
 
 

 

  

Abstract—In this paper, a vessel maneuvering model (VMM) 
based on multi-output dynamic radial-basis-function network 
(MDRBFN) is proposed. Data samples used for training and 
testing are obtained from the vessel maneuvering dynamics 
based on a group of nonlinear differential equations. In order to 
identify the vessel maneuvering model, the differential 
equations are transformed into nonlinear state-space form. 
Considering that the desired states are not only dependent on 
system inputs, i.e., rudder defection and propeller revolution, 
but also previous states, the proposed MDRBFN is focus on the 
multi-input multi-output (MIMO) case. The structure of 
traditional fixed-size RBF networks is difficult to determine, so 
the growing and pruning algorithm is introduced to 
multi-output RBF networks to realize RBF networks with 
dynamic structure. The MDRBFN starts with no hidden 
neurons, and during the learning process, hidden neurons are 
recruited automatically according to hidden nodes generation 
criteria and parameters estimation. In addition, insignificant 
hidden nodes would be deleted if the node significance is lower 
than the predefined threshold. As a consequence, the proposed 
MDRBFN-based VMM (MDRBFN- VMM) reasonably captures 
the essential maneuvering dynamics with a compact structure. 
Finally, simulation results indicate that the proposed 
MDRBFN-VMM achieves promising performance in terms of 
approximation and prediction. 

I. INTRODUCTION 
P to now, varieties of vessel motion models have been 
proposed, mainly including Abkowitz model [1], MMG 
model [2] and response model [3]. In order to achieve 

high accuracy, Abkowitz model and MMG model are 
composed of dozens of hydrodynamic derivatives which are 
difficult to get. On the contrary, the response model is simple 
and convenient for control system design, but the model 
accuracy would reasonably decrease. 

Based on the model frameworks mentioned above, 
identification investigations for hydrodynamic derivatives 
and input-output nonlinearities have been conducted by 
various methods, including recursive least square estimation 
[4], estimation-before-modeling technique [5], recursive 
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maximum likelihood estimation [6], simplified linearization 
[7], and support vector regression method [8], etc. Due to the 
hydrodynamic nonlinearities related to the vessel dynamics, 
the resultant overall mathematical formulations of vessel 
maneuvering are usually complicated since previous 
traditional methods would inevitably lead to a dilemma 
between the accuracy and complexity of vessel motion 
models. Artificial neural networks (ANNs) in the field of 
artificial intelligence technology are introduced to overcome 
the problem mentioned above. ANNs are used to establish 
nonlinear input-output models for ship maneuvering motion 
effectively. In [9], the ANN and spectral analysis methods 
were adopted to identify the hydrodynamic derivatives in the 
mathematical model of marine vehicle motions. Rajesh et al. 
[10] identified an interesting nonlinear maneuvering model of 
large tankers based on BP neural networks. The system 
identification method based on ANNs can obtain 
considerable performance for approximation and 
generalization. However, BP neural networks have serious 
disadvantages, i.e., slow convergence speed and easy to fail 
into local minimum value.  In [11], Wang proposed 
generalized ellipsoidal basis function based fuzzy neural 
networks (GEBF-FNN). And GEBF-FNN-based vessel 
maneuvering model and controller were researched in [12-15]. 
Lately, a novel constructive multi-output extreme learning 
machine (CM-ELM) [16] was proposed to identify large 
tanker dynamics with fast speed. 

