposed AS-

RBFNC are chosen as follows: K = 𝑑𝑖𝑎𝑔 (10, 10), ΛΛΛ1 =
𝑑𝑖𝑎𝑔(1, 1), ΛΛΛ1 = 𝑑𝑖𝑎𝑔(3, 3), 𝜖 = 0.8, 𝜍 = 0.1, 𝜂𝑓 =

100, 𝜂𝑔𝑗 = 10, 𝜂𝑐 = 5, 𝜂𝜎 = 5, 𝜎𝜎𝜎init = [2, 2, 2, 2]
𝑇 .
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Fig. 4. Desired and actual states �̇�1 and �̇�2.
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Fig. 5. Control forces 𝑢1 and 𝑢2.
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Fig. 6. Nonlinear dynamics 𝑓1, 𝑓2 and approximation 𝑓1, 𝑓2.

The actual and reference trajectories in the phase space are
shown in Fig. 2, from which we can see that the proposed
AS-RBFNC control system can track the desired trajectory
with high accuracy. The states x and ẋ together with their
desired targets are shown in Fig. 3 and Fig. 4, respectively,
from which we can see that the actual states are able to
track the desired ones with rapid transient responses and
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Fig. 7. Online tracking errors and corresponding fuzzy rule numbers.

high steady-state accuracy. The corresponding control forces
and torque u = [𝑢1, 𝑢2]

𝑇 from the AS-RBFNC are shown
in Fig. 5, which shows that the smooth control actions
dynamically vary with the unknown nonlinear dynamics f
strongly disturbed by the external signal d(𝑡). The remark-
able control performance of the AS-RBFNC actually results
from the online approximation ability of the SC-RBFNN
which is shown in Fig. 6. Moveover, the online tracking
errors ∥e∥, ∥ė∥ and hidden node number 𝑁(𝑡) are shown
Fig. 7, which shows that the SC-RBFNN with compact RBF
hidden nodes guarantees convergent tracking errors and high
approximation accuracy simultaneously.

VI. CONCLUSIONS

In this paper, we have proposed an adaptive self-
constructing RBF neural control (AS-RBFNC) scheme for
trajectory tracking of MIMO nonlinear systems in the p-
resence of system uncertainties and unknown time-varying
disturbances. In the AS-RBFNC, system uncertainties and
unknown dynamics can be identified online by a self-
constructing RBF neural network (SC-RBFNN) which is
implemented by employing dynamically constructive hidden
nodes according to the structure learning criteria including
hidden node generating and pruning. Moreover, it has been
proven that the tracking errors of the AS-RBFNC control
system are globally asymptotical stable. Finally, simulation
studies are conducted on a two-link robot manipulator. The
results demonstrate that the AS-RBFNC achieves remarkably
superior performance of both trajectory tracking and online
approximation.
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