Radial-basis-function (RBF) networks have gained much 
popularity due to their ability to approximate complex 
nonlinear mapping. And many works have been done to 
improve the performance of RBF neural networks. In [17], 
Platt proposed resource allocation network (RAN) in which 
hidden neurons were added sequentially based on the novelty 
of the new data. Lately, Kadirkamanathan and Niranjan [18] 
adopted extended Kalman filter (EKF) instead of least mean 
square (LMS) algorithm to update the network parameters, 
which is known as RANEKF. However, the RAN and 
RANEKF can only add neurons and cannot prune 
insignificant neurons from the network, and thereby leading 
to an extremely large network. To overcome the problem 
mentioned above, Lu et al. [19] proposed a neural network 
known as minimal resource allocating networks (MRAN), 
where a pruning strategy was introduced. A sliding data 
window in the growing and pruning criteria is used to identify 
the neurons which contribute relatively little to the network 
output. But choosing proper window size can only be done by 
trial and error based on exhaustive simulation studies. Lately, 
Huang et al. [20] proposed a simple sequential growing and 
pruning algorithm based on the relationship between the 
significance of a neuron and the required learning accuracy 
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for RBF networks, referred to as GAP-RBF. 
This paper proposes to approximate vessel motion model 

(VMM) based on multi-output dynamic radial-basis-function 
network (MDRBFN). Training and checking samples are 
generated by the reference model. And then the training 
samples are used to identify vessel maneuvering dynamics by 
the MDRBFN. The system starts with no hidden nodes. 
During the online training process, the hidden neurons are 
generated according to its novelty and deleted according to 
significance to system performance, and the parameters are 
adjusted depending on the criteria. As a consequence, a 
powerful MDRBFN-VMM is obtained after online training 
process. In order to demonstrate the effectiveness of the 
proposed MDRBFN-VMM, simulation studies are conducted 
on typical benchmark scenarios, i.e. zig-zag maneuvering. 
The results indicated that the MDRBFN-VMM achieves 
promising identification and generalization performance. 

The rest of this paper is organized as follows. Section II 
presents the ship motion dynamics which are composed of 
several differential equations. In Section III, the reference 
model of vessel maneuvering is described. The learning 
scheme of MDRBFN is presented in Section IV. 
Comprehensive simulation studies are conducted in Section 
V. Section VI is the conclusion of this paper.  

II. VESSEL MANEUVERING DYNAMICS 
The vessel motion dynamics considered in this paper can 

be represented by the following non-dimensional surge, sway, 
and yaw equations (Bis-system), 
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where u, v and x, y are the velocities and positions along X 
axis (toward forward) and Y axis (toward starboard), ψ is the 
yaw angle in the horizontal plane, and its derivative r is the 
yaw rate. L, d, and m are the length, draft and mass of the ship, 

zI ′′  is its mass moment of inertia about Z axis (vertically 
downward with axis origin at free surface), 

Gx′′  is the 
non-dimensional X coordinate of ship’s center of gravity, g is 
acceleration due to gravity, X ′′ , Y ′′ , and N ′′  are nonlinear 
non-dimensional surge force, sway force, and yaw moment 
respectively, δ is the rudder angle, c is the flow velocity past 
rudder, ζ is the water depth parameter, cun and cnn are 
constants, T ′′  is the propeller thrust, h is the water depth, t̂ is 
the thrust deduction factor and n is the rpm of the propeller 
shaft. All other quantities are constant hydrodynamic 
derivatives are given by [21]. 

In order to generate data samples conveniently, the 
equations above are transformed into the following nonlinear 
state-space equation: 
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x = f(x,u)�          (7) 
where x= [u, v, r, x, y, ψ]T is the state vector, u=[δ, n, h]T is the 
input vector and the nonlinear function vector f=[fu, fv, fr, fx, fy, 
fψ]T represents the system (6). 

And the resulting speed of the vessel can be given by 
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III. REFERENCE MODEL OF VESSEL MANEUVERING 
As described in Section II, the vessel motion model 

consists of six nonlinear equations which are complicated due 
to varieties of hydrodynamics derivatives and complex 
structure. Obviously, the previous nonlinear equations are 
unsuitable for controller design. 

According to the nonlinear dynamics mentioned above, we 
can intuitively develop a feasible reference model of vessel 
motion for system identification using data-driven methods. 
And the state variable can be estimated by (6). The 
corresponding differential equations are used as reference 
models for data-driven system identification which can be 
described as follows, 
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In order to simplify the problem, we consider that the vessel 
sails under constant propeller rpm (n=constant) in deep water 
(h=constant>>d). So the equation (9) can be rewritten as:  

( 1) ( ( ), ( ))i i iδ+ =x f x�               (10) 
where, i denotes the sample index, x is state vector including 
velocities, positions and so on, δ (rudder angle) is input 
variable and f�  is nonlinear function vector implemented by 
(9). As a consequence, the reference model (10) can be 
rationally used to generate data samples for training neural 
networks.  

IV. MDRBFN-BASED VESSEL MANEUVERING MODEL 
Radial-basis-function neural networks are well suited for 

function approximation and pattern recognition due to their 
simple topological structure and their ability to reveal how 
learning proceeds in an explicit manner. However, the 
traditional fixed-size networks either use too few units in 
which case the network memorizes poorly or too many in 
which case the network generalizes poorly. And in this 
section, a growing and pruning algorithm is introduced to 
RBF networks to achieve high performance with compact 
structure.  

A. Architecture of MDRBFN-based Vessel Maneuvering 
The proposed MDRBFN is a three-layer network as the 

traditional RBF neural networks. 
Layer 1: Each node in layer 1 represents an input variable. 
Layer 2: The second layer consists of units that respond to 

a local region of the space of input values.  
2
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where, φk(x) is the response of the kth hidden neuron for an 
input vector x. μk=(μk,1,…, μk,7)T∈R7 and σk are the center and 

width of the kth hidden neuron, respectively, k=1,…,K. K is 
the number of hidden neurons. 

Layer 3: The inputs to the synapses of the third layer are the 
outputs of the second layer. The purpose of each third-layer 
synapse is to define the contribution of each second-layer unit 
to a particular output y of the network. The output of a RBF 
network with K hidden neurons for an input vector 

7
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where αk is the weight connecting the kth hidden neuron to the 
output neuron.  

B. Learning Scheme for MDRBFN-VMM 
For each observation (Xi, Ti), i=1,2,…, n, where n is the 

number of total training data pairs, Xi�R7 and 
6

1 2 6[ , ,..., ]i i i i Tt t t= ∈T R  are the ith input vector and the desired 
output vector. The output vector of the MDRBFN-VMM, 

1 2 6[ , ,..., ]i i i i Ty y y=Y  of the existing structure could be obtained 
by (12). Before the first observation (X1, T1) arrives, the 
MDRBFN-VMM has no hidden neurons. It grows according 
to the criteria, including neuron generation criterion, 
allocation of RBF unit, weight adjustment and pruning 
strategy. 
1) Criteria of Neuron Generation 

(1) System Error 
When the ith observation (Xi, Ti) arrives, calculate the 

system error as follows: 
, 1, 2, ,i i ie i n= − =T Y "       (13) 

If 
1

max min, max{ , }i i
e ee k k e eβ −> =            (14) 

a new RBF hidden neuron should be considered. Here, emax is 
predefined maximum error, emin is the desired accuracy and β
∈(0,1) is the convergence constant. 

(2) Accommodation Boundary 
The accommodation criterion is described as follows: for 

the ith observation (Xi, Ti), calculate the distance di(k) 
between the observation Xi and the center Ck of the existing 
RBF units: 

( ) i
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If 
1

,min max min, max{ , }i
i d dd k k d dγ −> =        (17) 

a new RBF hidden neuron should be created. Here, dmax and 
dmin are the upper and lower bound of effectiveness radius of 
the accommodation boundary, and the term γ�(0,1) is the 
convergence constant.  

2) Allocation of RBF Unit 
The initial parameters of new hidden node are set as 

follows: 
   i

k =C X           (18) 

minu dσ κ= ×                 (19) 
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where � (� >1) is an overlap factor that determines the 
overlap between the RBF units. 

When the first pattern (X1,T1) enters the MDRBFN, it is 
adopted as the first neuron: C1=X1, σ1=σ0, where σ0 is a 
prespecified constant.  

The discussion above focuses on only one case i.e., ||ei||>ke 
and dmin>kd, where, a new hidden neuron should be generated. 
For the other three cases, the algorithm is as follows: 

If ||ei||≤ke and dmin≤kd， MDRBFN can accommodate the 
observation completely. Nothing need be done or only the 
weights should be updated. 

If ||ei||≤ke and dmin>kd, the system has good generalization 
and only weights should be adjusted.  

If ||ei||>ke and dmin≤kd, the nearest RBF unit is not so good 
for generalization, and the width of the nearest RBF node and 
all the weights should be updated simultaneously.  

For the nearest kth RBF unit clustering (Xi, Ti): 
1i i

k w kkσ σ −= ×            (20) 
where kw is a predefined constant. 

3) Weight Adjustment 
Assume the nth training pattern enters the MDRBFN, all 

these n data pairs are memorized in the input matrix P�R7×n 
and the output matrix T∈R6×n, respectively, upon which the 
weights are determined. 

Considering the nth training pattern for the MDRBFN, K 
hidden neurons are generated according to the criteria stated 
above. The hidden neurons output can be obtained according 
to (11). Let 
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The output Y and error E� of the system are as follows: 
=Y WΦ                (22) 

= −E T Y�                 (23) 
In order to minimize the error energy TE E� � and find the 

optimal coefficient vector W*, the well-known linear least 
squares (LLS) method is employed as follows: 

* +=W TΦ                 (24) 
where Ф+ is the pseudoinverse of Ф as, 

1( )T T+ −=Φ Φ Φ Φ               (25) 
4) Criteria of pruning nodes 

In order to get the parsimonious architecture of the 
MDRBFN, a pruning technology called error reduction ratio 
(ERR) method [22] is adopted as follows: 

= +D H EΘ             (26) 
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D=TT 
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Θ=WT 
H can be decomposed into  

H=W2A             (27) 
where W2 is an n×K matrix with orthogonal columns and A is 
a K×K upper triangular matrix. Substituting (27) into (26) 
yields 

D=W2AΘ+E=W2G+E          (28) 
The LLS solution of G is given by G=(W2
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TD, or 

T
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i i
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where ωi is the ith column of W2. 
As ωi and ωj are orthogonal for i ≠ j, the sum of squares or 

energy of D is as follows: 

2

1

K
T T T

i i i
i

g ω ω
=

= +∑D D E E      (30) 

If D is the desired output vector after its mean has been 
removed, the variance of D is given by 
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Note that 2
1 /K T

i i i ig nω ω=∑  is the part of the desired output 
variance. Thus, 2 /T

i i ig nω ω  can be regarded as the increment 
to the explained desired output variance introduced by ωi and 
an ERR due to ωi can be defined as, 
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   (32) 

The ERR in (32) offers a simple and effective means of 
seeking a subset of significant regressor. 

Define the ERR matrix Δ=(err1,err2,…,errK)∈RK, where 
erri represents the error reduction ratio due to the ith column 
vector of W2. And erri is defined as the significance of ith 
RBF unit. 

If erri<kerr (a prespecified threshold), the ith RBF neuron is 
considered insignificant and will be removed from the system. 
Otherwise, no RBF neurons will be deleted.  

V. SIMULATION STUDIES 
Comprehensive simulation studies are conducted in this 

part. The Esso Osaka 190,000 dwt tanker is used to generate 
the training and checking data and the model’s parameters 
can be found in [21]. All the simulation studies are carried out 
in the unified environment running in Matlab R2011a version 
with an Intel Core i3, 2.27 GHz CPU. 

To identify the tanker model, the external input signal 
(rudder angle δ(i)) is governed by the following sine function 
under rudder rate limitation, 

max

max

( ) sin( ), [0, ]i A i T i nδ ω
δ δ

δ δ

⎧ = Δ ∈⎪⎪ ≤⎨
⎪

≤⎪⎩
� �

        (33) 

where, A and ω are amplitude and frequency of rudder angle 
generation function. ΔT and n are sampling period and data 
number. These parameters are chosen as follows: A=35(deg.), 
ω=9(deg./sec.), n=3000, ΔT=1(sec.), δmax=35(deg.) and 

maxδ� =2.33(deg./sec.). 

1383



 
 

 

 
Simulation results in Fig. 1 indicate that the MDRBFN- 

VMM can identify well the original model since the training 
error index (RMSE) tends to zero. Finally, the 
MDRBFN-VMM employs 19 hidden neurons for the 
resulting system which obtains remarkable identification 
results for variables u, v, r, x, y, ψ, U shown in Fig.2-Fig.4, 
respectively.  

 

  
In order to demonstrate the generalization and prediction 

capabilities of the proposed MDRBFN-VMM, zig-zag 
maneuvers are used to generate checking data. The typical 
zig-zag maneuver denoted by zz-(heading angle)-θ(rudder 
angle) with the design speed U0=8.2311m/s(16 knot) as the 
initial speed is used to conduct the checking process and 
comparisons with original model given by (7).  

Simulation results of zz-20deg-20deg are depicted in 

Fig. 1.  Hidden node growth & RMSE during online training. 

Fig. 2.  Identification results of u, v, r during online training. 

Fig. 3.  Identification results of x, y, ψ during online training. 

Fig. 4.  Identification results of x, y, ψ during online training. 

Fig. 5.  Prediction results of u, v, r while zz-20deg-20deg. 

Fig. 6.  Prediction results of x, y, ψ while zz-20deg-20deg. 
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Fig.5-Fig.7, where x, y, ψ, U can be predicted accurately 
during the whole maneuvering since the maximal relative 
errors uniformly lie within 1% except that those of variables u, 
v and r are under 6%, 8% and 9%, respectively. It follows that 
the proposed MDRBFN-VMM is able to identify and predict 
the original vessel motion dynamics. 
 

 

VI. CONCLUSION 
In this paper, we present a system identification method for 

vessel maneuvering models by using the promising 
Multi-output Dynamic Radial-Basis-Function Networks 
(MDRBFN) algorithm. To be specific, training and checking 
data are generated by a group of well established nonlinear 
differential equations for maneuvering dynamics. The 
generated data is used to identify the MDRBFN-based vessel 
maneuvering model (MDRBFN-VMM). The promising 
MDRBFN method is used to train data samples by using the 
generating and pruning criteria of hidden nodes and 
parameter update strategies. As a consequence, a powerful 
MDRBFN- VMM with superior performance of 
approximation and prediction is obtained after online learning. 
In order to demonstrate the effectiveness of the proposed 
scheme for vessel maneuvering dynamics identification, 
simulation studies are conducted on typical benchmark 
scenarios, i.e. zig-zag maneuvers. The results indicate that the 
MDRBFN-VMM achieves remarkable performance. 

REFERENCES 
[1] M. A. Abkowitz, “Measurement of hydrodynamic characteristic from 

ship maneuvering trial by system identification,” SNAME Trans., vol. 
80, 283–318, 1980. 

[2] A. Ogawa and H. Kasai, “On the mathematical model of maneuvering 
motion of ship,” Int. Shipbuild. Prog., vol. 25, pp. 306–319, 1978. 

[3] K. Nomoto, T. Taguchi, K. Honda and S. Hirano, “On the steering 
qualities of ships,” Int. Shipbuild. Prog., vol. 4, no. 35, pp. 354–370, 
1957. 

[4] K. J. Astrom and C. J. Kallstrom, “Identification of ship steering 
dynamics,” Int. Shipbuild. Prog., vol. 12, no. 35, pp. 9–22, 1976. 

[5] H. K. Yoon and K. P. Rhee, “Identification of hydrodynamic 
coefficients in ship maneuvering equations of motion by 
estimation-before-modeling technique,” Ocean Eng., vol. 30, no. 18, pp. 
2379–2404, 2003. 

[6] C. G. Kallstrom and K. J. Astrom, “Experiences of system 
identification applied to ship steering,” Automatica., vol. 17, no. 1, pp. 
187–189, 1981. 

[7] S. Sutulo, L. Moreiar and C. Guedes Soares, “Mathematical models of 
ship path prediction in maneuvering simulation systems,” Ocean Eng., 
vol. 29, no. 1, pp. 1–19, 2002. 

[8] X. G. Zhang and Z. J. Zou, “Identification of Abkowitz model for ship 
maneuvering motion using ε-support vector regression,” J. 
Hydrodynamics, vol. 23, no. 3, pp. 353–360, 2011. 

[9] A. B. Mahfouz and M. R. Haddara, “Effects of the damping an 
excitation on the identification of the hydrodynamic parameters for an 
underwater robotic vehicle,” Ocean Eng., vol. 30, no. 8, pp. 1005–1025, 
2003; 

[10] G. Rajesh and S. K. Bhattacharyya, “System identification for 
nonlinear maneuvering of large tankers using artificial neural 
networks,” Appl. Ocean Res., vol. 30, pp. 256–263, 2008; 

[11] N. Wang, “A generalized ellipsoidal basis function based online 
self-constructing fuzzy neural network,” Neural Process. Lett., vol. 34, 
pp. 13–37, 2011; 

[12] N. Wang, D. Wang and T. Li, “A novel vessel maneuvering model via 
GEBF based fuzzy neural networks,” in Proc. 31th Chinese Control 
Conf., Hefei, 2012, pp. 7226–7031. 

[13] N. Wang, D. Wang and T. Li, “Dynamic response model for tanker 
steering using GEBF based fuzzy neural networks,” in Proc. 31th 
Chinese Control  Conf., Hefei, 2012, pp. 7032–7037. 

[14] N. Wang, Z. Wu, C. Qiu and T. Li, “Vessel steering control using 
generalized ellipsoidal basis function based fuzzy neural networks,” in 
Proc. 9th International Symposium on Neural Networks, Shenyang, 
2012, pp. 515–524. 

[15] N. Wang, X. Wang, Y. Tan, P. Shao and M. Han, “An improved 
Learning scheme for extracting T-S fuzzy rules from data samples,” in 
Proc. 10th International Symposium on Neural Networks, Dalian, 2013, 
pp. 53-60. 

[16] N. Wang, M. Han, N. Dong, and M. J. Er, “Constructive multi-output 
extreme learning machine with application to large tanker motion 
dynamics identification,” Neurocomputing, [Online], Available: 
http://dx.doi.org/10.1016/i.neucom.2013.01. 062 

[17] J. Platt, “A resource allocating network for function interpolation,” 
Neural Computa., vol 3, pp. 213-225, 1991. 

[18] V. Kadirkamanathan and M. Niranjan, “A function estimation approach 
to sequential learning with neural network,” Neural Computa., vol. 5, 
pp. 954975, 1993. 

[19] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequential 
learning scheme for function approximation by using minimal radial 
basis function neural networks,” Neural Computa. ,vol. 9, pp. 461-478, 
1997. 

[20] G. Huang, P. Saratchandran, and N. Sundararajan, “An efficient 
sequential learning algorithm for growing and pruning  RBF (GAP- 
RBF) networks,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 6, pp. 
2284-2292, Dec. 2004. 

[21] W. B. Van Berlekom and T. A. Goddard, “Maneuvering of large 
tankers,” SNAME Trans., vol. 80, pp. 264-298, 1972. 

[22] S. Wu and M. J. Er, “Dynamic fuzzy neural networks: A novel 
approach to function approximation,” IEEE Trans. Syst. Man, Cybern, 
B, vol. 30, pp.358-364, 2000. 

Fig. 7.  Prediction results of U while zz-20deg-20deg. 

1385




